1
|
Sheppard DI, Espinoza-Corral R, Lechno-Yossef S, Sutter M, Arcidiacono A, Cignoni E, Cupellini L, Mennucci B, Kerfeld CA. N-Terminal domain homologs of the orange carotenoid protein increase quenching of cyanobacterial phycobilisomes. PLANT PHYSIOLOGY 2025; 198:kiae531. [PMID: 39365917 PMCID: PMC12059629 DOI: 10.1093/plphys/kiae531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Stress exerted by excess captured light energy in cyanobacteria is prevented by the photoprotective activity of the orange carotenoid protein (OCP). Under high light, the OCP converts from an orange, inactive form (OCPO) into the red form (OCPR) that binds to and quenches the phycobilisome (PBS). Structurally, the OCP consists of 2 domains: the N-terminal effector domain and a C-terminal regulatory domain. Structural analysis of the OCP-PBS complex showed that the N-terminal domains of an OCP dimer interact with the PBS core. These N-terminal OCP domains have single-domain protein paralogs known as helical carotenoid proteins (HCPs). Using PBS quenching assays, we show that the HCP4 and HCP5 homologs efficiently quench PBS fluorescence in vitro, surpassing the quenching ability of the OCP. This is consistent with computational quantum mechanics/molecular mechanics results. Interestingly, when using a maximum quenching concentration of OCP with PBSs, HCP5 addition further increases PBS quenching. Our results provide mechanistic insight into the quenching capacity and roles of HCP4 and HCP5 in cyanobacteria, suggesting that they are more than simply functionally redundant to the OCP.
Collapse
Affiliation(s)
- Damien I Sheppard
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Roberto Espinoza-Corral
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sigal Lechno-Yossef
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Amanda Arcidiacono
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa 56124, Italy
| | - Edoardo Cignoni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa 56124, Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa 56124, Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa 56124, Italy
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Koczula AM, Cremer N, Moldenhauer M, Sluchanko NN, Maksimov EG, Friedrich T. Mutational interference with oligomerization properties of OCP-related apo- and holoproteins studied by analytical ultracentrifugation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149538. [PMID: 39814218 DOI: 10.1016/j.bbabio.2025.149538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
In this study, the oligomerization pattern of apo- and holoforms of the Orange Carotenoid Protein (OCP) was examined under different conditions such as photoactivation state, concentration, and carotenoid embedment using analytical ultracentrifugation. Furthermore, studies were conducted on OCP constructs carrying point mutations of amino acid residues affecting OCP oligomerization. Our findings reveal that the concentration-dependent dimerization of dark-adapted OCP holoprotein from Synechocystis sp. PCC 6803 can be effectively prevented by the R27L mutation in the OCP-NTD. By introducing the E258R mutation (also in conjunction with R27L) into the OCP-CTD, monomeric OCP apoprotein can be obtained. Additionally, the holoprotein of the dark-adapted OCP-R27L/E258R variant was monomeric, and, supported by size-exclusion chromatography experiments, the photoactivated form of the OCP-R27L/E258R variant was monomeric as well. This variant, which does not oligomerize in either photocycle state, returns from the photoactivated to the dark-adapted state at a significantly faster rate than the OCP wild-type and the R27L mutant thereof. These observations also highlight the crucial interdependence between OCP dimerization in both photocycle states, the lifetime of the photoactive state of OCP, and the kinetics of the OCP photocycle.
Collapse
Affiliation(s)
- Anna Marta Koczula
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nils Cremer
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russian Federation
| | - Eugene G Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, Moscow 119991, Russian Federation
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
3
|
Gupta S, Russell B, Kristensen LG, Tyler J, Costello SM, Marqusee S, Rad B, Ralston CY. Enabling simultaneous photoluminescence spectroscopy and X-ray footprinting mass spectrometry to study protein conformation and interactions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1214-1225. [PMID: 39749913 PMCID: PMC11802294 DOI: 10.1039/d4ay01670j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
X-ray footprinting mass spectrometry (XFMS) is a structural biology method that uses broadband X-rays for in situ hydroxyl radical labeling to map protein interactions and conformation in solution. However, while XFMS alone provides important structural information on biomolecules, as we move into the era of the interactome, hybrid methods are becoming increasingly necessary to gain a comprehensive understanding of protein complexes and interactions. Toward this end, we report the development of the first synergetic application of inline and real-time fluorescent spectroscopy at the Advanced Light Source's XFMS facility to study local protein interactions and global conformational changes simultaneously. To facilitate general use, we designed a flexible and optimum system for producing high-quality spectroscopy-XFMS hybrid data, with rapid interchangeable liquid jet or capillary sample delivery for multimodal inline spectroscopy, and several choices for optofluidic environments. To validate the hybrid system, we used the covalently interacting SpyCatcher-SpyTag split protein system. We show that our hybrid system can be used to detect the interaction of SpyTag and SpyCatcher via fluorescence resonance energy transfer (FRET), while elucidating key structural features throughout the complex at the residue level via XFMS. Our results highlight the usefulness of hybrid method in providing binding and structural details to precisely engineer protein interactions.
Collapse
Affiliation(s)
- Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Brandon Russell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Line G Kristensen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - James Tyler
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Shawn M Costello
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Susan Marqusee
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Behzad Rad
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| |
Collapse
|
4
|
Jain R, Farquhar ER, Dhillon NS, Jeon N, Chance MR, Kiselar J. Multiplex Trifluoromethyl and Hydroxyl Radical Chemistry Enables High-Resolution Protein Footprinting. Anal Chem 2025; 97:482-491. [PMID: 39720871 PMCID: PMC11830425 DOI: 10.1021/acs.analchem.4c04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Hydroxyl radical-based protein footprinting (HRPF) coupled with mass spectrometry is a valuable medium-resolution technique in structural biology, facilitating the assessment of protein structure and molecular-level interactions in solution conditions. In HRPF with X-rays (XFP), hydroxyl radicals generated by water radiolysis covalently label multiple amino acid (AA) side chains. However, HRPF technologies face challenges in achieving their full potential due to the broad (>103) dynamic range of AA reactivity with •OH and difficulty in detecting slightly modified residues, most notably in peptides with highly reactive residues like methionine, or where all residues have low •OH reactivities. To overcome this limitation, we developed a multiplex labeling chemistry that utilizes both CF3 radicals (•CF3) produced from a trifluoromethylation (TFM) reagent and OH radicals (•OH), under controlled and optimized radiolysis doses generated by X-rays. We optimized the dual •CF3/•OH chemistry using model peptides and proteins, thereby extending the existing •OH labeling platform to incorporate simultaneous •CF3 labeling. We labeled >50% of the protein sequence and >80% of protein solvent-accessible AAs via multiplex TFM labeling resulting in high-resolution footprinting, primarily by enhancing the labeling of AAs with low •OH reactivity via the •CF3 channel, while labeling moderate and highly •OH-reactive AAs in both •CF3 and •OH channels. Moreover, the low reactivity of methionine with •CF3 enabled the detection and quantification of additional AAs labeled by •CF3 within methionine-containing peptides. Finally, we found that the solvent accessibility of protein AAs directly correlated with •CF3 labeling, demonstrating that multiplex TFM labeling enables a high-resolution assessment of molecular interactions for enhanced HRPF.
Collapse
Affiliation(s)
- Rohit Jain
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Erik R. Farquhar
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Nanak S. Dhillon
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Nayeon Jeon
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Mark R. Chance
- Center for Synchrotron Biosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| | - Janna Kiselar
- Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
- Department of Nutrition, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
5
|
Prabha S, Vijay AK, Mathew DE, George B. Light sensitive orange carotenoid proteins (OCPs) in cyanobacterial photoprotection: evolutionary insights, structural-functional dynamics and biotechnological prospects. Arch Microbiol 2025; 207:32. [PMID: 39799518 DOI: 10.1007/s00203-024-04215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025]
Abstract
Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time. Cyanobacterial photoprotection primarily involves the translocation of carotenoid entity into the NTD, leading to remarkable conformational changes in both domains and formation of metastable OCPR. Subsequently, OCPR interacts with phycobiliprotein, inducing the quenching of excitation energy and a significant reduction in PS II fluorescence yield. In dark conditions, OCPR detaches from phycobilisomes and reverts to OCPO in the presence of fluorescent recovery proteins (FRP), sustaining a continuous cycle. Research suggests that the modular structure of the OCPs, coupled with its unique light-driven dissociation and re-association capability, opens avenues for exploiting its potential as light-controlled switches, offering various biotechnological applications.
Collapse
Affiliation(s)
- Syama Prabha
- Department of Botany, CMS College Kottayam, Kottayam, Kerala, 686001, India
| | - Aravind K Vijay
- Department of Botany, CMS College Kottayam, Kottayam, Kerala, 686001, India
| | - Doniya Elze Mathew
- Department of Biotechnology, CMS College Kottayam, Kottayam, Kerala, 686001, India
| | - Basil George
- Department of Botany, CMS College Kottayam, Kottayam, Kerala, 686001, India.
| |
Collapse
|
6
|
Kerfeld CA, Sutter M. Orange carotenoid proteins: structural understanding of evolution and function. Trends Biochem Sci 2024; 49:819-828. [PMID: 38789305 DOI: 10.1016/j.tibs.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Cyanobacteria uniquely contain a primitive water-soluble carotenoprotein, the orange carotenoid protein (OCP). Nearly all extant cyanobacterial genomes contain genes for the OCP or its homologs, implying an evolutionary constraint for cyanobacteria to conserve its function. Genes encoding the OCP and its two constituent structural domains, the N-terminal domain, helical carotenoid proteins (HCPs), and its C-terminal domain, are found in the most basal lineages of extant cyanobacteria. These three carotenoproteins exemplify the importance of the protein for carotenoid properties, including protein dynamics, in response to environmental changes in facilitating a photoresponse and energy quenching. Here, we review new structural insights for these carotenoproteins and situate the role of the protein in what is currently understood about their functions.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Likkei K, Moldenhauer M, Tavraz NN, Egorkin NA, Slonimskiy YB, Maksimov EG, Sluchanko NN, Friedrich T. Elements of the C-terminal tail of a C-terminal domain homolog of the Orange Carotenoid Protein determining xanthophyll uptake from liposomes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149043. [PMID: 38522658 DOI: 10.1016/j.bbabio.2024.149043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Carotenoids perform multifaceted roles in life ranging from coloration over light harvesting to photoprotection. The Orange Carotenoid Protein (OCP), a light-driven photoswitch involved in cyanobacterial photoprotection, accommodates a ketocarotenoid vital for its function. OCP extracts its ketocarotenoid directly from membranes, or accepts it from homologs of its C-terminal domain (CTDH). The CTDH from Anabaena (AnaCTDH) was shown to be important for carotenoid transfer and delivery from/to membranes. The C-terminal tail of AnaCTDH is a critical structural element likely serving as a gatekeeper and facilitator of carotenoid uptake from membranes. We investigated the impact of amino acid substitutions within the AnaCTDH-CTT on echinenone and canthaxanthin uptake from DOPC and DMPG liposomes. The transfer rate was uniformly reduced for substitutions of Arg-137 and Arg-138 to Gln or Ala, and depended on the lipid type, indicating a weaker interaction particularly with the lipid head group. Our results further suggest that Glu-132 has a membrane-anchoring effect on the PC lipids, specifically at the choline motif as inferred from the strongly different effects of the CTT variants on the extraction from the two liposome types. The substitution of Pro-130 by Gly suggests that the CTT is perpendicular to both the membrane and the main AnaCTDH protein during carotenoid extraction. Finally, the simultaneous mutation of Leu-133, Leu-134 and Leu-136 for alanines showed that the hydrophobicity of the CTT is crucial for carotenoid uptake. Since some substitutions accelerated carotenoid transfer into AnaCTDH while others slowed it down, carotenoprotein properties can be engineered toward the requirements of applications.
Collapse
Affiliation(s)
- Kristina Likkei
- Technische Universität Berlin, Institute of Chemistry, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Neslihan N Tavraz
- Technische Universität Berlin, Institute of Chemistry, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nikita A Egorkin
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russian Federation; Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, Moscow 119991, Russian Federation
| | - Yury B Slonimskiy
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russian Federation
| | - Eugene G Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, Moscow 119991, Russian Federation
| | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russian Federation
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
8
|
Einhaus A, Baier T, Kruse O. Molecular design of microalgae as sustainable cell factories. Trends Biotechnol 2024; 42:728-738. [PMID: 38092627 DOI: 10.1016/j.tibtech.2023.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 06/09/2024]
Abstract
Microalgae are regarded as sustainable and potent chassis for biotechnology. Their capacity for efficient photosynthesis fuels dynamic growth independent from organic carbon sources and converts atmospheric CO2 directly into various valuable hydrocarbon-based metabolites. However, approaches to gene expression and metabolic regulation have been inferior to those in more established heterotrophs (e.g., prokaryotes or yeast) since the genetic tools and insights in expression regulation have been distinctly less advanced. In recent years, however, these tools and their efficiency have dramatically improved. Various examples have demonstrated new trends in microalgal biotechnology and the potential of microalgae for the transition towards a sustainable bioeconomy.
Collapse
Affiliation(s)
- Alexander Einhaus
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Thomas Baier
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
9
|
Likkei K, Moldenhauer M, Tavraz NN, Maksimov EG, Sluchanko NN, Friedrich T. Lipid composition and properties affect protein-mediated carotenoid uptake efficiency from membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184241. [PMID: 37866690 DOI: 10.1016/j.bbamem.2023.184241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Carotenoids are pigments of diverse functions ranging from coloration over light-harvesting to photoprotection. Yet, the number of carotenoid-binding proteins, which mobilize these pigments in physiological media, is limited, and the mechanisms of carotenoid mobilization are still not well understood. The same applies for the determinants of carotenoid uptake from membranes into carotenoproteins, especially regarding the dependence on the chemical properties of membrane lipids. Here, we investigate xanthophyll uptake capacity and kinetics of a paradigmatic carotenoid-binding protein, the homolog of the Orange Carotenoid Protein's C-terminal domain from Anabaena sp. PCC 7120 (AnaCTDH), using liposomes formed from defined lipid species and loaded with canthaxanthin (CAN) and echinenone (ECN), respectively. Phospholipids with different chain length and degree of saturation were investigated. The composition of carotenoid-loaded liposomes directly affected the incorporation yield and storage ratio of CAN and ECN as well as the rate of carotenoid uptake by AnaCTDH. Generally, saturated PC lipids were identified as unsuitable, and a high phase transition temperature of the lipids negatively affected the carotenoid incorporation and storage yield. For efficient carotenoid transfer, the velocity increases with increasing chain length or membrane thickness. An average transfer yield of 93 % and 43 % were obtained for the formation of AnaCTDH(CAN) and AnaCTDH(ECN) holoproteins, respectively. In summary, the most suitable lipids for the formation of AnaCTDH(CAN/ECN) holoproteins by carotenoid transfer from artificial liposomes are phosphatidylcholine (18:1) and phosphatidylglycerol (14:0). Thus, these two lipids provide the best conditions for further investigation of lipid-protein interaction and the carotenoid uptake process.
Collapse
Affiliation(s)
- Kristina Likkei
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Neslihan N Tavraz
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Eugene G Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, Moscow 119991, Russia
| | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russia
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
10
|
Golub M, Pieper J. Recent Progress in Solution Structure Studies of Photosynthetic Proteins Using Small-Angle Scattering Methods. Molecules 2023; 28:7414. [PMID: 37959833 PMCID: PMC10650700 DOI: 10.3390/molecules28217414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Utilized for gaining structural insights, small-angle neutron and X-ray scattering techniques (SANS and SAXS, respectively) enable an examination of biomolecules, including photosynthetic pigment-protein complexes, in solution at physiological temperatures. These methods can be seen as instrumental bridges between the high-resolution structural information achieved by crystallography or cryo-electron microscopy and functional explorations conducted in a solution state. The review starts with a comprehensive overview about the fundamental principles and applications of SANS and SAXS, with a particular focus on the recent advancements permitting to enhance the efficiency of these techniques in photosynthesis research. Among the recent developments discussed are: (i) the advent of novel modeling tools whereby a direct connection between SANS and SAXS data and high-resolution structures is created; (ii) the employment of selective deuteration, which is utilized to enhance spatial selectivity and contrast matching; (iii) the potential symbioses with molecular dynamics simulations; and (iv) the amalgamations with functional studies that are conducted to unearth structure-function relationships. Finally, reference is made to time-resolved SANS/SAXS experiments, which enable the monitoring of large-scale structural transformations of proteins in a real-time framework.
Collapse
Affiliation(s)
| | - Jörg Pieper
- Institute of Physics, University of Tartu, Wilhelm Ostwald Str. 1, 50411 Tartu, Estonia;
| |
Collapse
|
11
|
Kornilov FD, Slonimskiy YB, Lunegova DA, Egorkin NA, Savitskaya AG, Kleymenov SY, Maksimov EG, Goncharuk SA, Mineev KS, Sluchanko NN. Structural basis for the ligand promiscuity of the neofunctionalized, carotenoid-binding fasciclin domain protein AstaP. Commun Biol 2023; 6:471. [PMID: 37117801 PMCID: PMC10147662 DOI: 10.1038/s42003-023-04832-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023] Open
Abstract
Fasciclins (FAS1) are ancient adhesion protein domains with no common small ligand binding reported. A unique microalgal FAS1-containing astaxanthin (AXT)-binding protein (AstaP) binds a broad repertoire of carotenoids by a largely unknown mechanism. Here, we explain the ligand promiscuity of AstaP-orange1 (AstaPo1) by determining its NMR structure in complex with AXT and validating this structure by SAXS, calorimetry, optical spectroscopy and mutagenesis. α1-α2 helices of the AstaPo1 FAS1 domain embrace the carotenoid polyene like a jaw, forming a hydrophobic tunnel, too short to cap the AXT β-ionone rings and dictate specificity. AXT-contacting AstaPo1 residues exhibit different conservation in AstaPs with the tentative carotenoid-binding function and in FAS1 proteins generally, which supports the idea of AstaP neofunctionalization within green algae. Intriguingly, a cyanobacterial homolog with a similar domain structure cannot bind carotenoids under identical conditions. These structure-activity relationships provide the first step towards the sequence-based prediction of the carotenoid-binding FAS1 members.
Collapse
Affiliation(s)
- Fedor D Kornilov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Daria A Lunegova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Anna G Savitskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
| | - Sergey Yu Kleymenov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334, Moscow, Russia
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991, Moscow, Russia
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997, Moscow, Russia.
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia.
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| |
Collapse
|
12
|
Golub M, Moldenhauer M, Matsarskaia O, Martel A, Grudinin S, Soloviov D, Kuklin A, Maksimov EG, Friedrich T, Pieper J. Stages of OCP-FRP Interactions in the Regulation of Photoprotection in Cyanobacteria, Part 2: Small-Angle Neutron Scattering with Partial Deuteration. J Phys Chem B 2023; 127:1901-1913. [PMID: 36815674 DOI: 10.1021/acs.jpcb.2c07182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We used small-angle neutron scattering partially coupled with size-exclusion chromatography to unravel the solution structures of two variants of the Orange Carotenoid Protein (OCP) lacking the N-terminal extension (OCP-ΔNTE) and its complex formation with the Fluorescence Recovery Protein (FRP). The dark-adapted, orange form OCP-ΔNTEO is fully photoswitchable and preferentially binds the pigment echinenone. Its complex with FRP consists of a monomeric OCP component, which closely resembles the compact structure expected for the OCP ground state, OCPO. In contrast, the pink form OCP-ΔNTEP, preferentially binding the pigment canthaxanthin, is mostly nonswitchable. The pink OCP form appears to occur as a dimer and is characterized by a separation of the N- and C-terminal domains, with the canthaxanthin embedded only into the N-terminal domain. Therefore, OCP-ΔNTEP can be viewed as a prototypical model system for the active, spectrally red-shifted state of OCP, OCPR. The dimeric structure of OCP-ΔNTEP is retained in its complex with FRP. Small-angle neutron scattering using partially deuterated OCP-FRP complexes reveals that FRP undergoes significant structural changes upon complex formation with OCP. The observed structures are assigned to individual intermediates of the OCP photocycle in the presence of FRP.
Collapse
Affiliation(s)
- Maksym Golub
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Marcus Moldenhauer
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Olga Matsarskaia
- Institut Laue-Langevin, Avenue des Martyrs 71, 38042 Cedex 9 Grenoble, France
| | - Anne Martel
- Institut Laue-Langevin, Avenue des Martyrs 71, 38042 Cedex 9 Grenoble, France
| | - Sergei Grudinin
- Université Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
| | - Dmytro Soloviov
- Faculty of Physics, Adam Mickiewicz University, ul. Wieniawskiego 1, 61-712 Poznan, Poland.,Institute for Safety Problems of Nuclear Power Plants, NAS of Ukraine, Kirova 36a, 07270 Chornobyl, Ukraine
| | - Alexander Kuklin
- Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980 Dubna, Russia.,Moscow Institute of Physics and Technology, Institutskiy per. 9, 141701 Dolgoprudny, Russia
| | - Eugene G Maksimov
- Department of Biophysics, M. V. Lomonosov Moscow State University, Vorob'jovy Gory 1-12, 119899 Moscow, Russia
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
13
|
Structural basis for the carotenoid binding and transport function of a START domain. Structure 2022; 30:1647-1659.e4. [DOI: 10.1016/j.str.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022]
|
14
|
Slonimskiy YB, Zupnik AO, Varfolomeeva LA, Boyko KM, Maksimov EG, Sluchanko NN. A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects. Int J Biol Macromol 2022; 222:167-180. [PMID: 36165868 DOI: 10.1016/j.ijbiomac.2022.09.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for biomass engineering. The two-domain OCP presumably stems from domain fusion, yet the primitive thylakoid-less cyanobacteria Gloeobacter encodes a complete OCP. Its photosynthesis regulation lacks the so-called Fluorescence Recovery Protein (FRP), which in Synechocystis inhibits OCP-mediated phycobilisome fluorescence quenching, and Gloeobacter OCP belongs to the recently defined, heterogeneous clade OCPX (GlOCPX), the least characterized compared to OCP2 and especially OCP1 clades. Here, we describe the first crystal structure of OCPX, which explains unique functional adaptations of Gloeobacter OCPX compared to OCP1 from Synechocystis. We show that monomeric GlOCPX exploits a remarkable intramolecular locking mechanism stabilizing its dark-adapted state and exhibits drastically accelerated, less temperature-dependent recovery after photoactivation. While GlOCPX quenches Synechocystis phycobilisomes similar to Synechocystis OCP1, it evades interaction with and regulation by FRP from other species and likely uses alternative mechanisms for fluorescence recovery. This analysis of a primordial OCPX sheds light on its evolution, rationalizing renaming and subdivision of the OCPX clade into subclades - OCP3a, OCP3b, OCP3c.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Andrei O Zupnik
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation.
| |
Collapse
|
15
|
Petrescu DI, Dilbeck PL, Montgomery BL. Environmental Tuning of Homologs of the Orange Carotenoid Protein-Encoding Gene in the Cyanobacterium Fremyella diplosiphon. Front Microbiol 2022; 12:819604. [PMID: 35003049 PMCID: PMC8739951 DOI: 10.3389/fmicb.2021.819604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
The orange carotenoid protein (OCP) family of proteins are light-activated proteins that function in dissipating excess energy absorbed by accessory light-harvesting complexes, i.e., phycobilisomes (PBSs), in cyanobacteria. Some cyanobacteria contain multiple homologs of the OCP-encoding gene (ocp). Fremyella diplosiphon, a cyanobacterium studied for light-dependent regulation of PBSs during complementary chromatic acclimation (CCA), contains several OCP homologs – two full-length OCPs, three Helical Carotenoid Proteins (HCPs) with homology to the N-terminus of OCP, and one C-terminal domain-like carotenoid protein (CCP) with homology to the C-terminus of OCP. We examined whether these homologs are distinctly regulated in response to different environmental factors, which could indicate distinct functions. We observed distinct patterns of expression for some OCP, HCP, and CCP encoding genes, and have evidence that light-dependent aspects of ocp homolog expression are regulated by photoreceptor RcaE which controls CCA. RcaE-dependent transcriptional regulator RcaC is also involved in the photoregulation of some hcp genes. Apart from light, additional environmental factors associated with cellular redox regulation impact the mRNA levels of ocp homologs, including salt, cold, and disruption of electron transport. Analyses of conserved sequences in the promoters of ocp homologs were conducted to gain additional insight into regulation of these genes. Several conserved regulatory elements were found across multiple ocp homolog promoters that potentially control differential transcriptional regulation in response to a range of environmental cues. The impact of distinct environmental cues on differential accumulation of ocp homolog transcripts indicates potential functional diversification of this gene family in cyanobacteria. These genes likely enable dynamic cellular protection in response to diverse environmental stress conditions in F. diplosiphon.
Collapse
Affiliation(s)
- D Isabel Petrescu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Preston L Dilbeck
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Beronda L Montgomery
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
16
|
UV Excitation of Carotenoid Binding Proteins OCP and HCP: Excited‐State Dynamics and Product Formation. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Slonimskiy YB, Egorkin NA, Friedrich T, Maksimov EG, Sluchanko NN. Microalgal protein AstaP is a potent carotenoid solubilizer and delivery module with a broad carotenoid binding repertoire. FEBS J 2021; 289:999-1022. [PMID: 34582628 DOI: 10.1111/febs.16215] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Carotenoids are lipophilic substances with many biological functions, from coloration to photoprotection. Being potent antioxidants, carotenoids have multiple biomedical applications, including the treatment of neurodegenerative disorders and retina degeneration. Nevertheless, the delivery of carotenoids is substantially limited by their poor solubility in the aqueous phase. Natural water-soluble carotenoproteins can facilitate this task, necessitating studies on their ability to uptake and deliver carotenoids. One such promising carotenoprotein, AstaP (astaxanthin-binding protein), was recently identified in eukaryotic microalgae, but its structure and functional properties remained largely uncharacterized. By using a correctly folded recombinant protein, here we show that AstaP is an efficient carotenoid solubilizer that can stably bind not only astaxanthin but also zeaxanthin, canthaxanthin, and, to a lesser extent, β-carotene, that is, carotenoids especially valuable to human health. AstaP accepts carotenoids provided as acetone solutions or embedded in membranes, forming carotenoid-protein complexes with an apparent stoichiometry of 1:1. We successfully produced AstaP holoproteins in specific carotenoid-producing strains of Escherichia coli, proving it is amenable to cost-efficient biotechnology processes. Regardless of the carotenoid type, AstaP remains monomeric in both apo- and holoform, while its rather minimalistic mass (~ 20 kDa) makes it an especially attractive antioxidant delivery module. In vitro, AstaP transfers different carotenoids to liposomes and to unrelated proteins from cyanobacteria, which can modulate their photoactivity and/or oligomerization. These findings expand the toolkit of the characterized carotenoid binding proteins and outline the perspective of the use of AstaP as a unique monomeric antioxidant nanocarrier with an extensive carotenoid binding repertoire.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technical University of Berlin, Berlin, Germany
| | - Eugene G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
18
|
Ralston CY, Kerfeld CA. Integrated Structural Studies for Elucidating Carotenoid-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:1-10. [PMID: 33963527 DOI: 10.1007/5584_2020_615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carotenoids are ancient pigment molecules that, when associated with proteins, have a tremendous range of functional properties. Unlike most protein prosthetic groups, there are no recognizable primary structure motifs that predict carotenoid binding, hence the structural details of their amino acid interactions in proteins must be worked out empirically. Here we describe our recent efforts to combine complementary biophysical methods to elucidate the precise details of protein-carotenoid interactions in the Orange Carotenoid Protein and its evolutionary antecedents, the Helical Carotenoid Proteins (HCPs), CTD-like carotenoid proteins (CCPs).
Collapse
Affiliation(s)
- Corie Y Ralston
- Molecular Biophysics and Integrated Bioimaging Division and the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cheryl A Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA. .,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
19
|
Pivato M, Perozeni F, Licausi F, Cazzaniga S, Ballottari M. Heterologous expression of cyanobacterial Orange Carotenoid Protein (OCP2) as a soluble carrier of ketocarotenoids in Chlamydomonas reinhardtii. ALGAL RES 2021; 55:102255. [PMID: 33777686 PMCID: PMC7610433 DOI: 10.1016/j.algal.2021.102255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photosynthetic organisms evolved different mechanisms to protect themselves from high irradiances and photodamage. In cyanobacteria, the photoactive Orange Carotenoid-binding Protein (OCP) acts both as a light sensor and quencher of excitation energy. It binds keto-carotenoids and, when photoactivated, interacts with phyco-bilisomes, thermally dissipating the excitation energy absorbed by the latter, and acting as efficient singlet oxygen quencher. Here, we report the heterologous expression of an OCP2 protein from the thermophilic cyanobacterium Fischerella thermalis (FtOCP2) in the model organism for green algae, Chlamydomonas reinhardtii. Robust expression of FtOCP2 was obtained through a synthetic redesigning strategy for optimized expression of the transgene. FtOCP2 expression was achieved both in UV-mediated mutant 4 strain, previously selected for efficient transgene expression, and in a background strain previously engineered for constitutive expression of an endogenous β-carotene ketolase, normally poorly expressed in this species, resulting into astaxanthin and other ketocarotenoids accumulation. Recombinant FtOCP2 was successfully localized into the chloroplast. Upon purification it was possible to demonstrate the formation of holoproteins with different xanthophylls and keto-carotenoids bound, including astaxanthin. Moreover, isolated ketocarotenoid-binding FtOCP2 holoproteins conserved their photoconversion properties. Carotenoids bound to FtOCP2 were thus maintained in solution even in absence of organic solvent. The synthetic biology approach herein reported could thus be considered as a novel tool for improving the solubility of ketocarotenoids produced in green algae, by binding to water-soluble carotenoids binding proteins.
Collapse
|
20
|
Gwizdala M, Lebre PH, Maggs-Kölling G, Marais E, Cowan DA, Krüger TPJ. Sub-lithic photosynthesis in hot desert habitats. Environ Microbiol 2021; 23:3867-3880. [PMID: 33817951 DOI: 10.1111/1462-2920.15505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/03/2021] [Indexed: 11/26/2022]
Abstract
In hyper-arid soil environments, photosynthetic microorganisms are largely restricted to hypolithic (sub-lithic) habitats: i.e., on the ventral surfaces of translucent pebbles in desert pavements. Here, we combined fluorometric, spectroscopic, biochemical and metagenomic approaches to investigate in situ the light transmission properties of quartz stones in the Namib Desert, and assess the photosynthetic activity of the underlying hypolithic cyanobacterial biofilms. Quartz pebbles greatly reduced the total photon flux to the ventral surface biofilms and filtered out primarily the short wavelength portion of the solar spectrum. Chlorophylls d and f were not detected in biofilm pigment extracts; however, hypolithic cyanobacterial communities showed some evidence of adaptation to sub-lithic conditions, including the prevalence of genes encoding Helical Carotenoid Proteins, which are associated with desiccation stress. Under water-saturated conditions, hypolithic communities showed no evidence of light stress, even when the quartz stones were exposed to full midday sunlight. This initial study creates a foundation for future in-situ and laboratory exploration of various adaptation mechanisms employed by photosynthetic organisms forming hypolithic microbial communities.
Collapse
Affiliation(s)
- Michal Gwizdala
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.,Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | | | - Eugene Marais
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.,Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| |
Collapse
|
21
|
Khan T, Litvín R, Šebelík V, Polívka T. Excited-State Evolution of Keto-Carotenoids after Excess Energy Excitation in the UV Region. Chemphyschem 2021; 22:471-480. [PMID: 33373476 DOI: 10.1002/cphc.202000982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Indexed: 11/10/2022]
Abstract
Carotenoids are molecules with rich photophysics that are in many biological systems involved in photoprotection. Yet, their response to excess energy excitation is only scarcely studied. Here we have explored excited state properties of three keto-carotenoids, echinenone, canthaxanthin and rhodoxanthin after excess energy excitation to a singlet state absorbing in UV. Though the basic spectral features and kinetics of S2 , hot S1 , relaxed S1 states remain unchanged upon UV excitation, the clear increase of the S* signal is observed after excess energy excitation, associated with increased S* lifetime. A multiple origin of the S* signal, originating either from specific conformations in the S1 state or from a non-equilibrated ground state, is confirmed in this work. We propose that the increased amount of energy stored in molecular vibrations, induced by the UV excitation, is the reason for the enhanced S* signal observed after UV excitation. Our data also suggest that a fraction of the UV excited state population may proceed through a non-sequential pathway, bypassing the S2 state.
Collapse
Affiliation(s)
- Tuhin Khan
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Radek Litvín
- Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.,Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Václav Šebelík
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
22
|
Gunn KH, Gutgsell AR, Xu Y, Johnson CV, Liu J, Neher SB. Comparison of angiopoietin-like protein 3 and 4 reveals structural and mechanistic similarities. J Biol Chem 2021; 296:100312. [PMID: 33482195 PMCID: PMC7949051 DOI: 10.1016/j.jbc.2021.100312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Elevated plasma triglycerides are a risk factor for coronary artery disease, which is the leading cause of death worldwide. Lipoprotein lipase (LPL) reduces triglycerides in the blood by hydrolyzing them from triglyceride-rich lipoproteins to release free fatty acids. LPL activity is regulated in a nutritionally responsive manner by macromolecular inhibitors including angiopoietin-like proteins 3 and 4 (ANGPTL3 and ANGPTL4). However, the mechanism by which ANGPTL3 inhibits LPL is unclear, in part due to challenges in obtaining pure protein for study. We used a new purification protocol for the N-terminal domain of ANGPTL3, removing a DNA contaminant, and found DNA-free ANGPTL3 showed enhanced inhibition of LPL. Structural analysis showed that ANGPTL3 formed elongated, flexible trimers and hexamers that did not interconvert. ANGPTL4 formed only elongated flexible trimers. We compared the inhibition of ANGPTL3 and ANGPTL4 using human very-low-density lipoproteins as a substrate and found both were noncompetitive inhibitors. The inhibition constants for the trimeric ANGPTL3 (7.5 ± 0.7 nM) and ANGPTL4 (3.6 ± 1.0 nM) were only 2-fold different. Heparin has previously been reported to interfere with ANGPTL3 binding to LPL, so we questioned if the negatively charged heparin was acting in a similar fashion to the DNA contaminant. We found that ANGPTL3 inhibition is abolished by binding to low-molecular-weight heparin, whereas ANGPTL4 inhibition is not. Our data show new similarities and differences in how ANGPTL3 and ANGPTL4 regulate LPL and opens new avenues of investigating the effect of heparin on LPL inhibition by ANGPTL3.
Collapse
Affiliation(s)
- Kathryn H Gunn
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Aspen R Gutgsell
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Caitlin V Johnson
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|