1
|
Li H, Zhang Y, Zhang W, Sun C, Huang L, Dong Y, Yang Y, Li H, Zheng H, Tao J. Unravelling the gene regulatory network linking red leaf and red flesh traits in teinturier grape. JOURNAL OF PLANT PHYSIOLOGY 2025; 308:154488. [PMID: 40158233 DOI: 10.1016/j.jplph.2025.154488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Despite the extensive research conducted on grape anthocyanins, previous studies have predominantly focused on grape skin colour changes, with limited research on flesh colour and leaf colour. In this study, we utilised the superior line 'Zhongshan 151' strain (red flesh and red leaves) as a target and identified that the primary driving force for the transition of leaf colour from green to red was the accumulation of anthocyanins. The study identified a candidate gene, VvMYBA6, and determined that the encoded protein is located in the nucleus and possesses transcriptional activation activity. Subsequent experiments revealed that VvMYBA6 significantly promoted anthocyanin accumulation in tobacco through its overexpression. Further mechanistic investigations elucidated the interaction of VvMYBA6 with the VvMYC1 protein, which activates the expression of VvUFGT, thereby promoting anthocyanin accumulation. Furthermore, an interaction between VvMYBA1 and VvMYC1 was identified in leaves, which is consistent with the mechanism of flesh colour regulation in red-fleshed grapes and affects anthocyanin accumulation by regulating the expression of VvUFGT. The interaction between VvMYBA1 and VvMYBA6 was further verified by yeast two-hybrid (Y2H) and pull-down experiments. This finding indicates that the interaction between VvMYBA6, VvMYBA1 and VvMYC1 plays a pivotal role in the regulation of anthocyanin synthesis, which may significantly impact the development of fruit colour in teinturier grapes.
Collapse
Affiliation(s)
- Haoran Li
- Sanya Research Institute, Nanjing Agricultural University, Sanya, 572000, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Zhang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Chenxu Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liyuan Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaxin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Zheng
- Sanya Research Institute, Nanjing Agricultural University, Sanya, 572000, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Tao
- Sanya Research Institute, Nanjing Agricultural University, Sanya, 572000, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| |
Collapse
|
2
|
Lai B, Gao C, Jiang L, Wen L, Zhang X, Shen W, Yu Y, Yang H, Chen F, Fang P, Du L. RsWRKY44 participated in anthocyanin biosynthesis regulation in radish through interaction with RsMYB1a. PLANT CELL REPORTS 2025; 44:99. [PMID: 40257620 DOI: 10.1007/s00299-025-03487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/01/2025] [Indexed: 04/22/2025]
Abstract
KEY MESSAGE RsWRKY44 transcription factor, associated with anthocyanin biosynthesis in different radish cultivars, highly facilitates the activation of RsCHI and RsUFGT genes through its interaction with RsMYB1a, thereby promoting anthocyanin production. The regulation of anthocyanin biosynthesis in radish is primarily controlled by RsMYB1a and RsbHLH4, while the involvement of other factors in this process is not well understood. This study identified a WRKY transcription factor, RsWRKY44, as a key player in anthocyanin biosynthesis regulation. The expression of RsWRKY44 showed a strong correlation with anthocyanin content across different radish cultivars. RsWRKY44 was found to be expressed in the nuclei and exhibit transactivation activity. It was observed that only when RsWRKY44 was co-expressed with RsMYB1a, anthocyanin accumulation was induced in tobacco leaves, while RsWRKY44 alone did not. Additionally, RsWRKY44, along with RsMYB1a, activated the expression of tobacco endogenous anthocyanin biosynthesis regulatory genes NtAN1a and NtAN1b, as well as the structural genes NtCHS, NtCHI, NtDFR, NtF3H, NtANS, NtUFGT in transgenic tobacco. BiFC, FLC, and DLA assays confirmed the interaction between RsWRKY44 and RsMYB1a leading to the activation of radish genes RsCHI and RsUFGT, promoting anthocyanin biosynthesis. This study sheds light on a new molecular mechanism of RsWRKY44 involved in anthocyanin biosynthesis regulation in radish.
Collapse
Affiliation(s)
- Biao Lai
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Chenxi Gao
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Li Jiang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Li Wen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Xushuo Zhang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Wei Shen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Yanling Yu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Hanbing Yang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Fabo Chen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Ping Fang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China
| | - Lina Du
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, 408100, Chongqing, People's Republic of China.
| |
Collapse
|
3
|
Li Y, Song Z, Zhan X, Li X, Ye L, Lin M, Wang R, Huang H, Guo J, Sun L, Gu H, Chen J, Fang J, Qi X. Chromosome-level genome assembly assisting for dissecting mechanism of anthocyanin regulation in kiwifruit (Actinidia arguta). MOLECULAR HORTICULTURE 2025; 5:18. [PMID: 40165341 PMCID: PMC11959805 DOI: 10.1186/s43897-024-00139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/26/2024] [Indexed: 04/02/2025]
Abstract
Actinidia arguta is a newly emerged, commercially cultivated Actinidia species. A. arguta has a beautiful appearance and is rich in anthocyanin, and is thus highly welcomed by consumers. However, the mechanism of anthocyanin regulation in A. arguta remains unclear. In this study, we assembled the nearly complete genome of the first red A. arguta cultivar, 'Tianyuanhong', with an N50 of 21 Mb. Comparative genome analysis revealed a role of the expansion/contraction of gene families in the species-specific trait formation of A. arguta. Through verification of transient overexpression and stable transformation, RNA-seq analysis revealed a key bHLH transcription factor, AaBEE1, which negatively regulates anthocyanin biosynthesis. DAP-seq analysis combined with Y1H, EMSA, Chip-qPCR and LUC suggested that AaBEE1 binds to the G-box of the AaLDOX promoter and suppresses its expression. Overall, we assembled the genome of A. arguta and clarified its AaBEE1-AaLDOX module-mediated molecular mechanism of anthocyanin regulation.
Collapse
Affiliation(s)
- Yukuo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Zhe Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xu Zhan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xiaohan Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lingshuai Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Miaomiao Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Ran Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hailei Huang
- Shiyan Economic Crops Research Institute, Shiyan, 442099, China
| | - Jian Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Leiming Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hong Gu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinyong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinbao Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Xiujuan Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China.
| |
Collapse
|
4
|
Arathi S, Samji A, Eashwarlal K, Gokulkrishnan S, Muthubhavani M, Yasini NP, Uma Maheswari G, Warrier RR. Transcriptome sequencing on different ages of Saraca asoca bark: Insights from tannin biosynthetic pathways and EST-SSR marker design. Fitoterapia 2025; 182:106459. [PMID: 40023231 DOI: 10.1016/j.fitote.2025.106459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
The bark of Saraca asoca is extensively used for treating gynecological issues, primarily due to its tannin content. This study focused on transcriptome sequencing of young (BY; 0-6 years), middle-aged (BM; 6-12 years), and old (BO; >12 years) Ashoka barks. The de novo assembly produced 1,37,451 unigenes of 1,31,647,800 bp from BY, 1,16,825 unigenes of 1,15,283,571 bp from BM, and 81,825 unigenes of 68,553,092 bp from BO samples. These transcripts closely matched with Glycine max and Cajanus cajan. Transcriptome analysis identified key genes and enzymes in the tannin biosynthetic pathway, with higher levels of phenylpropanoid and flavonoid pathways observed in middle-aged samples, followed by young and old samples. Pathway enrichment analysis indicated that the Differentially Expressed Genes (DEGs) were predominantly in the biosynthetic pathways of flavonoids, isoflavonoids, anthocyanins, terpenoids, and isoquinoline alkaloids. The study also examined the up-regulated and down-regulated DEGs involved in tannin production across the different sample comparisons, revealing the flavonoid pathway to be the most regulated. Additionally, 9612, 8053, and 4659 simple sequence repeats (SSRs) were identified from BY, BM, and BO transcripts, respectively. Fourteen EST-SSR markers specific to tannins were designed and validated, with one found to be polymorphic. This research represents the first report on transcriptome sequencing and EST-SSR markers from various ages of Saraca asoca bark, providing a foundation for future genetic mapping and conservation efforts of this vulnerable species.
Collapse
Affiliation(s)
- S Arathi
- Institute of Forest Genetics and Tree Breeding (IFGTB), Coimbatore, 641 002, India
| | - Aghila Samji
- Institute of Forest Genetics and Tree Breeding (IFGTB), Coimbatore, 641 002, India
| | - Komal Eashwarlal
- Institute of Forest Genetics and Tree Breeding (IFGTB), Coimbatore, 641 002, India
| | - S Gokulkrishnan
- Institute of Forest Genetics and Tree Breeding (IFGTB), Coimbatore, 641 002, India
| | - M Muthubhavani
- Institute of Forest Genetics and Tree Breeding (IFGTB), Coimbatore, 641 002, India
| | - N P Yasini
- Department of Biochemistry, CMS College of Science and Commerce, Coimbatore, India
| | - G Uma Maheswari
- Department of Biotechnology, Jeppiaar Engineering College, Chennai, India
| | - Rekha R Warrier
- Institute of Forest Genetics and Tree Breeding (IFGTB), Coimbatore, 641 002, India.
| |
Collapse
|
5
|
Ye D, Liu X, Zhang X, Luo X, Lei Y, Wen X, Zhang X, Xie Y, Li M, Xia H, Liang D. Two AcMYB22 Alleles Differently Regulate Flavonoid Biosynthesis Resulting in Varied Flesh Color in Kiwifruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6059-6071. [PMID: 40008475 DOI: 10.1021/acs.jafc.4c11168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Flavonoids are essential nutrient compounds in kiwifruit, yet the specific regulatory mechanism governing their biosynthesis remains poorly understood. In this study, we identified an R2R3-MYB transcription factor (TF), AcMYB22, associated with flavonoid biosynthesis in kiwifruit. Two alleles of AcMYB22 were isolated: AcMYB22-1 is exclusively present in the cultivar "Hongyang", while both AcMYB22-1 and AcMYB22-2 were identified in its mutant "H-16", with nine single nucleotide polymorphisms. Overexpression of AcMYB22 in kiwifruit resulted in enhanced yellow flesh coloration with a b* hue value and a significant increase in flavonoid content. Moreover, transgenic kiwifruit plants of overexpressing AcMYB22 exhibited more pronounced yellow leaves with red margins accompanied by significant increases in total flavonoid and anthocyanin levels. The expression levels of flavonoid biosynthesis genes were significantly upregulated in transgenic plants with notably higher increases in AcMYB22-2 overexpressing plants compared to those overexpressing AcMYB22-1. Furthermore, yeast one-hybrid assays, electrophoretic mobility shift assays (EMSAs), and GUS activity assays confirmed that both AcMYB22-1 and AcMYB22-2 can physically bind to the promoters of AcF3H and AcUFGT, positively activating their transcription, with AcMYB22-2 exhibiting stronger activation activity than AcMYB22-1. These findings provide new insights into the regulatory mechanism of flavonoid biosynthesis in kiwifruit.
Collapse
Affiliation(s)
- Daolin Ye
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Xinling Liu
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Xuefeng Zhang
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Xiaoyan Luo
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Yuxin Lei
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Xueling Wen
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Xiaoli Zhang
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Yue Xie
- Key Laboratory of Kiwifruit Breeding and Utilization in Sichuan Province, Sichuan Academy of Natural Resource Sciences, Chengdu 610041, China
| | - Minzhang Li
- Key Laboratory of Kiwifruit Breeding and Utilization in Sichuan Province, Sichuan Academy of Natural Resource Sciences, Chengdu 610041, China
| | - Hui Xia
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Huimin Road 211, Chengdu 611130, China
| |
Collapse
|
6
|
Naik J, Rajput R, Singh S, Stracke R, Pandey A. Heat-responsive MaHSF11 transcriptional activator positively regulates flavonol biosynthesis and flavonoid B-ring hydroxylation in banana (Musa acuminata). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70084. [PMID: 40052345 DOI: 10.1111/tpj.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 02/19/2025] [Indexed: 05/13/2025]
Abstract
Plant flavonols act primarily as ultraviolet radiation absorbers, reactive oxygen species scavengers, and phytoalexins, and they contribute to biotic and abiotic stress tolerance in plants. Banana (Musa acuminata), an herbaceous monocot and important fruit crop, accumulates flavonol derivatives in different organs, including the edible fruit pulp. Although flavonol content varies greatly in different organs, the molecular mechanisms involving transcriptional regulation of flavonol synthesis in banana are not known. Here, we characterized three SG7-R2R3 MYB transcription factors (MaMYBFA1, MaMYBFA2, and MaMYBFA3) and heat shock transcription factor (MaHSF11), to elucidate the molecular mechanism involved in transcriptional regulation of flavonol biosynthesis in banana. MaMYBFA positively regulates flavonol synthase 2 (MaFLS2) and downregulates MaFLS1. We show these transcription factors to be weak regulators of flavonol synthesis. Overexpression of MaHSF11 enhances flavonol contents, particularly that of myricetin, and promotes flavonol B-ring hydroxylation, which contributes to the diversity of flavonol derivatives. MaHSF11 directly interacts with the MaFLS1 and flavonoid 3',5'-hydroxylase1 (MaF3'5'H1) promoters, both in vitro and in vivo. MaHSF11 activates the expression of MaDREB1 directly, which is known to promote cold and chilling tolerance in banana fruit. Overall, our study elucidates a regulatory mechanism for flavonol synthesis in banana and suggests possible targets for genetic optimization to enhance nutritional value and stress responses in this globally important fruit crop.
Collapse
Affiliation(s)
- Jogindra Naik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ruchika Rajput
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Samar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Bielefeld, 33615, Germany
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
7
|
Zhao Z, Adjei MO, Luo R, Yu H, Pang Y, Wang J, Zhang Y, Ma J, Gao A. Metabolome and transcriptome analysis reveal the pigments biosynthesis pathways in different color fruit peels of Clausena lansium L. Skeels. FRONTIERS IN PLANT SCIENCE 2025; 15:1496504. [PMID: 39958581 PMCID: PMC11825772 DOI: 10.3389/fpls.2024.1496504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/13/2024] [Indexed: 02/18/2025]
Abstract
Introduction The color of Clausena lansium L. Skeels cv. Jixin fruit peel is brown (BP), while the mutant cv. Zijin had purple fruit peels (PP). The coloration of the peels was attributed to significant differences in chlorophyll, carotenoid, and anthocyanin content between BP and PP. Methods This study investigates the biosynthetic metabolic activities in the brown and purple peels of Clausena lansium L. Skeels using metabolomics and transcriptomics. It aims to identify metabolic pathways and differentially expressed genes related to flavonoids and anthocyanins biosynthesis. Results The PP (purple peel) has higher levels of a-carotene and b-carotene but lower levels of chlorophyll a, chlorophyll b, and lutein compared to BP. Zeaxanthin was absent from both peels, suggesting that the b-carotene hydroxylase enzyme is not active. Both peels contain delphinidin-based (Dp) and cyanidin-based (Cy) anthocyanins, but not pelargonidin-based (Pg). The total anthocyanin content and the Dp/Cy ratio are higher in PP than in BP. The delphinidin, cyanidin, and mallow derivatives in the PP were significantly higher than in the BP. The increase of total anthocyanin content and Dp/Cy ratio may be the main reason for the peel color changing from brown to purple. The significant increase of F3H expression in purple peels suggested a higher efficiency of catalyzing the conversion of naringenin into dihydroflavonols in the PP, leading to the higher content of total anthocyanin. Despite the significant increase of FLS expression in PP, the contents of kaempferol, quercetin, and myricetin significantly decreased, suggesting that the increase of FLS expression did not lead to an increase in flavonol biosynthesis. Discussion The competition between F3'H and F3'5'H may determine the ratio of Dp/Cy, the higher levels of F3'H, F3'5'H, and UFGT expression, lead to the increase accumulation of total anthocyanin and Dp/Cy in PP. The deficiency of Pg in both peels resulted from the substrate specificity of the DFR enzyme. The research also describes the transition in color from BP to PP and details of the biosynthetic pathways for carotenoids and anthocyanins, elucidating the molecular processes underlying anthocyanin production.
Collapse
Affiliation(s)
- Zhichang Zhao
- Tropical Crops Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Mark Owusu Adjei
- Landscape Architecture College of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ruixiong Luo
- Tropical Crops Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Huaping Yu
- Tropical Crops Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yali Pang
- Tropical Crops Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jian Wang
- Tropical Crops Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yu Zhang
- Guangxi Subtropical Crops Research Institute, Nanning, Guangxi, China
| | - Jun Ma
- Landscape Architecture College of Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Aiping Gao
- Tropical Crops Genetic Resources Institute Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|
8
|
Song Z, Li Y, Zhan X, Li X, Ye L, Lin M, Wang R, Sun L, Chen J, Fang J, Wei F, Qi X. AaMYB61-like and AabHLH137 jointly regulate anthocyanin biosynthesis in Actinidia arguta. BMC PLANT BIOLOGY 2025; 25:89. [PMID: 39844047 PMCID: PMC11753137 DOI: 10.1186/s12870-025-06109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Red Actinidia arguta has recently become highly popular because of its red appearance resulting from anthocyanin accumulation, and has gradually become an important breeding direction. However, regulators involved in anthocyanin biosynthesis have not been fully characterized in A. arguta. RESULTS Here, we demonstrated that a key R2R3-MYB transcription factor, AaMYB61-like, plays a crucial role in A. arguta anthocyanin biosynthesis. The RT-qPCR results revealed that transient overexpression of AaMYB61-like in A. arguta fruit at 90-100 DAFB significantly promoted anthocyanin biosynthesis, as did the gene expression levels of AaCHS, AaCHI, AaF3H, AaLDOX, and AaF3GT, whereas the result of VIGS revealed the opposite results in A. arguta fruit at 105-115 DAFB. A transcriptional activation assay indicated that AaMYB61-like exhibited transcriptional activation activity. Y1H and LUC assays revealed that AaMYB61-like activates the promoters of AaCHS, AaLDOX, and AaF3GT. In addition, AabHLH137 was found to be related to fruit color from the transcriptome data. We demonstrated that AaMYB61-like promotes anthocyanin biosynthesis by interacting with AabHLH137 via Y2H, BiFC, and Agrobacterium-mediated co-transformation. CONCLUSIONS Our study not only reveals the functions of AaMYB61-like and AabHLH137 in anthocyanin regulation, but also broadly enriches color regulation theory, establishing a foundation for clarifying the molecular mechanism of fruit coloration in kiwifruit.
Collapse
Affiliation(s)
- Zhe Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yukuo Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Xu Zhan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471000, China
| | - Xiaohan Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Lingshuai Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Miaomiao Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China
| | - Ran Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Leiming Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinyong Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinbao Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Feng Wei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiujuan Qi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, 453500, China.
| |
Collapse
|
9
|
Sun Y, Hu P, Jiang Y, Wang Z, Chang J, Zhou Y, Shao H. Comprehensive analysis of metabolomics and transcriptomics reveals varied tepal pigmentation across Gloriosa varieties. BMC PLANT BIOLOGY 2025; 25:66. [PMID: 39819392 PMCID: PMC11740357 DOI: 10.1186/s12870-025-06067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Gloriosa L. possesses exceptional ornamental value, with its floral hues exhibiting a wide range of variations. In this study, we employed sophisticated colorimetry, Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS), and transcriptome sequencing to investigate the phenotypic expression of tepal colors, the composition of carotenoids and anthocyanins, and the differential gene expression in four Gloriosa varieties during their full bloom phase. Our findings revealed that the redness of the tepals, indicated by higher a* values, increased with the intensity of the red hue, while lighter colors corresponded to higher L* values. Metabolomic analysis identified 50 carotenoids and 60 anthocyanins. It was observed that carotenoids primarily influence the yellow and orange color of Gloriosa tepals, with β-carotene, lutein, and zeaxanthin being the predominant carotenoids. Anthocyanins serve as the principal coloring agents in the orange, red and purple tepals of Gloriosa. High levels and proportions of cyanidins and pelargonidins are key contributors to the formation of red and purple tepals, while high levels and proportions of peonidins also play a significant role in purple coloration. In contrast, the presence of high levels and proportions of pelargonidins alone is a crucial factor in the formation of orange tepals. Transcriptomic data unearthed 57 and 92 candidate differentially expressed genes (DEGs) belong to carotenoid and anthocyanin biosynthesis pathway, respectively, with PSY, PDS, DFR, and ANS genes considered as critical genes for the differential accumulation of pigments of Gloriosa tepals. Weighted gene co-expression network analysis (WGCNA) revealed significant co-expression patterns between 217 transcription regulatory factors (TFs) and 8 carotenoid biosynthesis genes, and between 194 TFs and 41 anthocyanin biosynthesis genes. qRT-PCR verified the expression patterns of four carotenoid biosynthesis-related genes, eight anthocyanin biosynthesis-related genes, and three transcription regulatory factors. It was found that Cluster-121969.6 (MYB) gene is specifically expressed in the tepals of the four varieties (compared to stems and leaves) and shows a high consistency with the trend of anthocyanin content changes. This research provides new insights into the mechanisms underlying the formation of diverse floral colors in Gloriosa tepals.
Collapse
Affiliation(s)
- Yue Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Pinli Hu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yanan Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Zhenzhen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Jiaxing Chang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yiwei Zhou
- Guangdong Provincial Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Haojing Shao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| |
Collapse
|
10
|
Guo P, Cheng X, Wang Y, Chen G, Chen X, Yang Y, Zhang X, Hu Z. SlUPA-like, a bHLH Transcription Factor in Tomato ( Solanum lycopersicum), Serves as the Crosstalk of GA, JA and BR. Int J Mol Sci 2024; 25:13419. [PMID: 39769191 PMCID: PMC11677128 DOI: 10.3390/ijms252413419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The bHLH (basic Helix-Loop-Helix) transcription factor serves as pivotal controller in plant growth and development. In a previous study, the overexpression of SlUPA-like in Solanum lycopersicum L. Ailsa Craig (AC++) altered the JA (Jasmonic acid) response and endogenous GA (Gibberellic acid) content. However, the detailed regulation mechanism was not fully explored. In the present research, we found that the overexpression of SlUPA-like influenced the accumulation of GA, JA and BR (Brassinolide). RNA-Seq data illustrated that the expression levels of genes related to these plant hormones were significantly affected. Additionally, the interaction of SlUPA-like with SlMYB21, SlMYC2 and SlDELLA was characterized by employing Y2H (Yeast Two-Hybrid) and BiFC (Bimolecular Fluorescence Complementation) assay. Furthermore, Dual-LUC (Dual-Luciferase) assay and EMSA (Electrophoretic Mobility Shift Assay) identified that SlUPA-like directly targeted the E-box motif in the promoter of SlGID2 and activated the transcription of SlGID2. These results shed light on the potential role of SlUPA-like in mediating crosstalk among multiple plant hormones and established a robust theoretical framework for further unraveling the functions of SlUPA-like transcription factors in the context of plant growth and hormone signal transduction.
Collapse
Affiliation(s)
- Pengyu Guo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China; (P.G.); (X.C.); (Y.W.); (G.C.); (Y.Y.)
| | - Xin Cheng
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China; (P.G.); (X.C.); (Y.W.); (G.C.); (Y.Y.)
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China; (P.G.); (X.C.); (Y.W.); (G.C.); (Y.Y.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China; (P.G.); (X.C.); (Y.W.); (G.C.); (Y.Y.)
| | - Xuqing Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Yingwu Yang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China; (P.G.); (X.C.); (Y.W.); (G.C.); (Y.Y.)
| | - Xiuhai Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400044, China; (P.G.); (X.C.); (Y.W.); (G.C.); (Y.Y.)
| |
Collapse
|
11
|
Cui D, Xiong G, Ye L, Gornall R, Wang Z, Heslop-Harrison P, Liu Q. Genome-wide analysis of flavonoid biosynthetic genes in Musaceae ( Ensete, Musella, and Musa species) reveals amplification of flavonoid 3',5'-hydroxylase. AOB PLANTS 2024; 16:plae049. [PMID: 39450414 PMCID: PMC11500454 DOI: 10.1093/aobpla/plae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
Flavonoids in Musaceae are involved in pigmentation and stress responses, including cold resistance, and are a component of the healthy human diet. Identification and analysis of the sequence and copy number of flavonoid biosynthetic genes are valuable for understanding the nature and diversity of flavonoid evolution in Musaceae species. In this study, we identified 71-80 flavonoid biosynthetic genes in chromosome-scale genome sequence assemblies of Musaceae, including those of Ensete glaucum, Musella lasiocarpa, Musa beccarii, M. acuminata, M. balbisiana and M. schizocarpa, checking annotations with BLAST and determining the presence of conserved domains. The number of genes increased through segmental duplication and tandem duplication. Orthologues of both structural and regulatory genes in the flavonoid biosynthetic pathway are highly conserved across Musaceae. The flavonoid 3',5'-hydroxylase gene F3'5'H was amplified in Musaceae and ginger compared with grasses (rice, Brachypodium, Avena longiglumis, and sorghum). One group of genes from this gene family amplified near the centromere of chromosome 2 in the x = 11 Musaceae species. Flavonoid biosynthetic genes displayed few consistent responses in the yellow and red bracts of Musella lasiocarpa when subjected to low temperatures. The expression levels of MlDFR2/3 (dihydroflavonol reductase) increased while MlLAR (leucoanthocyanidin reductase) was reduced by half. Overall, the results establish the range of diversity in both sequence and copy number of flavonoid biosynthetic genes during evolution of Musaceae. The combination of allelic variants of genes, changes in their copy numbers, and variation in transcription factors with the modulation of expression under cold treatments and between genotypes with contrasting bract-colours suggests the variation may be exploited in plant breeding programmes, particularly for improvement of stress-resistance in the banana crop.
Collapse
Affiliation(s)
- Dongli Cui
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China
| | - Gui Xiong
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China
| | - Lyuhan Ye
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China
| | - Richard Gornall
- University of Leicester, Department of Genetics and Genome Biology, Institute for Environmental Futures, University Road, Leicester LE1 7RH, UK
| | - Ziwei Wang
- Henry Fok School of Biology and Agriculture, Shaoguan University, University Road 288, Zhenjiang District, Shaoguan 512005, China
| | - Pat Heslop-Harrison
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Leicester, Department of Genetics and Genome Biology, Institute for Environmental Futures, University Road, Leicester LE1 7RH, UK
| | - Qing Liu
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
12
|
Li M, Xiong Y, Yang X, Gao Y, Li K. Transcriptomic and Metabolic Analysis Reveals Genes and Pathways Associated with Flesh Pigmentation in Potato ( Solanum tuberosum) Tubers. Curr Issues Mol Biol 2024; 46:10335-10350. [PMID: 39329967 PMCID: PMC11430057 DOI: 10.3390/cimb46090615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Anthocyanins, flavonoid pigments, are responsible for the purple and red hues in potato tubers. This study analyzed tubers from four potato cultivars-red RR, purple HJG, yellow QS9, and white JZS8-to elucidate the genetic mechanisms underlying tuber pigmentation. Our transcriptomic analysis identified over 2400 differentially expressed genes between these varieties. Notably, genes within the flavonoid biosynthesis pathway were enriched in HJG and RR compared to the non-pigmented JZS8, correlating with their higher levels of anthocyanin precursors and related substances. Hierarchical clustering revealed inverse expression patterns for the key genes involved in anthocyanin metabolism between pigmented and non-pigmented varieties. Among these, several MYB transcription factors displayed strong co-expression with anthocyanin biosynthetic genes, suggesting a regulatory role. Specifically, the expression of 16 MYB genes was validated using qRT-PCR to be markedly higher in pigmented HJG and RR versus JZS8, suggesting that these MYB genes might be involved in tuber pigmentation. This study comprehensively analyzed the transcriptome of diverse potato cultivars, highlighting specific genes and metabolic pathways involved in tuber pigmentation. These findings provide potential molecular targets for breeding programs focused on enhancing tuber color.
Collapse
Affiliation(s)
- Man Li
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yuting Xiong
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Xueying Yang
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yuliang Gao
- Yanbian Agricultural Sciences Academy, Longjing 133400, China
| | - Kuihua Li
- Agricultural College, Yanbian University, Yanji 133002, China
| |
Collapse
|
13
|
Zhang M, Deng Y, Xie G, Deng B, Zhao T, Yan Y. Regulation of exogenous sugars on the biosynthesis of key secondary metabolites in Cyclocarya paliurus. PHYSIOLOGIA PLANTARUM 2024; 176:e14552. [PMID: 39377134 DOI: 10.1111/ppl.14552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
The biosynthesis and accumulation of secondary metabolites play a vital role in determining the quality of medicinal plants, with carbohydrate metabolism often influencing secondary metabolism. To understand the potential regulatory mechanism, exogenous sugars (sucrose, glucose/fructose) were applied to the leaves of Cyclocarya paliurus, a highly valued and multiple function tree species. The results showed that exogenous sugars enhanced the accumulation of soluble sugar and starch while increasing the enzyme activity related to carbohydrate metabolism. In addition, the plant height was increased by a mixture of exogenous mixed sugars, the addition of sucrose promoted the net photosynthetic rate, while all types of exogenous sugars facilitated the accumulation of flavonoids and terpenoids. Based on weighted gene co-expression network analysis (WGCNA), two key gene modules and four candidate transcription factors (TFs) related to carbohydrate metabolism and secondary metabolite biosynthesis were identified. A correlation analysis between transcriptome and metabolome data showed that exogenous sugar up-regulated the expression of key structural genes in the flavonoid and terpenoid biosynthetic pathway. The expression levels of the four candidate TFs, TIFY 10A, WRKY 7, EIL 3 and RF2a, were induced by exogenous sugar and were strongly correlated with the key structural genes, which enhanced the synthesis of specific secondary metabolites and some plant hormone signal pathways. Our results provide a comprehensive understanding of key factors in the quality formation of medicinal plants and a potential approach to improve the quality.
Collapse
Affiliation(s)
- Mengjia Zhang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, China
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
- Forestry seedling management station of Wucheng District, Jinhua, China
| | - Yimin Deng
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, China
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Guorui Xie
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, China
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Bo Deng
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, China
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Tingting Zhao
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, China
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yafei Yan
- College of Horticulture and Plant protection, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
14
|
Kallemi P, Verret F, Andronis C, Ioannidis N, Glampedakis N, Kotzabasis K, Kalantidis K. Stress-related transcriptomic changes associated with GFP transgene expression and active transgene silencing in plants. Sci Rep 2024; 14:13314. [PMID: 38858413 PMCID: PMC11164987 DOI: 10.1038/s41598-024-63527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024] Open
Abstract
Plants respond to biotic and abiotic stress by activating and interacting with multiple defense pathways, allowing for an efficient global defense response. RNA silencing is a conserved mechanism of regulation of gene expression directed by small RNAs important in acquired plant immunity and especially virus and transgene repression. Several RNA silencing pathways in plants are crucial to control developmental processes and provide protection against abiotic and biotic stresses as well as invasive nucleic acids such as viruses and transposable elements. Various notable studies have shed light on the genes, small RNAs, and mechanisms involved in plant RNA silencing. However, published research on the potential interactions between RNA silencing and other plant stress responses is limited. In the present study, we tested the hypothesis that spreading and maintenance of systemic post-transcriptional gene silencing (PTGS) of a GFP transgene are associated with transcriptional changes that pertain to non-RNA silencing-based stress responses. To this end, we analyzed the structure and function of the photosynthetic apparatus and conducted whole transcriptome analysis in a transgenic line of Nicotiana benthamiana that spontaneously initiates transgene silencing, at different stages of systemic GFP-PTGS. In vivo analysis of chlorophyll a fluorescence yield and expression levels of key photosynthetic genes indicates that photosynthetic activity remains unaffected by systemic GFP-PTGS. However, transcriptomic analysis reveals that spreading and maintenance of GFP-PTGS are associated with transcriptional reprogramming of genes that are involved in abiotic stress responses and pattern- or effector-triggered immunity-based stress responses. These findings suggest that systemic PTGS may affect non-RNA-silencing-based defense pathways in N. benthamiana, providing new insights into the complex interplay between different plant stress responses.
Collapse
Affiliation(s)
- Paraskevi Kallemi
- Department of Biology, University of Crete, 70013, Heraklion, Greece
| | - Frederic Verret
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Christos Andronis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | | | | | | | - Kriton Kalantidis
- Department of Biology, University of Crete, 70013, Heraklion, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece.
| |
Collapse
|
15
|
Yu W, Gong F, Xu H, Zhou X. Molecular Mechanism of Exogenous ABA to Enhance UV-B Resistance in Rhododendron chrysanthum Pall. by Modulating Flavonoid Accumulation. Int J Mol Sci 2024; 25:5248. [PMID: 38791294 PMCID: PMC11121613 DOI: 10.3390/ijms25105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
With the depletion of the ozone layer, the intensity of ultraviolet B (UV-B) radiation reaching the Earth's surface increases, which in turn causes significant stress to plants and affects all aspects of plant growth and development. The aim of this study was to investigate the mechanism of response to UV-B radiation in the endemic species of Rhododendron chrysanthum Pall. (R. chrysanthum) in the Changbai Mountains and to study how exogenous ABA regulates the response of R. chrysanthum to UV-B stress. The results of chlorophyll fluorescence images and OJIP kinetic curves showed that UV-B radiation damaged the PSII photosystem of R. chrysanthum, and exogenous ABA could alleviate this damage to some extent. A total of 2148 metabolites were detected by metabolomics, of which flavonoids accounted for the highest number (487, or 22.67%). KEGG enrichment analysis of flavonoids that showed differential accumulation by UV-B radiation and exogenous ABA revealed that flavonoid biosynthesis and flavone and flavonol biosynthesis were significantly altered. GO analysis showed that most of the DEGs produced after UV-B radiation and exogenous ABA were distributed in the cellular process, cellular anatomical entity, and catalytic activity. Network analysis of key DFs and DEGs associated with flavonoid synthesis identified key flavonoids (isorhamnetin-3-O-gallate and dihydromyricetin) and genes (TRINITY_DN2213_c0_g1_i4-A1) that promote the resistance of R. chrysanthum to UV-B stress. In addition, multiple transcription factor families were found to be involved in the regulation of the flavonoid synthesis pathway under UV-B stress. Overall, R. chrysanthum actively responded to UV-B stress by regulating changes in flavonoids, especially flavones and flavonols, while exogenous ABA further enhanced its resistance to UV-B stress. The experimental results not only provide a new perspective for understanding the molecular mechanism of the response to UV-B stress in the R. chrysanthum, but also provide a valuable theoretical basis for future research and application in improving plant adversity tolerance.
Collapse
Affiliation(s)
| | | | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
16
|
Zhao X, Feng Y, Ke D, Teng Y, Yuan Z. Comparative transcriptomic and metabolomic profiles reveal fruit peel color variation in two red pomegranate cultivars. PLANT MOLECULAR BIOLOGY 2024; 114:51. [PMID: 38691187 DOI: 10.1007/s11103-024-01446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/23/2024] [Indexed: 05/03/2024]
Abstract
Pomegranate (Punica granatum L.) which belongs to family Lythraceae, is one of the most important fruit crops of many tropical and subtropical regions. A high variability in fruit color is observed among different pomegranate accessions, which arises from the qualitative and quantitative differences in anthocyanins. However, the mechanism of fruit color variation is still not fully elucidated. In the present study, we investigated the red color mutation between a red-skinned pomegranate 'Hongbaoshi' and a purple-red-skinned cultivar 'Moshiliu', by using transcriptomic and metabolomic approaches. A total of 51 anthocyanins were identified from fruit peels, among which 3-glucoside and 3,5-diglucoside of cyanidin (Cy), delphinidin (Dp), and pelargonidin (Pg) were dominant. High proportion of Pg in early stages of 'Hongbaoshi' but high Dp in late stages of 'Moshiliu' were characterized. The unique high levels of Cy and Dp anthocyanins accumulating from early developmental stages accounted for the purple-red phenotype of 'Moshiliu'. Transcriptomic analysis revealed an early down-regulated and late up-regulated of anthocyanin-related structure genes in 'Moshiliu' compared with 'Hongbaoshi'. Alao, ANR was specially expressed in 'Hongbaoshi', with extremely low expression levels in 'Moshiliu'. For transcription factors R2R3-MYB, the profiles demonstrated a much higher transcription levels of three subgroup (SG) 5 MYBs and a sharp decrease in expression of SG6 MYB LOC116202527 in high-anthocyanin 'Moshiliu'. SG4 MYBs exhibited two entirely different patterns, LOC116203744 and LOC116212505 were down-regulated whereas LOC116205515 and LOC116212778 were up-regulated in 'Moshiliu' pomegranate. The results indicate that specific SG members of the MYB family might promote the peel coloration in different manners and play important roles in color mutation in pomegranate.
Collapse
Affiliation(s)
- Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yingyi Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Ding Ke
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yingfen Teng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
17
|
Luo L, Molthoff J, Li Q, Liu Y, Luo S, Li N, Xuan S, Wang Y, Shen S, Bovy AG, Zhao J, Chen X. Identification of candidate genes associated with less-photosensitive anthocyanin phenotype using an EMS mutant ( pind) in eggplant ( Solanum melongena L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1282661. [PMID: 38169942 PMCID: PMC10758619 DOI: 10.3389/fpls.2023.1282661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Eggplant (Solanum melongena L.) is a highly nutritious and economically important vegetable crop. However, the fruit peel of eggplant often shows poor coloration owing to low-light intensity during cultivation, especially in the winter. The less-photosensitive varieties produce anthocyanin in low light or even dark conditions, making them valuable breeding materials. Nevertheless, genes responsible for anthocyanin biosynthesis in less-photosensitive eggplant varieties are not characterized. In this study, an EMS mutant, named purple in the dark (pind), was used to identify the key genes responsible for less-photosensitive coloration. Under natural conditions, the peel color and anthocyanin content in pind fruits were similar to that of wildtype '14-345'. The bagged pind fruits were light purple, whereas those of '14-345' were white; and the anthocyanin content in the pind fruit peel was significantly higher than that in '14-345'. Genetic analysis revealed that the less-photosensitive trait was controlled by a single dominant gene. The candidate gene was mapped on chromosome 10 in the region 7.72 Mb to 11.71 Mb. Thirty-five differentially expressed genes, including 12 structural genes, such as CHS, CHI, F3H, DFR, ANS, and UFGT, and three transcription factors MYB113, GL3, and TTG2, were identified in pind using RNA-seq. Four candidate genes EGP21875 (myb domain protein 113), EGP21950 (unknown protein), EGP21953 (CAAX amino-terminal protease family protein), and EGP21961 (CAAX amino-terminal protease family protein) were identified as putative genes associated with less-photosensitive anthocyanin biosynthesis in pind. These findings may clarify the molecular mechanisms underlying less-photosensitive anthocyanin biosynthesis in eggplant.
Collapse
Affiliation(s)
- Lei Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jos Molthoff
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Qiang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Ying Liu
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Shuangxia Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxin Xuan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Arnaud G. Bovy
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
18
|
Hussain K, Bhat ZY, Yadav AK, Singh D, Ashraf N. CstPIF4 Integrates Temperature and Circadian Signals and Interacts with CstMYB16 to Repress Anthocyanins in Crocus. PLANT & CELL PHYSIOLOGY 2023; 64:1407-1418. [PMID: 37705247 DOI: 10.1093/pcp/pcad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Crocus sativus has emerged as an important crop because it is the only commercial source of saffron that contains unique apocarotenoids. Saffron is composed of dried stigmas of Crocus flower and constitutes the most priced spice of the world. Crocus floral organs are dominated by different classes of metabolites. While stigmas are characterized by the presence of apocarotenoids, tepals are rich in flavonoids and anthocyanins. Therefore, an intricate regulatory network might play a role in allowing different compounds to dominate in different organs. Work so far done on Crocus is focussed on apocarotenoid metabolism and its regulation. There are no reports describing the regulation of flavonoids and anthocyanins in Crocus tepals. In this context, we identified an R2R3 transcription factor, CstMYB16, which resembles subgroup 4 (SG4) repressors of Arabidopsis. CstMYB16 is nuclear localized and acts as a repressor. Overexpression of CstMYB16 in Crocus downregulated anthocyanin biosynthesis. The C2/EAR motif was responsible for the repressor activity of CstMYB16. CstMYB16 binds to the promoter of the anthocyanin biosynthetic pathway gene (LDOX) and reduces its expression. CstMYB16 also physically interacts with CstPIF4, which in turn is regulated by temperature and circadian clock. Thus, CstPIF4 integrates these signals and forms a repressor complex with CstMYB16, which is involved in the negative regulation of anthocyanin biosynthesis in Crocus. Independent of CstPIF4, CstMYB16 also represses CstPAP1 expression, which is a component of the MYB-bHLH-WD40 (MBW) complex and positively controls anthocyanin biosynthesis. This is the first report on identifying and describing regulators of anthocyanin biosynthesis in Crocus.
Collapse
Affiliation(s)
- Khadim Hussain
- Plant Molecular Biology and Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Zahid Yaqoob Bhat
- Plant Molecular Biology and Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Arvind Kumar Yadav
- Quality Control & Quality Assurance Lab, Quality, Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, India
| | - Deepika Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Quality Control & Quality Assurance Lab, Quality, Management & Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180001, India
| | - Nasheeman Ashraf
- Plant Molecular Biology and Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
19
|
Guo P, Yang Q, Wang Y, Yang Z, Xie Q, Chen G, Chen X, Hu Z. Overexpression of SlPRE3 alters the plant morphologies in Solanum lycopersicum. PLANT CELL REPORTS 2023; 42:1907-1925. [PMID: 37776371 DOI: 10.1007/s00299-023-03070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
KEY MESSAGE Overexpression of SlPRE3 is detrimental to the photosynthesis and alters plant morphology and root development. SlPRE3 interacts with SlAIF1/SlAIF2/SlPAR1/SlIBH1 to regulate cell expansion. Basic helix-loop-helix (bHLH) transcription factors play crucial roles as regulators in plant growth and development. In this study, we isolated and characterized SlPRE3, an atypical bHLH transcription factor gene. SlPRE3 exhibited predominant expression in the root and moderate expression in the senescent leaves. Comparative analysis with the wild type revealed significant differences in plant morphology in the 35S:SlPRE3 lines. These differences included increased internode length, rolling leaves with reduced chlorophyll accumulation, and elongated yet fewer adventitious roots. Additionally, 35S:SlPRE3 lines displayed elevated levels of GA3 (gibberellin A3) and reduced starch accumulation. Furthermore, utilizing the Y2H (Yeast two-hybrid) and the BiFC (Bimolecular Fluorescent Complimentary) techniques, we identified physical interactions between SlPRE3 and SlAIF1 (ATBS1-interacting factor 1)/SlAIF2 (ATBS1-interacting factor 2)/SlPAR1 (PHYTOCHROME RAPIDLY REGULATED 1)/SlIBH1 (ILI1-binding bHLH 1). RNA-seq analysis of root tissues revealed significant alterations in transcript levels of genes involved in gibberellin metabolism and signal transduction, cell expansion, and root development. In summary, our study sheds light on the crucial regulatory role of SlPRE3 in determining plant morphology and root development.
Collapse
Affiliation(s)
- Pengyu Guo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Qingling Yang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Zhijie Yang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Xuqing Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing, 100097, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
20
|
Zhang Z, Zhou D, Li S, Pan J, Liang J, Wu X, Wu XN, Krall L, Zhu G. Multiomics Analysis Reveals the Chemical and Genetic Bases of Pigmented Potato Tuber. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16402-16416. [PMID: 37856829 DOI: 10.1021/acs.jafc.3c04979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Anthocyanins and carotenoids determine the diversity of potato tuber flesh pigmentation; here, the underlying chemical and genetic bases were elucidated by multiomics analyses. A total of 31 anthocyanins and 30 carotenoids were quantified in five differently pigmented tubers. Cyanidin and pelargonidin derivatives determined the redness, while malvidin, petunidin, and delphinidin derivatives contributed to purpleness. Violaxanthin derivatives determined the light-yellow color, while zeaxanthin and antheraxanthin derivatives further enhanced the deep-yellow deposition. Integrated transcriptome and proteome analyses identified that F3'5'H highly enhanced anthocyanin biosynthesis in purple flesh and was responsible for metabolic divergence between red and purple samples. BCH2 significantly enhanced carotenoid biosynthesis in yellow samples and along with ZEP, NCED1, and CCD1 genes determined metabolic divergence between light and deep-yellow samples. The weighted correlation network analysis constructed a regulatory network revealing the central role of AN1 in regulating anthocyanin biosynthesis, and 10 new transcription factors related to anthocyanin and carotenoid metabolism regulation were identified. Our findings provide targeted genes controlling tuber pigmentation, which will be meaningful for the genetic manipulation of tuber quality improvement.
Collapse
Affiliation(s)
- Zhong Zhang
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Dao Zhou
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Shalan Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Jun Pan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Jun Liang
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Xi Wu
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Xu Na Wu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Leonard Krall
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Guangtao Zhu
- Yunnan key Laboratory of Potato Biology, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| |
Collapse
|
21
|
Li J, Tan Q, Yi M, Yu Z, Xia Q, Zheng L, Chen J, Zhou X, Zhang XQ, Guo HR. Identification of key genes responsible for green and white colored spathes in Anthurium andraeanum (Hort.). FRONTIERS IN PLANT SCIENCE 2023; 14:1208226. [PMID: 37745994 PMCID: PMC10511891 DOI: 10.3389/fpls.2023.1208226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
Modern anthuriums, Anthurium andraeanum (Hort.) are among the most popular flowering plants and widely used for interior decoration. Their popularity is largely attributed to the exotic spathes with different colors. Previous studies have reported color development in red spathe cultivars, but limited information is available on key genes regulating white and green colored spathes. This study analyzed anthocyanin, chlorophyll, and carotenoid contents as well as transcript differences in spathes of eight cultivars that differed in spathe colors ranging from red to white and green. Results showed that increased expression of a transcription factor AaMYB2 was associated with elevated levels of anthocyanin in spathes, but decreased expression of AaMYB2 and increased expression of AaLAR (leucoanthocyanidin reductase) and AaANR (anthocyanidin reductase) were accompanied with the accumulation of colorless proanthocyanidin, thus the white spathe. As to the green colored spathe, chlorophyll content in the green spathe cultivar was substantially higher than the other cultivars. Correspondingly, transcripts of chlorophyll biosynthesis-related genes AaHemB (porphobilinogen synthase) and AaPor (protochlorophyllide oxidoreductase) were highly upregulated but almost undetectable in white and red spathes. The increased expression of AaHemB and AaPor was correlated with the expression of transcription factor AaMYB124. Subsequently, qRT-PCR analysis confirmed their expression levels in nine additional cultivars with red, white, and green spathes. A working model for the formation of white and green spathes was proposed. White colored spathes are likely due to the decreased expression of AaMYB2 which results in increased expression of AaLAR and AaANR, and the green spathes are attributed to AaMYB124 enhanced expression of AaHemB and AaPor. Further research is warranted to test this working model.
Collapse
Affiliation(s)
- Jieni Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Quanya Tan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Maosheng Yi
- Guangzhou Flower Research Center, Guangzhou, China
| | - Zhengnan Yu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Qing Xia
- Guangzhou Flower Research Center, Guangzhou, China
| | - Lu Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Xiaoyun Zhou
- Guangzhou Flower Research Center, Guangzhou, China
| | - Xiang-Qian Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - He-Rong Guo
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Shu P, Zhang Z, Wu Y, Chen Y, Li K, Deng H, Zhang J, Zhang X, Wang J, Liu Z, Xie Y, Du K, Li M, Bouzayen M, Hong Y, Zhang Y, Liu M. A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). THE NEW PHYTOLOGIST 2023; 238:2064-2079. [PMID: 36843264 DOI: 10.1111/nph.18840] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/12/2023] [Indexed: 05/04/2023]
Abstract
Kiwifruit (Actinidia chinensis) is one of the popular fruits world-wide, and its quality is mainly determined by key metabolites (sugars, flavonoids, and vitamins). Previous works on kiwifruit are mostly done via a single omics approach or involve only limited metabolites. Consequently, the dynamic metabolomes during kiwifruit development and ripening and the underlying regulatory mechanisms are poorly understood. In this study, using high-resolution metabolomic and transcriptomic analyses, we investigated kiwifruit metabolic landscapes at 11 different developmental and ripening stages and revealed a parallel classification of 515 metabolites and their co-expressed genes into 10 distinct metabolic vs gene modules (MM vs GM). Through integrative bioinformatics coupled with functional genomic assays, we constructed a global map and uncovered essential transcriptomic and transcriptional regulatory networks for all major metabolic changes that occurred throughout the kiwifruit growth cycle. Apart from known MM vs GM for metabolites such as soluble sugars, we identified novel transcription factors that regulate the accumulation of procyanidins, vitamin C, and other important metabolites. Our findings thus shed light on the kiwifruit metabolic regulatory network and provide a valuable resource for the designed improvement of kiwifruit quality.
Collapse
Affiliation(s)
- Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zixin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kunyan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jing Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jiayu Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yue Xie
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610213, Sichuan, China
| | - Kui Du
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610213, Sichuan, China
| | - Mingzhang Li
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610213, Sichuan, China
| | - Mondher Bouzayen
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, 31320, France
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick, CV4 7AL, UK
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
23
|
Chen Y, Hu X, Shi Q, Lu Y, Yan J, Wu DT, Qin W. Changes in the Fruit Quality, Phenolic Compounds, and Antioxidant Potential of Red-Fleshed Kiwifruit during Postharvest Ripening. Foods 2023; 12:foods12071509. [PMID: 37048330 PMCID: PMC10094503 DOI: 10.3390/foods12071509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Kiwifruit is very popular for its unique flavor and nutritional value, and for its potential health benefits, which are closely related to its richness in a variety of natural antioxidant substances, in which polyphenolics play a non-negligible role. This study investigated changes in the fruit quality, phenolic compounds, and antioxidant potential of Chinese red-fleshed kiwifruit “Hongshi No. 2” during postharvest ripening at room temperature (20 ± 1 °C). Results showed that the weight loss rate slowly increased, the firmness rapidly decreased, and the soluble solid concentration gradually increased during the postharvest ripening of red-flesh kiwifruit. In addition, the total phenolic (TPC), total flavonoid (TFC), and total proanthocyanidin (TPAC) contents gradually increased during postharvest ripening. The most abundant phenolic compounds in kiwifruit throughout postharvest ripening were catechin (CC), proanthocyanidin B1 (PB1), and proanthocyanidin B2 (PB2). Furthermore, the methanolic extracts of red-flesh kiwifruit exhibited remarkable antioxidant activities throughout postharvest ripening stages. Indeed, some phenolic compounds showed good correlations with antioxidant activities; for instance, chlorogenic acid (CHL) showed a significantly positive correlation with ferric reducing antioxidant power (FRAP), and isoquercitrin (IS) showed a significantly negative correlation with DPPH free radical scavenging ability. The findings from this study are beneficial to better understanding the quality profile of red-flesh kiwifruit “Hongshi No. 2” during postharvest ripening.
Collapse
Affiliation(s)
- Yi Chen
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Xiaomin Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Qingke Shi
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Yue Lu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Jing Yan
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya’an 625014, China
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
24
|
Lv YP, Zhao G, Xie YF, Owusu AG, Wu Y, Gao JS. Transcriptome and Metabolome Profiling Unveil Pigment Formation Variations in Brown Cotton Lines (Gossypium hirsutum L.). Int J Mol Sci 2023; 24:ijms24065249. [PMID: 36982328 PMCID: PMC10049672 DOI: 10.3390/ijms24065249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Naturally brown colored cotton (NBCC) is becoming increasingly popular due to its natural properties of coloration. However, poor fiber quality and color fading are key issues that are hindering the cultivation of naturally colored cotton. In this study, based on transcriptome and metabolome of 18 days post-anthesis (DPA), we compared the variations of pigment formation in two brown cotton fibers (DCF and LCF), with white cotton fiber (WCF) belonging to a near-isogenic line. A transcriptome study revealed a total of 15,785 differentially expressed genes significantly enriched in the flavonoid biosynthesis pathway. Furthermore, for flavonoid biosynthesis-related genes, such as flavonoid 3′5′-hydroxylase (F3′5′H), anthocyanidin synthase (ANS), anthocyanidin reductase (ANR), chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR), and chalcone isomerase (CHI), their expressions significantly increased in LCF compared with DCF and WCF. Moreover, transcription factors MYB and bHLH were significantly expressed in LCF and DCF. Most flavonoid-related metabolites (myricetin naringenin, catechin, epicatechin-epiafzelechin, and epigallocatechin) were found to be more highly up-regulated in LCF and DCF than WCF. These findings reveal the regulatory mechanism controlling different brown pigmentation in cotton fibers and elucidate the need for the proper selection of high-quality brown cotton fiber breeding lines for promising fiber quality and durable brown color pigmentation.
Collapse
|
25
|
Zhang X, Zhang L, Zhang D, Su D, Li W, Wang X, Chen Q, Cai W, Xu L, Cao F, Zhang D, Yu X, Li Y. Comprehensive analysis of metabolome and transcriptome reveals the mechanism of color formation in different leave of Loropetalum Chinense var. Rubrum. BMC PLANT BIOLOGY 2023; 23:133. [PMID: 36882694 PMCID: PMC9993627 DOI: 10.1186/s12870-023-04143-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/27/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Loropetalum chinense var. rubrum (L. chinense var. rubrum) is a precious, coloured-leaf native ornamental plant in the Hunan Province. We found an L. chinense var. rubrum tree with three different leaf colours: GL (green leaf), ML (mosaic leaf), and PL (purple leaf). The mechanism of leaf coloration in this plant is still unclear. Therefore, this study aimed to identify the metabolites and genes involved in determining the colour composition of L. chinense var. rubrum leaves, using phenotypic/anatomic observations, pigment content detection, and comparative metabolomics and transcriptomics. RESULTS We observed that the mesophyll cells in PL were purple, while those in GL were green and those in ML were a mix of purple-green. The contents of chlorophyll a, b, carotenoids, and total chlorophyll in PL and ML were significantly lower than those in GL. While the anthocyanin content in PL and ML was significantly higher than that in GL. The metabolomics results showed the differences in the content of cyanidin 3-O-glucoside, delphinidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, pelargonidin, and petunidin 3,5-diglucoside in ML, GL, and PL were significant. Considering that the change trend of anthocyanin content change was consistent with the leaf colour difference, we speculated that these compounds might influence the colour of L. chinense var. rubrum leaves. Using transcriptomics, we finally identified nine differentially expressed structural genes (one ANR (ANR1217); four CYP75As (CYP75A1815, CYP75A2846, CYP75A2909, and CYP75A1716); four UFGTs (UFGT1876, UFGT1649, UFGT1839, and UFGT3273) and nine transcription factors (two MYBs (MYB1057 and MYB1211), one MADS-box (MADS1235), two AP2-likes (AP2-like1779 and AP2-like2234), one bZIP (bZIP3720), two WD40s (WD2173 and WD1867) and one bHLH (bHLH1631) that might be related to flavonoid biosynthesis and then impacted the appearance of colour in L. chinense var. rubrum leaves. CONCLUSION This study revealed potential molecular mechanisms associated with leaf coloration in L. chinense var. rubrum by analyzing differential metabolites and genes related to the anthocyanin biosynthesis pathway. It also provided a reference for research on leaf colour variation in other ornamental plants.
Collapse
Affiliation(s)
- Xia Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Li Zhang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Hunan Horticulture Research Institute, Hunan Academy of Agricultural Sciences, 410125, Changsha, China
| | - Damao Zhang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Dingding Su
- Institute of Advanced Agricultural Sciences, Peking University, 262041, Weifang, China
| | - Weidong Li
- Hunan Horticulture Research Institute, Hunan Academy of Agricultural Sciences, 410125, Changsha, China
- Hunan Key Laboratory of Innovation and Comprehensive Utilization, 410128, Changsha, China
| | - Xiangfei Wang
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Qianru Chen
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Wenqi Cai
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Lu Xu
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Fuxiang Cao
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China
| | - Dongling Zhang
- Department of Horticulture, University of Georgia, 30602, Athens, GA, USA.
| | - Xiaoying Yu
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China.
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China.
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China.
| | - Yanlin Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
- College of Horticulture, Hunan Agricultural University, 410128, Changsha, China.
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, 410128, Changsha, China.
- Hunan Mid-subtropical Quality Plant Breeding and Utilization Engineering Technology Research Center, 410128, Changsha, China.
| |
Collapse
|
26
|
Nguyen HM, Putterill J, Dare AP, Plunkett BJ, Cooney J, Peng Y, Souleyre EJF, Albert NW, Espley RV, Günther CS. Two genes, ANS and UFGT2, from Vaccinium spp. are key steps for modulating anthocyanin production. FRONTIERS IN PLANT SCIENCE 2023; 14:1082246. [PMID: 36818839 PMCID: PMC9933871 DOI: 10.3389/fpls.2023.1082246] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Anthocyanins are a major group of red to blue spectrum plant pigments with many consumer health benefits. Anthocyanins are derived from the flavonoid pathway and diversified by glycosylation and methylation, involving the concerted action of specific enzymes. Blueberry and bilberry (Vaccinium spp.) are regarded as 'superfruits' owing to their high content of flavonoids, especially anthocyanins. While ripening-related anthocyanin production in bilberry (V. myrtillus) and blueberry (V. corymbosum) is regulated by the transcriptional activator MYBA1, the role of specific structural genes in determining the concentration and composition of anthocyanins has not been functionally elucidated. We isolated three candidate genes, CHALCONE SYNTHASE (VmCHS1), ANTHOCYANIDIN SYNTHASE (VmANS) and UDP-GLUCOSE : FLAVONOID-3-O-GLYCOSYLTRANSFERASE (VcUFGT2), from Vaccinium, which were predominantly expressed in pigmented fruit skin tissue and showed high homology between bilberry and blueberry. Agrobacterium-mediated transient expression of Nicotiana benthamiana showed that overexpression of VcMYBA1 in combination with VmANS significantly increased anthocyanin concentration (3-fold). Overexpression of VmCHS1 showed no effect above that induced by VcMYBA1, while VcUFGT2 modulated anthocyanin composition to produce delphinidin-3-galactosylrhamnoside, not naturally produced in tobacco. In strawberry (Fragaria × ananassa), combined transient overexpression of VcUFGT2 with a FLAVONOID 3´,5´-HYDROXYLASE from kiwifruit (Actinidia melanandra) modulated the anthocyanin profile to include galactosides and arabinosides of delphinidin and cyanidin, major anthocyanins in blueberry and bilberry. These findings provide insight into the role of the final steps of biosynthesis in modulating anthocyanin production in Vaccinium and may contribute to the targeted breeding of new cultivars with improved nutritional properties.
Collapse
Affiliation(s)
- Han M. Nguyen
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
- University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Joanna Putterill
- University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Andrew P. Dare
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Blue J. Plunkett
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant and Food Research Ltd, Hamilton, New Zealand
| | - Yongyan Peng
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | | | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Catrin S. Günther
- The New Zealand Institute for Plant and Food Research Ltd, Hamilton, New Zealand
| |
Collapse
|
27
|
Guo P, Zhang B, Hu Z, Zhou S, Wang Y, Xie Q, Chen G. Anthocyanin accumulation and transcriptional regulation in purple flowering stalk (Brassica campestris L. var. purpurea Bailey). PLANT MOLECULAR BIOLOGY 2023; 111:57-72. [PMID: 36207656 DOI: 10.1007/s11103-022-01311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
1. Purple flowering stalk (Brassica campestris L. ssp. chinensis L. var. purpurea Bailey) is a crop with the high-level anthocyanin. 2. Increased abundance of LBGs promoted the synthesis of anthocyanin. 3. TTG2 (WRKY) interacted with TTG1 (WD40), probably regulating anthocyanin accumulation by shaping a MBWW complex. Brassica crops are a class of nutrient-rich vegetables. Here, two Brassica Crops-Flowering Stalk cultivars, purple flowering stalk (Brassica campestris L. var. purpurea Bailey) and pakchoi (Brassica campestris ssp. chinensis var. communis) were investigated. HPLC-ESI-MS/MS analysis demonstrated that Cy 3-p-coumaroylsophoroside-5-malonylglucoside and Cy 3-diferuloylsophoroside-5-malonylglucoside were identified as the major anthocyanin in peel of purple flowering stalk. The transcript level of structural genes including C4H, CHS, F3H, DFR, ANS and UFGT, and regulatory genes such as TT8, TTG1, Bra004162, Bra001917 and TTG2 in peel of purple flowering stalk were significantly higher than that in peel of pakchoi. In addition, the TTG2(WRKY) interacted only with TTG1(WD40) and the interaction between TT8 (bHLH) and TTG1/Bra004162(MYB)/Bra001917(MYB) were identified. Else, the WD40-WRKY complex (TTG1-TTG2) could activate the transcript of TT12. Our study laid a foundation for the research on the anthocyanin accumulation in Brassica crops.
Collapse
Affiliation(s)
- Pengyu Guo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Bin Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
- School of Agricultural Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zongli Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Shuang Zhou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yunshu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| | - Guoping Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
28
|
Liu ZW, Shi XY, Duan SM, Nian B, Chen LJ, Zhang GH, Lv CY, Ma Y, Zhao M. Multiomics analysis of the mechanisms behind flavonoid differences between purple and green tender shoots of Camellia sinensis var. assamica. G3 (BETHESDA, MD.) 2022; 13:6808630. [PMID: 36342187 PMCID: PMC9911070 DOI: 10.1093/g3journal/jkac297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Abstract
Flavonoids are rich in tea plants (Camellia sinensis), and responsible for the flavor and healthful benefits of tea beverage. The anthocyanin levels in the purple tender shoots are higher than in the general green leaves of tea plant, which provide special materials to search metabolic mechanisms of flavonoid enrichment in plant. In this work, flavonoid differences between purple and green shoots from tea cultivars "Zijuan" (ZJ) and "Yunkang10" (YK-10) were investigated through metabolomic analysis, and mechanisms for their difference were surveyed by comparative transcriptomic and proteomic analysis. Levels of 34 flavonoids were different between ZJ and YK-10 shoots. Among them, 8 and 6 were marker metabolites in ZJ and YK-10, respectively. The differentially expressed genes (DEGs), differentially expressed proteins (DEPs), and different-level metabolites (DLMs) between ZJ and YK-10 were researched, respectively; and interactions including DEG-DLM, DEP-DLM, DEG-DEP, and DEG-DEP-DLM were analyzed; the contents of 18 characteristic flavonoids in tea leaves and expressions of 34 flavonoid metabolic genes were measured to verify the omics results. Integrated above analyses, a proposed model of flavonoids biosynthesis in tea shoots were established. The differential expression of the leucoanthocyanidin reductase (LAR), anthocyanidin synthase (ANS), anthocyanidin reductase (ANR), UDPG-flavonoid glucosyltransferase (UGT) 75L12 and 94P1 at gene level, and the ANS, ANR, and UGT78A15 at protein level, were closely associated with differences in flavonoids between ZJ and YK-10 shoot. Together, this study provides new information on the flavonoid accumulation mechanism in tea plant.
Collapse
Affiliation(s)
| | | | | | - Bo Nian
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Li-Jiao Chen
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Guang-Hui Zhang
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Cai-You Lv
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Yan Ma
- College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Ming Zhao
- Corresponding author: College of Tea Science, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, and National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, No. 452, Fengyuan Road, Kunming, Yunnan 650201, China.
| |
Collapse
|
29
|
Li T, Wang Y, Dong Q, Wang F, Kong F, Liu G, Lei Y, Yang H, Zhou Y, Li C. Weighted gene co-expression network analysis reveals key module and hub genes associated with the anthocyanin biosynthesis in maize pericarp. FRONTIERS IN PLANT SCIENCE 2022; 13:1013412. [PMID: 36388502 PMCID: PMC9661197 DOI: 10.3389/fpls.2022.1013412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Anthocyanins are the visual pigments that present most of the colors in plants. Its biosynthesis requires the coordinated expression of structural genes and regulatory genes. Pericarps are the rich sources of anthocyanins in maize seeds. In the experiment, the transcriptomes of transparent and anthocyanins-enriched pericarps at 15, 20, and 25 DAP were obtained. The results output 110.007 million raw reads and 51407 genes' expression matrix. Using data filtration in R language, 2057 genes were eventually identified for weighted gene co-expression network analysis. The results showed that 2057 genes were classified into ten modules. The cyan module containing 183 genes was confirmed to be the key module with the highest correlation value of 0.98 to the anthocyanins trait. Among 183 genes, seven structural genes were mapped the flavonoid biosynthesis pathway, and a transcription factor Lc gene was annotated as an anthocyanin regulatory gene. Cluster heatmap and gene network analysis further demonstrated that Naringenin, 2-oxoglutarate 3-dioxygenase (Zm00001d001960), Dihydroflavonol 4-reductase (Zm00001d044122), Leucoanthocyanidin dioxygenase (Zm00001d014914), anthocyanin regulatory Lc gene (Zm00001d026147), and Chalcone synthase C2 (Zm00001d052673) participated in the anthocyanins biosynthesis. And the transcription factor anthocyanin regulatory Lc gene Zm00001d026147 may act on the genes Chalcone synthase C2 (Zm00001d052673) and Dihydroflavonol 4-reductase (Zm00001d044122). The yeast one-hybrid assays confirmed that the Lc protein could combine with the promoter region of C2 and directly regulate the anthocyanin biosynthesis in the pericarp. These results may provide a new sight to uncover the module and hub genes related to anthocyanins biosynthesis in plants.
Collapse
Affiliation(s)
- Tingchun Li
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yiting Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qing Dong
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Fang Wang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Fanna Kong
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Guihu Liu
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yanli Lei
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Huaying Yang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yingbing Zhou
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Cheng Li
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
30
|
Dong W, Tang L, Peng Y, Qin Y, Lin Y, Xiong X, Hu X. Comparative transcriptome analysis of purple-fleshed sweet potato and its yellow-fleshed mutant provides insight into the transcription factors involved in anthocyanin biosynthesis in tuberous root. FRONTIERS IN PLANT SCIENCE 2022; 13:924379. [PMID: 36003808 PMCID: PMC9393619 DOI: 10.3389/fpls.2022.924379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
In various plant species, many transcription factors (TFs), such as MYB, bHLH, and WD40, have been identified as regulators of anthocyanin biosynthesis in underground organs. However, the regulatory elements of anthocyanin biosynthesis in the tuberous roots of sweet potato have not been elucidated yet. Here, we selected the purple-fleshed sweet potato cultivar "Zhezi1" (ZZ P ) and its spontaneous yellow-fleshed mutant "Xinli" (XL Y ) to investigate the regulatory mechanism of the anthocyanin biosynthesis in the tuberous roots of sweet potato. By analyzing the IbMYB1 genotype in ZZ P and XL Y , we found that the IbMYB1-2, a MYB TF involved in anthocyanin biosynthesis, was missing in the XL Y genome, which might lead to an extreme decrease in anthocyanins in XL Y . A comparative transcriptome analysis of ZZ P and XL Y was conducted to find the TFs involved in anthocyanin biosynthesis in ZZ P and XL Y . The anthocyanin structural genes were significantly enriched among the differentially expressed genes. Moreover, one MYB activator (IbMYB1), one bHLH (IbbHLH2), three WRKY activator candidates (IbWRKY21, IbWRKY24, and IbWRKY44), and two MYB repressors (IbMYB27 and IbMYBx-ZZ) were highly expressed in ZZ P accompanied with anthocyanin structural genes. We also tested the expression of these TFs in six purple- and two orange-fleshed sweet potato cultivars. Interestingly, most of these TFs were significantly positively correlated with anthocyanin contents in these cultivars. The function of the anthocyanin biosynthesis repression of IbMYB27 and IbMYBx-ZZ was verified through transient co-transformation with IbMYB1 into tobacco leaves. Further functional verification of the above TFs was conducted by Y2H, BiFC, and dual-luciferase assays. These tests showed that the MYB-bHLH-WD40/MYB-bHLH-WD40-WRKY complex activated the promoter of anthocyanin structural gene IbDFR and promoters for IbWRKY44, IbMYB27, and IbMYBx-ZZ, indicating reinforcement and feedback regulation to maintain the level of anthocyanin accumulation in the tuberous roots of purple-fleshed sweet potato. These results may provide new insights into the regulatory mechanism of anthocyanin biosynthesis and accumulation in underground organs of sweet potatoes.
Collapse
Affiliation(s)
- Wen Dong
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Linfei Tang
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Yali Peng
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Yuzhi Qin
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Yuan Lin
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Xingyao Xiong
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xinxi Hu
- Hunan Provincial Engineering Research Center for Potatoes, College of Horticulture, Hunan Agricultural University, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
31
|
Response of Anthocyanin Accumulation in Pepper (Capsicum annuum) Fruit to Light Days. Int J Mol Sci 2022; 23:ijms23158357. [PMID: 35955513 PMCID: PMC9369206 DOI: 10.3390/ijms23158357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Light is the key factor affecting the synthesis of anthocyanins in pepper. In this study, pepper fruit under different light days was used as experimental material to explore the synthesis of anthocyanins in purple pepper. A total of 38 flavonoid metabolites were identified in the purple pepper germplasm HNUCA21 by liquid chromatography–tandem mass spectrometry (LC-MS/MS), of which 30 belong to anthocyanins. The detected anthocyanin with the highest content was Delphinidin-3-O-glucoside (17.13 µg/g), which reached the maximum after 168 h of light treatment. Through weighted gene co-expression network analysis (WGCNA), the brown module was identified to be related to the early synthesis of anthocyanins. This module contains many structural genes related to flavonoid synthesis, including chalcone synthase (CHS 107871256, 107864266), chalcone isomerase (CHI 107871144, 107852750), dihydroflavonol 4-reductase (DFR 107860031), flavonoid 3′ 5′-hydroxylase (F3’5’H 107848667), flavonoid 3′-monooxygenase (F3M 107862334), leucoanthocyanidin dioxygenase (LDOX 107866341), and trans-cinnamate 4-monooxygenase (TCM 107875406, 107875407). The module also contained some genes related to anthocyanin transport function, such as glutathione S-transferase (GST 107861273), anthocyanidin 3-O-glucosyltransferase (UDPGT 107861697, 107843659), and MATE (107863234, 107844661), as well as some transcription factors, such as EGL1 (107865400), basic helix-loop-helix 104 (bHLH104 107864591), and WRKY44 (107843538, 107843524). The co-expression regulatory network indicated the involvement of CHS, DFR, CHI, and EGL1, as well as two MATE and two WRKY44 genes in anthocyanin synthesis. The identified genes involved in early, middle, and late light response provided a reference for the further analysis of the regulatory mechanism of anthocyanin biosynthesis in pepper.
Collapse
|
32
|
Yan L, Yang H, Ye Q, Huang Z, Zhou H, Cui D. Metabolome and transcriptome profiling reveal regulatory network and mechanism of flavonoid biosynthesis during color formation of Dioscorea cirrhosa L. PeerJ 2022; 10:e13659. [PMID: 35811818 PMCID: PMC9261937 DOI: 10.7717/peerj.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/09/2022] [Indexed: 01/17/2023] Open
Abstract
Dioscorea cirrhosa is a plant that is used as a dye as well as in medicine. Many metabolites with pharmacological activity exist in the tubers of D. cirrhosa. However, little is known about the mechanism regulating biosynthesis in these metabolites. In this study, transcriptome and metabolome profiling were performed in four color tubers. A total of 531 metabolites, including 62 flavonoids, were identified. Epicatechin and proanthocyanin B2 were the key metabolites that exhibited high content levels in the four tubers. These metabolites were divided into nine classes with distinct change patterns. A total of 22,865 differentially expressed genes (DEGs) were identified by transcriptome analysis. Among these DEGs, we identified 67 candidate genes related to the flavonoid biosynthesis pathway and three genes that played pivotal roles in proanthocyanin (PA) synthesis. A weighted gene co-expression network analysis (WGCNA) revealed that the two modules, "MEblue" and "MEblack," were two key gene sets strongly associated with phenylpropanoid and flavonoid biosynthesis. We also found that the plant hormone signal transduction biological process exhibited activity in the late stage of tuber color formation. Additionally, we identified 37 hub transcript factors related to flavonoid biosynthesis, of which 24 were found to be highly associated with flavonoid pathway genes. In addition to the MYB-bHLH-WD40 (MBW) genes, we found that the plant hormone gene families exhibited high expression levels. This study provides a reference for understanding the synthesis of D. cirrhosa tuber metabolites at the molecular level and provides a foundation for the further development of D. cirrhosa related plant pigments as well as its further use in the pharmaceutical industry.
Collapse
Affiliation(s)
- Lin Yan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haijun Yang
- Center of Experimental Teaching for Common Basic Courses, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiang Ye
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhihua Huang
- Shenzhen Liangzi Fashion Industeial Co. Ltd., Shenzhen, Guangdong, China
| | - Hongying Zhou
- Shenzhen Tianyi Xunyuan Ecological Culture Investment Co.Ltd., Shenzhen, Guangdong, China
| | - Dafang Cui
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Ahn JY, Kim J, Yang JY, Lee HJ, Kim S, Cho KS, Lee SH, Kim JH, Lee TH, Hur Y, Shim D. Comparative Transcriptome Analysis between Two Potato Cultivars in Tuber Induction to Reveal Associated Genes with Anthocyanin Accumulation. Int J Mol Sci 2022; 23:ijms23073681. [PMID: 35409041 PMCID: PMC8998591 DOI: 10.3390/ijms23073681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Anthocyanins are generally accumulated within a few layers, including the epidermal cells of leaves and stems in plants. Solanum tuberosum cv. ‘Jayoung’ (hereafter, JY) is known to accumulate anthocyanin both in inner tissues and skins. We discovered that anthocyanin accumulation in the inner tissues of JY was almost diminished (more than 95% was decreased) in tuber induction condition. To investigate the transcriptomic mechanism of anthocyanin accumulation in JY flesh, which can be modulated by growth condition, we performed mRNA sequencing with white-colored flesh tissue of Solanum tuberosum cv. ‘Atlantic’ (hereafter, ‘Daeseo’, DS) grown under canonical growth conditions, a JY flesh sample grown under canonical growth conditions, and a JY flesh sample grown under tuber induction conditions. We could identify 36 common DEGs (differentially expressed genes) in JY flesh from canonical growth conditions that showed JY-specifically increased or decreased expression level. These genes were enriched with flavonoid biosynthetic process terms in GO analysis, as well as gene set enrichment analysis (GSEA) analysis. Further in silico analysis on expression levels of anthocyanin biosynthetic genes including rate-limiting genes such as StCHS and StCHI followed by RT-PCR and qRT-PCR analysis showed a strong positive correlation with the observed phenotypes. Finally, we identified StWRKY44 from 36 common DEGs as a possible regulator of anthocyanin accumulation, which was further supported by network analysis. In conclusion, we identified StWRKY44 as a putative regulator of tuber-induction-dependent anthocyanin accumulation.
Collapse
Affiliation(s)
- Ju Young Ahn
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Ju Yeon Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Hyun Ju Lee
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Soyun Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
| | - Kwang-Soo Cho
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Admin-istration, Pyeongchang 25342, Korea;
| | - Sang-Ho Lee
- Department of Biomedical Engineering, Mokwon University, Daejeon 35349, Korea;
| | - Jin-Hyun Kim
- Division of Genomics, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (J.-H.K.); (T.-H.L.)
| | - Tae-Ho Lee
- Division of Genomics, National Institute of Agricultural Sciences, Jeonju 54874, Korea; (J.-H.K.); (T.-H.L.)
| | - Yoonkang Hur
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
- Correspondence: (Y.H.); (D.S.)
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea; (J.Y.A.); (J.K.); (J.Y.Y.); (H.J.L.); (S.K.)
- Correspondence: (Y.H.); (D.S.)
| |
Collapse
|
34
|
Molecular basis of the formation and removal of fruit astringency. Food Chem 2022; 372:131234. [PMID: 34619522 DOI: 10.1016/j.foodchem.2021.131234] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022]
Abstract
Astringency is a dry puckering mouthfeel mainly generated by the binding of tannins with proteins in the mouth. Tannins confer benefits such as resistance to biotic stresses and have antioxidant activity, and moderate concentrations of tannins can improve the flavor of fruits or their products. However, fruits with high contents of tannins have excessive astringency, which is undesirable. Thus, the balance of astringency formation and removal is extremely important for human consumption of fruit and fruit-based products. In recent years, the understanding of fruit astringency has moved beyond the biochemical aspects to focus on the genetic characterization of key structural genes and their transcriptional regulators that cause astringency. This article provides an overview of astringency formation and evaluation. We summarize the methods of astringency regulation and strategies and mechanisms for astringency removal, and discuss perspectives for future exploration and modulation of astringency for fruit quality improvement.
Collapse
|
35
|
Lafferty DJ, Espley RV, Deng CH, Günther CS, Plunkett B, Turner JL, Jaakola L, Karppinen K, Allan AC, Albert NW. Hierarchical regulation of MYBPA1 by anthocyanin- and proanthocyanidin-related MYB proteins is conserved in Vaccinium species. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1344-1356. [PMID: 34664645 DOI: 10.1093/jxb/erab460] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/17/2021] [Indexed: 05/28/2023]
Abstract
Members of the Vaccinium genus bear fruits rich in anthocyanins, a class of red-purple flavonoid pigments that provide human health benefits, although the localization and concentrations of anthocyanins differ between species: blueberry (V. corymbosum) has white flesh, while bilberry (V. myrtillus) has red flesh. Comparative transcriptomics between blueberry and bilberry revealed that MYBPA1.1 and MYBA1 strongly correlated with the presence of anthocyanins, but were absent or weakly expressed in blueberry flesh. MYBPA1.1 had a biphasic expression profile, correlating with both proanthocyanidin biosynthesis early during fruit development and anthocyanin biosynthesis during berry ripening. MYBPA1.1 was unable to induce anthocyanin or proanthocyanidin accumulation in Nicotiana benthamiana, but activated promoters of flavonoid biosynthesis genes. The MYBPA1.1 promoter is directly activated by MYBA1 and MYBPA2 proteins, which regulate anthocyanins and proanthocyanidins, respectively. Our findings suggest that the lack of VcMYBA1 expression in blueberry flesh results in an absence of VcMYBPA1.1 expression, which are both required for anthocyanin regulation. In contrast, VmMYBA1 is well expressed in bilberry flesh, up-regulating VmMYBPA1.1, allowing coordinated regulation of flavonoid biosynthesis genes and anthocyanin accumulation. The hierarchal model described here for Vaccinium may also occur in a wider group of plants as a means to co-regulate different branches of the flavonoid pathway.
Collapse
Affiliation(s)
- Declan J Lafferty
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
- The University of Auckland, Auckland, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Blue Plunkett
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Janice L Turner
- The New Zealand Institute for Plant and Food Research Limited, Motueka, New Zealand
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Andrew C Allan
- The University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
36
|
Khan IA, Cao K, Guo J, Li Y, Wang Q, Yang X, Wu J, Fang W, Wang L. Identification of key gene networks controlling anthocyanin biosynthesis in peach flower. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111151. [PMID: 35151460 DOI: 10.1016/j.plantsci.2021.111151] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Flavonoids, particularly anthocyanin is the main pigment that determined the red color of peach flowers, and help the plant to attract pollinators, protect the reproductive organs of flower from photo-oxidative effects of light and various non-communicable diseases. Through weightage gene coexpression network analysis (WGCNA) we identified a network of 15 hub genes that co-expressed throughout peach flower development including 5 genes coded for the key enzymes (CHI, F3'H, DFR, LAR and UFGT) of flavonoid biosynthetic pathway and 1 gene Prupe.1G111700 identified as R2R3 family transcription factor MYB108. Over expression of PpMYB108 significantly increased anthocyanin biosynthesis in Tobacco flowers. Moreover, the expression correlation between PpMYB108 and PpDFR, suggests that PpMYB108 play the role of transcriptional activator for PpDFR. This was further supported by a 6 bp insertion of MYB biding site in the core promoter region of PpDFR in red flower. The positive interaction of PpMYB108 with PpDFR promoter from red flower was confirmed in yeast one hybrid assay. These findings may be helpful in peach breeding programs as well as in identifying anthocyanin related genes in other species.
Collapse
Affiliation(s)
- Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| | - Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China; State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Qi Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xuanwen Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
37
|
Identification of the Regulatory Genes of UV-B-Induced Anthocyanin Biosynthesis in Pepper Fruit. Int J Mol Sci 2022; 23:ijms23041960. [PMID: 35216077 PMCID: PMC8879456 DOI: 10.3390/ijms23041960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Fruit peels of certain pepper (Capsicum annum L.) varieties accumulate a large amount of anthocyanins and exhibit purple color under medium-wave ultraviolet (UV-B) conditions, which severely impacts the commodity value of peppers. However, the regulatory mechanism of the above process has not been well studied so far. To explore which key genes are involved in this regulatory mechanism, pepper variety 19Q6100, the fruit peels of which turn purple under UV-B conditions, was investigated in this study. Transcription factors with expression levels significantly impacted by UV-B were identified by RNA-seq. Those genes may be involved in the regulation of UV-B-induced anthocyanin biosynthesis. Yeast one-hybrid results revealed that seven transcription factors, CabHLH143, CaMYB113, CabHLH137, CaMYBG, CaWRKY41, CaWRKY44 and CaWRKY53 directly bound to the putative promotor regions of the structural genes in the anthocyanin biosynthesis pathway. CaMYB113 was found to interact with CabHLH143 and CaHY5 by yeast two-hybrid assay, and those three genes may participate collaboratively in UV-B-induced anthocyanin biosynthesis in pepper fruit. Virus-induced gene silencing (VIGS) indicated that fruit peels of CaMYB113-silenced plants were unable to turn purple under UV-B conditions. These findings could deepen our understanding of UV-B-induced anthocyanin biosynthesis in pepper.
Collapse
|
38
|
Li H, Du Y, Zhang J, Feng H, Liu J, Yang G, Zhu Y. Unraveling the Mechanism of Purple Leaf Formation in Brassica napus by Integrated Metabolome and Transcriptome Analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:945553. [PMID: 35903234 PMCID: PMC9315442 DOI: 10.3389/fpls.2022.945553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 05/12/2023]
Abstract
Brassica napus as both oilseed and vegetable, is widely cultivated in China. The purple leaf of B. napus is rich in anthocyanins and can provide valuable nutrients. Although several high-anthocyanin cultivars have been reported, the molecular mechanism underlying anthocyanin biosynthesis in B. napus remains lesser-known. Therefore, in this study, we conducted integrative metabolome and transcriptome analyses in three B. napus cultivars with different leaf colors. Overall, 39 flavonoids were identified (including 35 anthocyanins), and 22 anthocyanins were differentially accumulated in the leaves, contributing to the different leaf colors. Cyanidin-3,5,3'-O-triglucoside was confirmed as the main contributor of the purple leaf phenotype. Meanwhile, other anthocyanins may play important roles in deepening the color of B. napus leaves. A total of 5,069 differentially expressed genes (DEGs) and 32 overlapping DEGs were identified by RNA-sequencing; hence, the correlation between anthocyanin content and DEG expression levels was explored. Two structural genes (DFR and ANS), three GSTs (homologous to TT19), and 68 differentially expressed transcription factors (TFs), especially MYB-related TFs and WRKY44, were identified in three B. napus varieties characterized by different leaf color, thereby indicating that these genes may contribute to anthocyanin biosynthesis, transport, or accumulation in B. napus leaves. The findings of study provide important insights that may contribute to gaining a better understanding of the transcriptional regulation of anthocyanin metabolism in B. napus.
Collapse
|
39
|
Patzak J, Henychová A, Matoušek J. Developmental regulation of lupulin gland-associated genes in aromatic and bitter hops (Humulus lupulus L.). BMC PLANT BIOLOGY 2021; 21:534. [PMID: 34773975 PMCID: PMC8590222 DOI: 10.1186/s12870-021-03292-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/22/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND Hop (Humulus lupulus L.) bitter acids are valuable metabolites for the brewing industry. They are biosynthesized and accumulate in glandular trichomes of the female inflorescence (hop cone). The content of alpha bitter acids, such as humulones, in hop cones can differentiate aromatic from bitter hop cultivars. These contents are subject to genetic and environmental control but significantly correlate with the number and size of glandular trichomes (lupulin glands). RESULTS We evaluated the expression levels of 37 genes involved in bitter acid biosynthesis and morphological and developmental differentiation of glandular trichomes to identify key regulatory factors involved in bitter acid content differences. For bitter acid biosynthesis genes, upregulation of humulone synthase genes, which are important for the biosynthesis of alpha bitter acids in lupulin glands, could explain the higher accumulation of alpha bitter acids in bitter hops. Several transcription factors, including HlETC1, HlMYB61 and HlMYB5 from the MYB family, as well as HlGLABRA2, HlCYCB2-4, HlZFP8 and HlYABBY1, were also more highly expressed in the bitter hop cultivars; therefore, these factors may be important for the higher density of lupulin glands also seen in the bitter hop cultivars. CONCLUSIONS Gene expression analyses enabled us to investigate the differences between aromatic and bitter hops. This study confirmed that the bitter acid content in glandular trichomes (lupulin glands) is dependent on the last step of alpha bitter acid biosynthesis and glandular trichome density.
Collapse
Affiliation(s)
- Josef Patzak
- Hop Research Institute Co., Ltd., Kadaňská 2525, 438 01, Žatec, Czech Republic.
| | - Alena Henychová
- Hop Research Institute Co., Ltd., Kadaňská 2525, 438 01, Žatec, Czech Republic
| | - Jaroslav Matoušek
- Biology Centre ASCR v.v.i, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005, České Budějovice, Czech Republic
| |
Collapse
|
40
|
Wang X, Li Y, Liu Y, Zhang D, Ni M, Jia B, Heng W, Fang Z, Zhu LW, Liu P. Transcriptomic and Proteomic Profiling Reveal the Key Role of AcMYB16 in the Response of Pseudomonas syringae pv. actinidiae in Kiwifruit. FRONTIERS IN PLANT SCIENCE 2021; 12:756330. [PMID: 34868148 PMCID: PMC8632638 DOI: 10.3389/fpls.2021.756330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 06/01/2023]
Abstract
Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa), is an important disease of kiwifruit (Actinidia Lind.). Plant hormones may induce various secondary metabolites to resist pathogens via modulation of hormone-responsive transcription factors (TFs), as reported in past studies. In this study, we showed that JA accumulated in the susceptible cultivar Actinidia chinensis 'Hongyang' but decreased in the resistant cultivar of A. chinensis var. deliciosa 'Jinkui' in response to Psa. Integrated transcriptomic and proteomic analyses were carried out using the resistant cultivar 'Jinkui'. A total of 5,045 differentially expressed genes (DEGs) and 1,681 differentially expressed proteins (DEPs) were identified after Psa infection. Two pathways, 'plant hormone signal transduction' and 'phenylpropanoid biosynthesis,' were activated at the protein and transcript levels. In addition, a total of 27 R2R3-MYB transcription factors (TFs) were involved in the response to Psa of 'Jinkui,' including the R2R3-MYB TF subgroup 4 gene AcMYB16, which was downregulated in 'Jinkui' but upregulated in 'Hongyang.' The promoter region of AcMYB16 has a MeJA responsiveness cis-acting regulatory element (CRE). Transient expression of the AcMYB16 gene in the leaves of 'Jinkui' induced Psa infection. Together, these data suggest that AcMYB16 acts as a repressor to regulate the response of kiwifruit to Psa infection. Our work will help to unravel the processes of kiwifruit resistance to pathogens and will facilitate the development of varieties with resistance against bacterial pathogens.
Collapse
Affiliation(s)
- Xiaojie Wang
- School of Horticulture, Anhui Agricultural University, Hefei, China
- School of Life Sciences, Anhui University, Hefei, China
| | - Yawei Li
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Yuanyuan Liu
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Dongle Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Min Ni
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Bing Jia
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Wei Heng
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, China
| | - Li-wu Zhu
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Pu Liu
- School of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
41
|
Karppinen K, Lafferty DJ, Albert NW, Mikkola N, McGhie T, Allan AC, Afzal BM, Häggman H, Espley RV, Jaakola L. MYBA and MYBPA transcription factors co-regulate anthocyanin biosynthesis in blue-coloured berries. THE NEW PHYTOLOGIST 2021; 232:1350-1367. [PMID: 34351627 DOI: 10.1111/nph.17669] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/02/2021] [Indexed: 05/14/2023]
Abstract
The regulatory network of R2R3 MYB transcription factors in anthocyanin biosynthesis is not fully understood in blue-coloured berries containing delphinidin compounds. We used blue berries of bilberry (Vaccinium myrtillus) to comprehensively characterise flavonoid-regulating R2R3 MYBs, which revealed a new type of co-regulation in anthocyanin biosynthesis between members of MYBA-, MYBPA1- and MYBPA2-subgroups. VmMYBA1, VmMYBPA1.1 and VmMYBPA2.2 expression was elevated at berry ripening and by abscisic acid treatment. Additionally, VmMYBA1 and VmMYBPA1.1 expression was strongly downregulated in a white berry mutant. Complementation and transient overexpression assays confirmed VmMYBA1 and VmMYBA2 to induce anthocyanin accumulation. Promoter activation assays showed that VmMYBA1, VmMYBPA1.1 and VmMYBPA2.2 had similar activity towards dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS), but differential regulation activity for UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT) and flavonoid 3'5'-hydroxylase (F3'5'H) promoters. Silencing of VmMYBPA1.1 in berries led to the downregulation of key anthocyanin and delphinidin biosynthesis genes. Functional analyses of other MYBPA regulators, and a member of novel MYBPA3 subgroup, associated them with proanthocyanidin biosynthesis and F3'5'H expression. The existence of 18 flavonoid-regulating MYBs indicated gene duplication, which may have enabled functional diversification among MYBA, MYBPA1 and MYBPA2 subgroups. Our results provide new insights into the intricate regulation of the complex anthocyanin profile found in blue-coloured berries involving regulation of both cyanidin and delphinidin branches.
Collapse
Affiliation(s)
- Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Declan J Lafferty
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
| | - Nick W Albert
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | - Nelli Mikkola
- Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland
| | - Tony McGhie
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North, 4410, New Zealand
| | - Andrew C Allan
- School of Biological Sciences, University of Auckland, Auckland, 1142, New Zealand
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1025, New Zealand
| | - Bilal M Afzal
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, 9037, Norway
| | - Hely Häggman
- Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1025, New Zealand
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, 9037, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, 1431, Norway
| |
Collapse
|
42
|
Sabbadini S, Capocasa F, Battino M, Mazzoni L, Mezzetti B. Improved nutritional quality in fruit tree species through traditional and biotechnological approaches. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Cappellini F, Marinelli A, Toccaceli M, Tonelli C, Petroni K. Anthocyanins: From Mechanisms of Regulation in Plants to Health Benefits in Foods. FRONTIERS IN PLANT SCIENCE 2021; 12:748049. [PMID: 34777426 PMCID: PMC8580863 DOI: 10.3389/fpls.2021.748049] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/30/2021] [Indexed: 05/09/2023]
Abstract
Anthocyanins represent the major red, purple, and blue pigments in many flowers, fruits, vegetables, and cereals. They are also recognized as important health-promoting components in the human diet with protective effects against many chronic diseases, including cardiovascular diseases, obesity, and cancer. Anthocyanin biosynthesis has been studied extensively, and both biosynthetic and key regulatory genes have been isolated in many plant species. Here, we will provide an overview of recent progress in understanding the anthocyanin biosynthetic pathway in plants, focusing on the transcription factors controlling activation or repression of anthocyanin accumulation in cereals and fruits of different plant species, with special emphasis on the differences in molecular mechanisms between monocot and dicot plants. Recently, new insight into the transcriptional regulation of the anthocyanin biosynthesis, including positive and negative feedback control as well as epigenetic and post-translational regulation of MYB-bHLH-WD40 complexes, has been gained. We will consider how knowledge of regulatory mechanisms has helped to produce anthocyanin-enriched foods through conventional breeding and metabolic engineering. Additionally, we will briefly discuss the biological activities of anthocyanins as components of the human diet and recent findings demonstrating the important health benefits of anthocyanin-rich foods against chronic diseases.
Collapse
|
44
|
Transcriptomic analysis of a wild and a cultivated varieties of Capsicum annuum over fruit development and ripening. PLoS One 2021; 16:e0256319. [PMID: 34428253 PMCID: PMC8384167 DOI: 10.1371/journal.pone.0256319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Chili pepper (Capsicum annuum) is one of the most important crops worldwide. Its fruits contain metabolites produced over the maturation process like capsaicinoids and carotenoids. This metabolic process produces internal changes in flavor, color, texture, and aroma in fruits to make them more attractive for seed dispersal organisms. The chiltepin (C. annuum L. var. glabriusculum) is a wild variety of the C. annuum L. species that is considered a source of genetic resources that could be used to improve the current chili crops. In this study, we performed a transcriptomic analysis on two fruit maturation stages: immature stage (green fruit) and mature stage (red fruit) of a wild and a cultivated pepper variety. We found 19,811 genes expressed, and 1,008 genes differentially expressed (DEGs) in at least one of the five contrast used; 730 DEGs were found only in one contrast, and most DEGs in all contrasts were downregulated. GO enrichment analysis showed that the majority of DEGs are related to stress responses. KEGG enrichment analysis detected differences in expression patterns in metabolic pathways related to phenylpropanoid biosynthesis, secondary metabolites, plant hormone signal transduction, carotenoid biosynthesis and sesquiterpenoid and triterpenoid biosynthesis. We selected 105 tomato fruit ripening-related genes, and found 53 pepper homologs differentially expressed related to shape, size, and secondary metabolite biosynthesis. According to the transcriptome analysis, the two peppers showed very similar gene expression patterns; differences in expression patterns of genes related to shape, size, ethylene and secondary metabolites biosynthesis suggest that changes produced by domestication of chilli pepper could be very specific to the expression of genes related to traits desired in commercial fruits.
Collapse
|
45
|
He Y, Wang Z, Ge H, Liu Y, Chen H. Weighted gene co-expression network analysis identifies genes related to anthocyanin biosynthesis and functional verification of hub gene SmWRKY44. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110935. [PMID: 34134842 DOI: 10.1016/j.plantsci.2021.110935] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/31/2021] [Accepted: 05/01/2021] [Indexed: 05/08/2023]
Abstract
Eggplant is rich in anthocyanins, which are thought to be highly beneficial for human health. There is no study on weighted gene co-expression network analysis (WGCNA) of anthocyanin biosynthesis in eggplant. Here, transcriptome data of 33 eggplant pericarp samples treated with light were used for WGCNA to identify significant modules. Total 13000 DEGs and 12 modules were identified, and the most significant module was associated with the secondary metabolites pathways. In addition, the hub gene SmWRKY44 with high connectivity was selected and its function was verified. The expression of SmWRKY44 showed a significant correlation with anthocyanin accumulation in the eggplant peels, leaves, and flowers. SmWRKY44-OE Arabidopsis significantly increased the accumulation of anthocyanins. Yeast two-hybrid and BiFC assays showed that SmWRKY44 could interact with SmMYB1, and it was also found that they could jointly promote the biosynthesis of anthocyanins in eggplant leaves through transient expression analysis. Our work provides a new direction for studying the molecular mechanism of light-induced anthocyanin biosynthesis in eggplant.
Collapse
Affiliation(s)
- Yongjun He
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Zhaowei Wang
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Haiyan Ge
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Yang Liu
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| |
Collapse
|
46
|
Gan Z, Yuan X, Shan N, Wan C, Chen C, Xu Y, Xu Q, Chen J. AcWRKY40 mediates ethylene biosynthesis during postharvest ripening in kiwifruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110948. [PMID: 34134847 DOI: 10.1016/j.plantsci.2021.110948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
WRKY transcription factors belong to a superfamily that is involved in many important biological processes, including plant development and senescence. However, little is known about the transcriptional regulation mechanisms of WRKY genes involved in kiwifruit postharvest ripening. Here, we isolated a WRKY gene from the kiwifruit genome and named it AcWRKY40. AcWRKY40 is a nucleus-localized protein that possesses transcriptional activation activity. The expression of AcWRKY40 was detected, and the gene responded to ethylene treatment during kiwifruit postharvest ripening, indicating its involvement in this process at the transcriptional level. We found multiple cis-acting elements related to maturation and senescence in the AcWRKY40 promoter. GUS activity analysis showed that its promoter activity was induced by exogenous ethylene. Yeast one-hybrid and dual-luciferase assays demonstrated that AcWRKY40 binds to the promoters of AcSAM2, AcACS1, and AcACS2 to activate them. In addition, transient transformations showed that AcWRKY40 enhances the expression of AcSAM2, AcACS1, and AcACS2. Taken together, these results suggest that AcWRKY40 is involved in kiwifruit postharvest ripening, possibly by regulating the expression of genes related to ethylene biosynthesis, thus deepening our understanding of the regulatory mechanisms of WRKY transcription factors in fruit ripening.
Collapse
Affiliation(s)
- Zengyu Gan
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China; Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Yuan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Nan Shan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yunhe Xu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qin Xu
- Agriculture and Rural Bureau of Gongcheng Yao Autonomous County, Guilin, 542500, China
| | - Jinyin Chen
- Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, 330045, China; Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 330075, China.
| |
Collapse
|
47
|
Xie F, Hua Q, Chen C, Zhang Z, Zhang R, Zhao J, Hu G, Chen J, Qin Y. Genome-Wide Characterization of R2R3-MYB Transcription Factors in Pitaya Reveals a R2R3-MYB Repressor HuMYB1 Involved in Fruit Ripening through Regulation of Betalain Biosynthesis by Repressing Betalain Biosynthesis-Related Genes. Cells 2021; 10:cells10081949. [PMID: 34440718 PMCID: PMC8391165 DOI: 10.3390/cells10081949] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
The MYB (myeloblastosis) superfamily constitutes one of the most abundant transcription factors (TFs) regulating various biological processes in plants. However, the molecular characteristics and functions of MYB TFs in pitaya remain unclear. To date, no genome-wide characterization analysis of this gene family has been conducted in the Cactaceae species. In this study, 105 R2R3-MYB members were identified from the genome data of Hylocereus undatus and their conserved motifs, physiological and biochemical characteristics, chromosome locations, synteny relationship, gene structure and phylogeny were further analyzed. Expression analyses suggested that three up-regulated HuMYBs and twenty-two down-regulated HuMYBs were probably involved in fruit ripening of pitaya. Phylogenetic analyses of R2R3-MYB repressors showed that seven HuMYBs (HuMYB1, HuMYB21, HuMYB48, HuMYB49, HuMYB72, HuMYB78 and HuMYB101) were in clades containing R2R3-MYB repressors. HuMYB1 and HuMYB21 were significantly down-regulated with the betalain accumulation during fruit ripening of ‘Guanhuahong’ pitaya (H. monacanthus). However, only HuMYB1 had R2 and R3 repeats with C1, C2, C3 and C4 motifs. HuMYB1 was localized exclusively to the nucleus and exhibited transcriptional inhibition capacities. Dual luciferase reporter assay demonstrated that HuMYB1 inhibited the expression of betalain-related genes: HuADH1, HuCYP76AD1-1 and HuDODA1. These results suggested that HuMYB1 is a potential repressor of betalain biosynthesis during pitaya fruit ripening. Our results provide the first genome-wide analyses of the R2R3-MYB subfamily involved in pitaya betalain biosynthesis and will facilitate functional analysis of this gene family in the future.
Collapse
|
48
|
Jia N, Wang JJ, Liu J, Jiang J, Sun J, Yan P, Sun Y, Wan P, Ye W, Fan B. DcTT8, a bHLH transcription factor, regulates anthocyanin biosynthesis in Dendrobium candidum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:603-612. [PMID: 33774465 DOI: 10.1016/j.plaphy.2021.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 05/01/2023]
Abstract
Dendrobium candidum stems are used as Chinese medicine and functional food. Red stems of D. candidum are rich in anthocyanins, which attract pollinator insects, protect the plants against environmental stress, and improve human health. The regulatory mechanisms of anthocyanin biosynthesis and stem color differentiation in D. candidum are not fully understood. Using transcriptome profiling, we identified a basic helix-loop-helix transcription factor (DcTT8) involved in anthocyanin biosynthesis in D. candidum stems. Ultraperformance liquid chromatography-tandem mass spectrometry was used to determine pigment contents and compositions in red and green stems, revealing that cyanidin is responsible for the red color. DcTT8 could bind the DcF3'H and DcUFGT promoters and finely regulate DcF3'H and DcUFGT expression. Our data indicate that DcTT8 participates in anthocyanin biosynthesis and offers novel insights into the transcriptional regulation of anthocyanin biosynthesis in D. candidum.
Collapse
Affiliation(s)
- Ning Jia
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China; Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| | - Jing-Jing Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China.
| | - Jiameng Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China; Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| | - Jinlan Jiang
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Shaxian, Fujian, 365050, China.
| | - Jing Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China; Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| | - Peipei Yan
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Shaxian, Fujian, 365050, China.
| | - Yufeng Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China; Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| | - Peiyu Wan
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Shaxian, Fujian, 365050, China.
| | - Wei Ye
- Institute of Medicinal Plant Sciences, Sanming Academy of Agricultural Sciences, Shaxian, Fujian, 365050, China.
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing, 100193, China; Laboratory of Quality & Safety Risk Assessment on Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| |
Collapse
|