1
|
Liu Z, Tan X, Peng L, Gao W, Zeng P. Hederagenin Induces Apoptosis of Human Hepatoma HepG2 Cells via the Mitochondrial Pathway. Comb Chem High Throughput Screen 2024; 27:1495-1503. [PMID: 37817515 PMCID: PMC11327765 DOI: 10.2174/0113862073254353230925074944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/23/2023] [Accepted: 08/18/2023] [Indexed: 10/12/2023]
Abstract
OBJECTIVE The objective of this study is to assess the antitumor effects of hederagenin (HDG) in liver cancer (LC) cells and explore the related mechanisms. MATERIALS AND METHODS HepG2 cells were treated with HDG and cisplatin, respectively. The CCK8 assay was used to detect cell activity, DAPI staining was used to detect the proportion of living cells, TUNEL assay to detect the proportion of apoptotic cells, flow cytometry to detect the membrane potential, fluoroscopic electron microscopy to detect microstructural changes to the mitochondrial, and western blot analysis and high-content screening to detect apoptosisrelated proteins. RESULTS Treatment with HDG inhibited the growth of HepG2 cells, decreased the proportion of viable cells, increased the proportion of apoptotic cells, and significantly increased the proportion of cells in the G1 phase. Fluorescence staining showed that HDG damaged the mitochondria of HepG2 cells and significantly decreased the number of mitochondria. Flow cytometry showed that HDG decreased the mitochondrial membrane potential of HepG2 cells. Observations by electron microscopy showed that HDG caused swelling and vacuole formation of the mitochondria of HepG2 cells. HDG significantly reduced the average fluorescence intensity of Bcl-2 in HepG2 cells and significantly increased that of the pro-apoptosis proteins Bax, Cytochrome-c, and Caspase-3. CONCLUSION HDG induced apoptosis of HepG2 cells via the mitochondrial pathway.
Collapse
Affiliation(s)
- Zhuo Liu
- Affiliated Hospital, Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, P.R. China
| | - Xiaoning Tan
- Affiliated Hospital, Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| | - Lian Peng
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, P.R. China
| | - Wenhui Gao
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, P.R. China
| | - Puhua Zeng
- Affiliated Hospital, Hunan Academy of Traditional Chinese Medicine, Changsha 410006, P.R. China
| |
Collapse
|
2
|
Levis DJ, Meckler JF, O’Donnell RT, Tuscano JM. A Fermented Wheat Germ Extract Contains Protein Components Active against NSCLC Xenografts In Vivo. Curr Issues Mol Biol 2023; 45:7087-7096. [PMID: 37754232 PMCID: PMC10530145 DOI: 10.3390/cimb45090448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) continues to be the leading cause of cancer-related deaths. Although advances have been made in the past decade to treat such tumors, most options induce multiple side effects, and many patients discontinue therapy due to toxicity. Thus, the need remains for non-toxic, effective NSCLC therapies, especially in an elderly patient population. Our lab has previously identified a protein fraction from the nutraceutical Avemar®-dubbed fermented wheat germ protein (FWGP)-with demonstrated efficacy in lymphoma models both in vitro and in vivo. Here, we show that FWGP also has anti-tumor activity in vitro and in vivo against lung cancer. In vitro cytotoxicity against multiple lung cancer cell lines yielded IC50 values comparable to those previously established with the parent product, Avemar. Further, significant A549 xenograft growth inhibition occurred in athymic nu/nu mice receiving FWGP in both pre-radiated and non-radiated models when compared to the untreated control. Encouragingly, mice treated with FWGP experienced no toxicities as detected by weight reduction or blood chemistry analysis. These data support the further study of FWGP as a potential non-toxic therapy for lung cancer and other oncologic indications.
Collapse
Affiliation(s)
- Daniel J. Levis
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (D.J.L.)
| | - Joshua F. Meckler
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (D.J.L.)
| | - Robert T. O’Donnell
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (D.J.L.)
| | - Joseph M. Tuscano
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, CA 95817, USA; (D.J.L.)
- Department of Veterans Affairs, Northern California Healthcare System, Sacramento, CA 95652, USA
| |
Collapse
|
3
|
Harguindey S, Reshkin SJ, Alfarouk KO. The Prime and Integral Cause of Cancer in the Post-Warburg Era. Cancers (Basel) 2023; 15:540. [PMID: 36672490 PMCID: PMC9856494 DOI: 10.3390/cancers15020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Back to beginnings. A century ago, Otto Warburg published that aerobic glycolysis and the respiratory impairment of cells were the prime cause of cancer, a phenomenon that since then has been known as "the Warburg effect". In his early studies, Warburg looked at the effects of hydrogen ions (H+), on glycolysis in anaerobic conditions, as well as of bicarbonate and glucose. He found that gassing with CO2 led to the acidification of the solutions, resulting in decreased rates of glycolysis. It appears that Warburg first interpreted the role of pH on glycolysis as a secondary phenomenon, a side effect that was there just to compensate for the effect of bicarbonate. However, later on, while talking about glycolysis in a seminar at the Rockefeller Foundation, he said: "Special attention should be drawn to the remarkable influence of the bicarbonate…". Departing from the very beginnings of this metabolic cancer research in the 1920s, our perspective advances an analytic as well as the synthetic approach to the new "pH-related paradigm of cancer", while at the same time addressing the most fundamental and recent changing concepts in cancer metabolic etiology and its potential therapeutic implications.
Collapse
Affiliation(s)
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Khalid O. Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan
| |
Collapse
|
4
|
Xu FQ, Dong MM, Wang ZF, Cao LD. Metabolic rearrangements and intratumoral heterogeneity for immune response in hepatocellular carcinoma. Front Immunol 2023; 14:1083069. [PMID: 36776894 PMCID: PMC9908004 DOI: 10.3389/fimmu.2023.1083069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Liver cancer is one of the most common malignant tumors globally. Not only is it difficult to diagnose, but treatments are scarce and the prognosis is generally poor. Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Aggressive cancer cells, such as those found in HCC, undergo extensive metabolic rewiring as tumorigenesis, the unique feature, ultimately causes adaptation to the neoplastic microenvironment. Intratumoral heterogeneity (ITH) is defined as the presence of distinct genetic features and different phenotypes in the same tumoral region. ITH, a property unique to malignant cancers, results in differences in many different features of tumors, including, but not limited to, tumor growth and resistance to chemotherapy, which in turn is partly responsible for metabolic reprogramming. Moreover, the different metabolic phenotypes might also activate the immune response to varying degrees and help tumor cells escape detection by the immune system. In this review, we summarize the reprogramming of glucose metabolism and tumoral heterogeneity and their associations that occur in HCC, to obtain a better understanding of the mechanisms of HCC oncogenesis.
Collapse
Affiliation(s)
- Fei-Qi Xu
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.,The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng-Meng Dong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Zhi-Fei Wang
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Li-Dong Cao
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Harguindey S, Alfarouk K, Polo Orozco J, Reshkin SJ, Devesa J. Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23052454. [PMID: 35269597 PMCID: PMC8910484 DOI: 10.3390/ijms23052454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The pH-related metabolic paradigm has rapidly grown in cancer research and treatment. In this contribution, this recent oncological perspective has been laterally assessed for the first time in order to integrate neurodegeneration within the energetics of the cancer acid-base conceptual frame. At all levels of study (molecular, biochemical, metabolic, and clinical), the intimate nature of both processes appears to consist of opposite mechanisms occurring at the far ends of a physiopathological intracellular pH/extracellular pH (pHi/pHe) spectrum. This wide-ranging original approach now permits an increase in our understanding of these opposite processes, cancer and neurodegeneration, and, as a consequence, allows us to propose new avenues of treatment based upon the intracellular and microenvironmental hydrogen ion dynamics regulating and deregulating the biochemistry and metabolism of both cancer and neural cells. Under the same perspective, the etiopathogenesis and special characteristics of multiple sclerosis (MS) is an excellent model for the study of neurodegenerative diseases and, utilizing this pioneering approach, we find that MS appears to be a metabolic disease even before an autoimmune one. Furthermore, within this paradigm, several important aspects of MS, from mitochondrial failure to microbiota functional abnormalities, are analyzed in depth. Finally, and for the first time, a new and integrated model of treatment for MS can now be advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Division of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
- Correspondence: ; Tel.: +34-629-047-141
| | - Khalid Alfarouk
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | - Julián Polo Orozco
- Division of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
6
|
Alfarouk KO, Alhoufie STS, Hifny A, Schwartz L, Alqahtani AS, Ahmed SBM, Alqahtani AM, Alqahtani SS, Muddathir AK, Ali H, Bashir AHH, Ibrahim ME, Greco MR, Cardone RA, Harguindey S, Reshkin SJ. Of mitochondrion and COVID-19. J Enzyme Inhib Med Chem 2021; 36:1258-1267. [PMID: 34107824 PMCID: PMC8205080 DOI: 10.1080/14756366.2021.1937144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023] Open
Abstract
COVID-19, a pandemic disease caused by a viral infection, is associated with a high mortality rate. Most of the signs and symptoms, e.g. cytokine storm, electrolytes imbalances, thromboembolism, etc., are related to mitochondrial dysfunction. Therefore, targeting mitochondrion will represent a more rational treatment of COVID-19. The current work outlines how COVID-19's signs and symptoms are related to the mitochondrion. Proper understanding of the underlying causes might enhance the opportunity to treat COVID-19.
Collapse
Affiliation(s)
- Khalid Omer Alfarouk
- Research Center, Zamzam University College, Khartoum, Sudan
- Department of Evolutionary Pharmacology and Tumor Metabolism, Hala Alfarouk Cancer Center, Khartoum, Sudan
- Al-Ghad International College for Applied Medical Sciences, Al-Madinah Al-Munwarah, Saudi Arabia
| | - Sari T. S. Alhoufie
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munwarah, Saudi Arabia
| | | | | | - Ali S. Alqahtani
- College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | | | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Saad S. Alqahtani
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | | | - Heyam Ali
- Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Adil H. H. Bashir
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Rosa A. Cardone
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
7
|
Weitzen R, Epstein N, Oberman B, Shevetz R, Hidvegi M, Berger R. Fermented Wheat Germ Extract (FWGE) as a Treatment Additive for Castration-Resistant Prostate Cancer: A Pilot Clinical Trial. Nutr Cancer 2021; 74:1338-1346. [PMID: 34286638 DOI: 10.1080/01635581.2021.1952457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Castration-resistant prostate cancer (CRPC) is a devastating and incurable disease. Combined therapy using conventional anticancer drugs and a proprietary medical nutriment, fermented wheat germ extract (FWGE), also known as Avemar, has been suggested as a treatment for progressing prostate cancer (PCa) patients, who have become resistant to first line hormonal therapy (gonadotropin releasing hormone, GnRH). The primary aim of this study was to test if this combined therapy would slow down disease progression in CRPC patients. We tested the nontoxic, readily available, inexpensive FWGE, together with the conventional treatment, GnRH analogue, in 36 CRPC patients. Although this is a pilot study, with the drawback of a statistically small sample size, some anticancer clinical activity of FWGE could be seen in the CRPC patients, as measured by prostate specific antigen doubling time (PSADT). We found that the intake of GnRH with FWGE for at least 4 months, improved the overall health as well as the quality of life (QOL) in 4 patients (11%) and was instrumental in extending the PSADT in about 17 (out of 26) patients (65.4%), six of whom were significant. Since no mentionable adverse events were noticed, this treatment may permit the postponement of chemotherapy for these patients.
Collapse
Affiliation(s)
- Rony Weitzen
- Sheba Medical Center, Oncology, Tel Hashomer, Israel.,Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Nava Epstein
- Sheba Medical Center, Oncology, Tel Hashomer, Israel
| | - Bernice Oberman
- The Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel
| | | | - Mate Hidvegi
- Jewish Theological Seminary - University of Jewish Studies (OR-ZSE), Budapest, Hungary
| | - Raanan Berger
- Sheba Medical Center, Oncology, Tel Hashomer, Israel.,Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| |
Collapse
|