1
|
Ayub A, Javed T, Nayab A, Nan Y, Xie Y, Hussain S, Shafiq Y, Tian H, Hui J, Gao Y. AREB/ABF/ABI5 transcription factors in plant defense: regulatory cascades and functional diversity. Crit Rev Biotechnol 2025:1-21. [PMID: 40268510 DOI: 10.1080/07388551.2025.2475127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/06/2024] [Accepted: 01/28/2025] [Indexed: 04/25/2025]
Abstract
Basic leucine zipper transcription factors (TFs), also known as ABRE-BINDING PROTEINs/ABRE BINDING FACTORs (AREBs/ABFs), and ABA INSENSITIVE 5 (ABI5), show a great potential for the regulation of gene expressions in different crops under unfavorable conditions. These factors are involved in phytohormone signaling pathways, developmental metabolism, and growth regulation under environmental stresses. ABI5 functions alongside ABREs to regulate gene expression, with their promoter regions composed of the receptors PYR/PYL/RCAR, kinases (sucrose non-fermenting-1-related protein kinase 2) and phosphatases (PROTEIN PHOSPHATASE 2 C). These TFs participate in signaling pathways that regulate key genes and control numerous morphological, physiological, biochemical, and molecular processes under stressful environments. In this review, we studied ABFs/AREBs/ABI5s TFs, the phytohormone signaling pathways and their crosstalk, which play critical roles in regulating responses to abiotic stresses. The key TFs discussed in this work regulate various metabolic pathways and are promising candidates for the development of stress-resilient crops via CRISPR/CRISPR-associated protein technology to address threats to food security and sustainability in agriculture.
Collapse
Affiliation(s)
- Atif Ayub
- College of Natural Resource and Environment, Northwest A&F University, Yangling, China
| | - Talha Javed
- Chinese Academy of Tropical Agricultural Sciences, Institute of Tropical Bioscience and Biotechnology, Haikou, China
- Chinese Academy of Tropical Agricultural Sciences, Sanya Research Institute, Sanya, China
| | - Airish Nayab
- College of Life Science, Northwest A&F University, Yangling, China
| | - Yunyou Nan
- College of Natural Resource and Environment, Northwest A&F University, Yangling, China
| | - Yuyu Xie
- College of Natural Resource and Environment, Northwest A&F University, Yangling, China
| | - Sadam Hussain
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yousuf Shafiq
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Hui Tian
- College of Natural Resource and Environment, Northwest A&F University, Yangling, China
| | - Jing Hui
- College of Natural Resource and Environment, Northwest A&F University, Yangling, China
| | - Yajun Gao
- College of Natural Resource and Environment, Northwest A&F University, Yangling, China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Shi C, Dong J, Zhang C, Sun L, Jin F, Zhou X, Liu X, Wu W, Li X. Mining of co-expression genes in response to cold stress at maize ( Zea mays L.) germination and sprouting stages by weighted gene co-expression networks analysis. PeerJ 2025; 13:e19124. [PMID: 40093413 PMCID: PMC11908442 DOI: 10.7717/peerj.19124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Background Maize (Zea mays L.) is one of the main agricultural crops with the largest yield and acreage worldwide. Maize at the germination and sprouting stages are highly sensitive to low-temperatures, especially in high-latitude and high-altitude regions. Low-temperature damage in early spring presents a major meteorological disaster in maize, severely affecting plant growth and maize yield. Therefore, mining genes tolerant to low temperatures is crucial. We aimed to analyze differential gene expression and construct co-expression networks in maize under low temperatures. Methods Inbred lines, Zhongxi 091/O2 and Chang 7-2, are tolerant and sensitive to low temperatures at the germination and sprouting stages, respectively. We grew these lines at 10 °C and 2 °C at the germination and sprouting stages, respectively. Samples were taken at five time points (0, 6, 12, 24, and 36 h) during the two stages, and transcriptome sequencing was performed. The analyses were conducted using weighted gene co-expression networks analysis (WGCNA), Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene co-expression networks. Results WGCNA was used to construct co-expression networks at two stages, resulting in six and nine co-expression modules, respectively. Two modules at the germination stage (blue and yellow) and two modules at the sprouting stage (turquoise and magenta) were identified. These were significantly associated (p < 0.01) with tolerance at low temperature. The differentially expressed genes (DEGs) in the four modules revealed entries related to hormone and oxygen-containing compound responses by GO functional enrichment. Among the four modules, DEGs from three modules were all significantly enriched in the MAPK signaling pathway. Based on the connectivity, the top 50 genes for each module were selected to construct a protein interaction network. Seven genes have been proven to be involved in the response to low-temperature stress. Conclusion WGCNA revealed the differences in the response patterns of genes to low-temperature stress between tolerant and sensitive lines at different time points. Seven genes involved in low-temperature stress were functionally annotated. This finding suggests that WGCNA is a viable approach for gene mining. The current findings provide experimental support for further investigation of the molecular mechanisms underlying tolerance to low temperatures in maize.
Collapse
Affiliation(s)
- Chuangye Shi
- Agricultural College, Yanbian University, Yanji, Jilin Province, China
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin Province, China
| | - Jing Dong
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin Province, China
| | - Chunxiao Zhang
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin Province, China
| | - Liquan Sun
- Agricultural College, Yanbian University, Yanji, Jilin Province, China
| | - Fengxue Jin
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin Province, China
| | - Xiaohui Zhou
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin Province, China
| | - Xueyan Liu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin Province, China
| | - Weilin Wu
- Agricultural College, Yanbian University, Yanji, Jilin Province, China
| | - Xiaohui Li
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin Province, China
| |
Collapse
|
3
|
Li D, Zhang J, Liu S, He Y, Ma Q, Wang P, Ma Z, Xu J, Zhou Z. Genome-wide identification and expression profile analysis of the Ras superfamily genes in eastern honeybee (Apis cerana). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101447. [PMID: 39985837 DOI: 10.1016/j.cbd.2025.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
The Ras superfamily, a crucial gene family in eukaryotes, functions as molecular switches that regulate various physiological and biochemical processes within cells. However, research on this topic remains limited concerning Apis cerana, a pollinator of significant economic and ecological importance. Here, 83 Ras superfamily genes in the genome of A. cerana were identified and classified into five distinct families. Phylogenetic analysis revealed that the homologous genes from two closely related species, A. cerana and Apis mellifera, clustered with relatively high bootstrap values. Notably, Rerg was unique to A. cerana compared to A. mellifera and had undergone gene duplication events. Expression profiles indicated diverse expression patterns of the Ras superfamily in the fat body during the holometabolous development of A. cerana. Most genes exhibited high expression levels during the later stages of adipose tissue remodeling; however, a minority were predominantly expressed during the prepupal (PP) and 1-day-old pupae (P1) stages. Among the 8 pairs of genes that had undergone gene duplication, 4 had inconsistent patterns, and 3 pairs were from the Ras family. In particular, Di-Ras2-2 was found to be highly expressed exclusively at the PP, and Rap2a-2 was only highly expressed during newly emerged (Em) stage. The observed differences in expression patterns may reflect adaptations to varying energy metabolism modes or environmental pressures. These findings provided a foundational basis for further investigation into the potential physiological roles of the Ras superfamily in A. cerana and offered valuable insights for analyzing this gene family across other insect species.
Collapse
Affiliation(s)
- Dufu Li
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 401331, China; Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Jun Zhang
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 401331, China; Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Siming Liu
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 401331, China; Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yubo He
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 401331, China; Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qiang Ma
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 401331, China; Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Pengfei Wang
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 401331, China; Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhengang Ma
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 401331, China; Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Jinshan Xu
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 401331, China; Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zeyang Zhou
- Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 401331, China; Chongqing Key Laboratory of Vector Control and Utilization, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
4
|
Tan Z, Lu D, Yu Y, Li L, Xu L, Dong W, Li C, Yang Q, Liang H. Genome-Wide Analysis of the APETALA2/Ethylene-Responsive Factor Gene Family in Carthamus tinctorius L. PLANT DIRECT 2025; 9:e70032. [PMID: 39822732 PMCID: PMC11736709 DOI: 10.1002/pld3.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 10/14/2024] [Accepted: 12/01/2024] [Indexed: 01/19/2025]
Abstract
The APETALA2/ethylene-responsive factor (AP2/ERF) superfamily represents a class of transcription factors involved in plant growth, development, and stress responses. Carthamus tinctorius L., also known as safflower, is an important plant whose flowers contain carthamin, an expensive aromatic pigment with various medicinal and flavoring properties. This study aimed to elucidate the roles of these transcription factors in plant growth, metabolic regulation, and environmental adaptation in safflower, providing foundational information and theoretical support for genetic improvement and stress resilience research in this crop. In this study, we identified and characterized the AP2/ERF family genes in safflower through a comprehensive genomic analysis. A total of 127 AP2/ERF genes were identified and clustered into seven groups and 14 subgroups based on phylogenetic analysis. Multiple sequence alignment revealed that the basic region and two helical structures were highly conserved in most AP2/ERF proteins. Cis-acting elements in the promoters of the AP2/ERF genes were analyzed, and a degree of safflower specificity was observed among different safflower species. Tissue-specific expression analysis showed that 23, 21, 15, and 9 genes were most abundantly expressed in the roots, leaves, flowers, and buds, respectively, while only eight genes were highly expressed in all tissues examined. These results indicate that the AP2/ERF family genes in safflower are diverse and complex, with distinct expression patterns for different genes in different safflower species. The findings provide important fundamental data for in-depth studies of the growth, development, and stress response mechanisms in safflower.
Collapse
Affiliation(s)
- Zheng‐Wei Tan
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal MedicinesHenan Academy of Agricultural SciencesZhengzhouChina
| | - Dan‐Dan Lu
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal MedicinesHenan Academy of Agricultural SciencesZhengzhouChina
| | - Yong‐Liang Yu
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal MedicinesHenan Academy of Agricultural SciencesZhengzhouChina
| | - Lei Li
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal MedicinesHenan Academy of Agricultural SciencesZhengzhouChina
| | - Lan‐Jie Xu
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal MedicinesHenan Academy of Agricultural SciencesZhengzhouChina
| | - Wei Dong
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal MedicinesHenan Academy of Agricultural SciencesZhengzhouChina
| | - Chun‐Ming Li
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal MedicinesHenan Academy of Agricultural SciencesZhengzhouChina
| | - Qing Yang
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal MedicinesHenan Academy of Agricultural SciencesZhengzhouChina
| | - Hui‐Zhen Liang
- Provincial Key Laboratory of Conservation and Utilization of Traditional Chinese Medicine Resources, Institute of Chinese Herbal MedicinesHenan Academy of Agricultural SciencesZhengzhouChina
| |
Collapse
|
5
|
Liu H, Wang X, Zhu X, Zhang D, Wang Y, Wang T, Chen L, Wang B, Wei X. Meta-analysis of SnRK2 gene overexpression in response to drought and salt stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14578. [PMID: 39468983 DOI: 10.1111/ppl.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 10/30/2024]
Abstract
SNF1-RELATED KINASE 2 (SnRK2) plays a crucial role in plants' stress response. Although studies have reported that the overexpression of several SnRK2 family members in different plants leads to improved stress tolerance, it is difficult to elucidate the mechanisms by which SnRK2s regulate stress tolerance due to the variability of experimental variables in these studies. Therefore, we used meta-analysis to comprehensively analyze 22 parameters that can reflect drought tolerance and salinity tolerance in SnRK2s-transformed plants and to explore the effects that different experimental variables between studies have on the relevant plant parameters. The results showed that the overexpression of SnRK2s mainly improved plants' drought and salinity tolerance by reducing their osmotic stress and oxidative damage, improving photosynthesis and other biochemical and physiological processes. Out of the 22 physiological parameters, 17 and 19 were significantly affected by drought and salt stress, respectively, and 10 indicators were also significantly changed under non-stress conditions. Under salt stress, the cell membrane permeability among these parameters shows the most significant changes, increasing by 506.57% in SnRK2-overexpressing plants compared to wild type (WT). Therefore, although plants overexpressing SnRK2s respond positively to both drought and salt stress, they demonstrated greater tolerance to salt stress. In addition, among the detected regulatory variables, donor-acceptor type, promoter type, stress type, experimental medium, and duration all affected the extent of SnRK2s overexpression and affected the physiological characteristics of the transgenic plants. Also, different stress conditions (salt, drought stress) led to different degrees of transformation. These studies provide new research directions for studying crop stress tolerance and help to better explore the functions played by SnRK2s in external plant stresses.
Collapse
Affiliation(s)
- Haixun Liu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xian Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dongfang Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yizhen Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Tianjie Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lifei Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Rahman S, Ikram AR, AlHusnain L, Fiaz S, Rafique MU, Ali MA, AlKahtani MDF, Attia KA, Azeem F. Genome-wide profiling of bZIP transcription factors in Camelina sativa: implications for development and stress response. BMC Genom Data 2024; 25:88. [PMID: 39402491 PMCID: PMC11479404 DOI: 10.1186/s12863-024-01270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The bZIP transcription factor family, characterized by a bZIP domain, plays vital roles in plant stress responses and development. While this family has been extensively studied in various plant species, its specific functions in Camelina sativa (False Flax) remain underexplored. METHODS AND RESULTS This study identified 71 bZIP transcription factors in C. sativa, classified into nine distinct groups based on phylogenetic analysis. Subcellular localization predicted a nucleus-specific expression for these bZIPs. Analysis of GRAVY scores revealed a range from 0.469 to -1.256, indicating a spectrum from hydrophobic to hydrophilic properties. Motif analysis uncovered 10 distinct motifs, with one motif being universally present in all CsbZIPs. Conserved domain analysis highlighted several domains beyond the core bZIP domain. Protein-protein interaction predictions suggested a robust network involving CsbZIPs. Moreover, promoter analysis revealed over 60 types of cis-elements, including those responsive to stress. Expression studies through RNA-seq and Real-time RT-qPCR demonstrated high expression of CsbZIPs in roots, leaves, flowers, and stems. Specifically, CsbZIP01, CsbZIP02, CsbZIP44, and CsbZIP60 were consistently up-regulated under cold, salt, and drought stresses, whereas CsbZIP34 and CsbZIP35 were down-regulated. CONCLUSION This study presents the first comprehensive genome-wide profiling of bZIP transcription factors in Camelina sativa, providing novel insights into their roles in plant development and stress response mechanisms. By identifying and characterizing the bZIP gene family in C. sativa, this research offers new opportunities for improving stress tolerance and crop resilience through targeted genetic approaches, addressing key challenges in agriculture under changing environmental conditions.
Collapse
Affiliation(s)
- Shahroz Rahman
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Abdul Rehman Ikram
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Latifa AlHusnain
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Umar Rafique
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muneera D F AlKahtani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Kotb A Attia
- Center of Excellence in Biotechnology Research, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
7
|
Zhou X, Lu C, Zhou F, Zhu Y, Jiang W, Zhou A, Shen Y, Pan L, Lv A, Shao Q. Transcription factor DcbZIPs regulate secondary metabolism in Dendrobium catenatum during cold stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14501. [PMID: 39256953 DOI: 10.1111/ppl.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 09/12/2024]
Abstract
Cold stress seriously affects plant development and secondary metabolism. The basic region/leucine zipper (bZIP) is one of the largest transcription factor (TFs) family and widely involved in plant cold stress response. However, the function of bZIP in Dendrobium catenatum has not been well-documented. Cold inhibited the growth of D. catenatum and increased total polysaccharide and alkaloid contents in stems. Here, 62 DcbZIP genes were identified in D. catenatum, which were divided into 13 subfamilies. Among them, 58 DcbZIPs responded to cold stress, which were selected based on the transcriptome database produced from cold-treated D. catenatum seedlings. Specifically, the expression of DcbZIP3/6/28 was highly induced by cold treatment in leaves or stems. Gene sequence analysis indicated that DcbZIP3/6/28 contains the bZIP conserved domain and is localized to the cell nucleus. Co-expression networks showed that DcbZIP6 was significantly negatively correlated with PAL2 (palmitoyl-CoA), which is involved in flavonoid metabolism. Moreover, DcbZIP28 has significant negative correlations with various metabolism-related genes in the polysaccharide metabolic pathway, including PFKA1 (6-phosphofructokinase), ALDO2 (aldose-6-phosphate reductase) and SCRK5 (fructokinase). These results implied that DcbZIP6 or DcbZIP28 are mainly involved in flavonoid or polysaccharide metabolism. Overall, these findings provide new insights into the roles of the DcbZIP gene family in secondary metabolism in D. catenatum under cold stress.
Collapse
Affiliation(s)
- Xiaohui Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Chenfei Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Fenfen Zhou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yanqin Zhu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Wu Jiang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Aicun Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Pan'an Traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang, PR China
| | - Yanghui Shen
- Pan'an Traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang, PR China
| | - Lanying Pan
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Aimin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
8
|
Qu Y, Wang J, Gao T, Qu C, Mo X, Zhang X. Systematic analysis of bZIP gene family in Suaeda australis reveal their roles under salt stress. BMC PLANT BIOLOGY 2024; 24:816. [PMID: 39210264 PMCID: PMC11363414 DOI: 10.1186/s12870-024-05535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Suaeda australis is one of typical halophyte owing to high levels of salt tolerance. In addition, the bZIP gene family assumes pivotal functions in response to salt stress. However, there are little reports available regarding the bZIP gene family in S. australis. RESULTS In this study, we successfully screened 44 bZIP genes within S. australis genome. Subsequently, we conducted an extensive analysis, encompassing investigations into chromosome location, gene structure, phylogenetic relationship, promoter region, conserved motif, and gene expression profile. The 44 bZIP genes were categorized into 12 distinct groups, exhibiting an uneven distribution among the 9 chromosomes of S. australis chromosomes, but one member (Sau23745) was mapped on unanchored scaffolds. Examination of cis-regulatory elements revealed that bZIP promoters were closely related to anaerobic induction, transcription start, and light responsiveness. Comparative transcriptome analysis between ST1 and ST2 samples identified 2,434 DEGs, which were significantly enriched in some primary biological pathways related to salt response-regulating signaling based on GO and KEGG enrichment analysis. Expression patterns analyses clearly discovered the role of several differently expressed SabZIPs, including Sau08107, Sau08911, Sau11415, Sau16575, and Sau19276, which showed higher expression levels in higher salt concentration than low concentration and a response to salt stress. These expression patterns were corroborated through RT-qPCR analysis. The six differentially expressed SabZIP genes, all localized in the nucleus, exhibited positive regulation involved in the salt stress response. SabZIP14, SabZIP26, and SabZIP36 proteins could bind to the promoter region of downstream salt stress-related genes and activate their expressions. CONCLUSIONS Our findings offer valuable insights into the evolutionary trajectory of the bZIP gene family in S. australis and shed light on their roles in responding to salt stress. In addition to fundamental genomic information, these results would serve as a foundational framework for future investigations into the regulation of salt stress responses in S. australis.
Collapse
Affiliation(s)
- Yinquan Qu
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Ji Wang
- School of Teacher Education, Nanjing Xiaozhuang University, Nanjing, 211171, Jiangsu, China
| | - Tianxiang Gao
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Caihui Qu
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Xiaoyun Mo
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China
| | - Xiumei Zhang
- Fishery College, Zhejiang Ocean University, Zhoushan, 316022, Zhejiang, China.
| |
Collapse
|
9
|
Ahmad S, Khan K, Saleh IA, Okla MK, Alaraidh IA, AbdElgawad H, Naeem M, Ahmad N, Fahad S. TALE gene family: identification, evolutionary and expression analysis under various exogenous hormones and waterlogging stress in Cucumis sativus L. BMC PLANT BIOLOGY 2024; 24:564. [PMID: 38879470 PMCID: PMC11179211 DOI: 10.1186/s12870-024-05274-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024]
Abstract
BACKGROUND Three Amino acid Loop Extension (TALE) belongs to the homeobox group of genes that are important constituents of plant systems. The TALE gene family is instrumental not only in growth and development but also plays an essential role in regulating plant response to environmental adversaries. RESULTS In the present study, we isolated 21 CsTALE genes from the cucumber (Cucumis sativus L.) genome database. Bioinformatics tools were put in place to understand the structural and functional components of the CsTALE gene family. The evolutionary analysis dissected them into seven subclades (KNOX-I, KNOX-II, and BELL-I to BELL-V). The cis-acting elements in the promoter region of CsTALE genes disclosed that they are key regulators of hormonal and stress-related processes. Additionally, the STRING database advocated the concerting role of CsTALE proteins with other key transcription factors potent in plant developmental biology. The CsmiR319 and CsmiR167a-3p targeting the CsTALE15 and CsTALE16, respectively, further assert the importance of the CsTALE gene family posttranscriptional-related processes. Tissue-specific gene expression unfolded the fundamental involvement of CsTALE genes as they were expressed throughout the developmental stages. Under waterlogging stress, the CsTALE17 expressed significantly higher values in WL, WL-NAA, and WL-ETH but not in WL-MeJA-treated samples. CONCLUSIONS The present study reveals the evolution and functions of the CsTALE gene family in cucumber. Our work will provide a platform that will help future researchers address the issue of waterlogging stress in the Yangtze River Delta.
Collapse
Affiliation(s)
- Sheraz Ahmad
- College of Plant Protection, Yangzhou University, 48 Wenhui East Road, Yangzhou, Jiangsu, 225009, PR China.
| | - Khushboo Khan
- Faculty of Crop Production Sciences, The University of Agriculture Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | | | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| |
Collapse
|
10
|
Wang Q, Wang Y, Zhang F, Han C, Wang Y, Ren M, Qi K, Xie Z, Zhang S, Tao S, Shiratake K. Genome-wide characterisation of HD-Zip transcription factors and functional analysis of PbHB24 during stone cell formation in Chinese white pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2024; 24:444. [PMID: 38778247 PMCID: PMC11112822 DOI: 10.1186/s12870-024-05138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The homodomain-leucine zipper (HD-Zip) is a conserved transcription factor family unique to plants that regulate multiple developmental processes including lignificaion. Stone cell content is a key determinant negatively affecting pear fruit quality, which causes a grainy texture of fruit flesh, because of the lignified cell walls. RESULTS In this study, a comprehensive bioinformatics analysis of HD-Zip genes in Chinese white pear (Pyrus bretschneideri) (PbHBs) was performed. Genome-wide identification of the PbHB gene family revealed 67 genes encoding PbHB proteins, which could be divided into four subgroups (I, II, III, and IV). For some members, similar intron/exon structural patterns support close evolutionary relationships within the same subgroup. The functions of each subgroup of the PbHB family were predicted through comparative analysis with the HB genes in Arabidopsis and other plants. Cis-element analysis indicated that PbHB genes might be involved in plant hormone signalling and external environmental responses, such as light, stress, and temperature. Furthermore, RNA-sequencing data and quantitative real-time PCR (RT-qPCR) verification revealed the regulatory roles of PbHB genes in pear stone cell formation. Further, co-expression network analysis revealed that the eight PbHB genes could be classified into different clusters of co-expression with lignin-related genes. Besides, the biological function of PbHB24 in promoting stone cell formation has been demonstrated by overexpression in fruitlets. CONCLUSIONS This study provided the comprehensive analysis of PbHBs and highlighted the importance of PbHB24 during stone cell development in pear fruits.
Collapse
Affiliation(s)
- Qi Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Horticultural Science, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yueyang Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fanhang Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengyang Han
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanling Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mei Ren
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shutian Tao
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Katsuhiro Shiratake
- Laboratory of Horticultural Science, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
11
|
Zhang Y, Wu L, Liu L, Jia B, Ye Z, Tang X, Heng W, Liu L. Functional Analysis of PbbZIP11 Transcription Factor in Response to Cold Stress in Arabidopsis and Pear. PLANTS (BASEL, SWITZERLAND) 2023; 13:24. [PMID: 38202332 PMCID: PMC10780769 DOI: 10.3390/plants13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Cold stress is a prominent abiotic factor that adversely affects the growth and yield of pears, consequently restricting the cultivation range and resulting in substantial economic losses for the pear industry. Basic region-leucine zipper (bZIP) transcription factors are widely involved in multiple physiological and biochemical activities of plants, particularly in response to cold stress. In this study, the responsiveness of PbbZIP11 in pear to cold stress was investigated, and its role was explored by using pear callus and Arabidopsis thaliana. The findings revealed that overexpression of PbbZIP11 enhanced the tolerance of pear callus and Arabidopsis thaliana to cold stress. The antioxidant enzyme activities of transgenic plants were enhanced and the expression of C-repeat binding transcription factor (CBF) genes was increased as compared to wild-type plants. To better understand the biological function of PbbZIP11, mRNAs were isolated from overexpressed and wild-type Arabidopsis thaliana after cold stress for whole-genome sequencing. The results showed that the expression of some CBF downstream target genes changed after exposure to cold stress. The results suggested that the PbbZIP11 gene could participate in cold-stress signaling through the CBF-dependent pathway, which provides a theoretical basis for the PbbZIP11-mediated response to cold stress and for the genetic breeding of pear varieties with low-temperature tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Heng
- College of Horticulture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (Y.Z.); (L.W.); (L.L.); (B.J.); (Z.Y.); (X.T.)
| | - Li Liu
- College of Horticulture, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; (Y.Z.); (L.W.); (L.L.); (B.J.); (Z.Y.); (X.T.)
| |
Collapse
|
12
|
Chen Y, Zhang M, Sui D, Jiang J, Wang L. Role of bZIP Transcription Factors in Response to NaCl Stress in Tamarix ramosissima under Exogenous Potassium (K +). Genes (Basel) 2023; 14:2203. [PMID: 38137025 PMCID: PMC10743189 DOI: 10.3390/genes14122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Salt stress is a significant environmental factor affecting plant growth and development, with NaCl stress being one of the most common types of salt stress. The halophyte, Tamarix ramosissima Ledeb (T. ramosissima), is frequently utilized for the afforestation of saline-alkali soils. Indeed, there has been limited research and reports by experts and scholars on the regulatory mechanisms of basic leucine zipper (bZIP) genes in T. ramosissima when treated with exogenous potassium (K+) to alleviate the effects of NaCl stress. This study focused on the bZIP genes in T. ramosissima roots under NaCl stress with additional KCl applied. We identified key candidate genes and metabolic pathways related to bZIP and validated them through quantitative real-time PCR (qRT-PCR). The results revealed that under NaCl stress with additional KCl applied treatments at 0 h, 48 h, and 168 h, based on Pfam protein domain prediction and physicochemical property analysis, we identified 20 related bZIP genes. Notably, four bZIP genes (bZIP_2, bZIP_6, bZIP_16, and bZIP_18) were labeled with the plant hormone signal transduction pathway, showing a predominant up-regulation in expression levels. The results suggest that these genes may mediate multiple physiological pathways under NaCl stress with additional KCl applied at 48 h and 168 h, enhancing signal transduction, reducing the accumulation of ROS, and decreasing oxidative damage, thereby enhancing the tolerance of T. ramosissima to NaCl stress. This study provides gene resources and a theoretical basis for further breeding of salt-tolerant Tamarix species and the involvement of bZIP transcription factors in mitigating NaCl toxicity.
Collapse
Affiliation(s)
- Yahui Chen
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Min Zhang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| | - Dezong Sui
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| | - Jiang Jiang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Wang
- Jiangsu Academy of Forestry, Nanjing 211153, China; (Y.C.); (M.Z.); (D.S.)
| |
Collapse
|
13
|
Bekele-Alemu A, Ligaba-Osena A. Comprehensive in silico analysis of the underutilized crop tef (Eragrostis tef (Zucc.) Trotter) genome reveals drought tolerance signatures. BMC PLANT BIOLOGY 2023; 23:506. [PMID: 37865758 PMCID: PMC10589971 DOI: 10.1186/s12870-023-04515-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Tef (Eragrostis tef) is a C4 plant known for its tiny, nutritious, and gluten-free grains. It contains higher levels of protein, vitamins, and essential minerals like calcium (Ca), iron (Fe), copper (Cu), and zinc (Zn) than common cereals. Tef is cultivated in diverse ecological zones under diverse climatic conditions. Studies have shown that tef has great diversity in withstanding environmental challenges such as drought. Drought is a major abiotic stress severely affecting crop productivity and becoming a bottleneck to global food security. Here, we used in silico-based functional genomic analysis to identify drought-responsive genes in tef and validated their expression using quantitative RT-PCR. RESULTS We identified about 729 drought-responsive genes so far reported in six crop plants, including rice, wheat, maize, barley, sorghum, pearl millet, and the model plant Arabidopsis, and reported 20 genes having high-level of GO terms related to drought, and significantly enriched in several biological and molecular function categories. These genes were found to play diverse roles, including water and fluid transport, resistance to high salt, cold, and drought stress, abscisic acid (ABA) signaling, de novo DNA methylation, and transcriptional regulation in tef and other crops. Our analysis revealed substantial differences in the conserved domains of some tef genes from well-studied rice orthologs. We further analyzed the expression of sixteen tef orthologs using quantitative RT-PCR in response to PEG-induced osmotic stress. CONCLUSIONS The findings showed differential regulation of some drought-responsive genes in shoots, roots, or both tissues. Hence, the genes identified in this study may be promising candidates for trait improvement in crops via transgenic or gene-editing technologies.
Collapse
Affiliation(s)
- Abreham Bekele-Alemu
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA.
| |
Collapse
|
14
|
Wu M, Chen J, Tang W, Jiang Y, Hu Z, Xu D, Hou K, Chen Y, Wu W. Genome-Wide Identification and Expression Analysis of bZIP Family Genes in Stevia rebaudiana. Genes (Basel) 2023; 14:1918. [PMID: 37895267 PMCID: PMC10606749 DOI: 10.3390/genes14101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors widely distributed in eukaryotic organisms. In plants, they are not only involved in growth and development, defense and stress responses and regulation of physiological processes but also play a pivotal role in regulating secondary metabolism. To explore the function related to the bZIP gene family in Stevia rebaudiana Bertoni, we identified 105 SrbZIP genes at the genome-wide level and classified them into 12 subfamilies using bioinformation methods. Three main classes of cis-acting elements were found in the SrbZIP promoter regions, including development-related elements, defense and stress-responsive elements and phytohormone-responsive elements. Through protein-protein interaction network of 105 SrbZIP proteins, SrbZIP proteins were mainly classified into four major categories: ABF2/ABF4/ABI5 (SrbZIP51/SrbZIP38/SrbZIP7), involved in phytohormone signaling, GBF1/GBF3/GBF4 (SrbZIP29/SrbZIP63/SrbZIP60) involved in environmental signaling, AREB3 (SrbZIP88), PAN (SrbZIP12), TGA1 (SrbZIP69), TGA4 (SrbZIP82), TGA7 (SrbZIP31), TGA9 (SrbZIP95), TGA10 (SrbZIP79) and HY5 (SrbZIP96) involved in cryptochrome signaling, and FD (SrbZIP72) promoted flowering. The transcriptomic data showed that SrbZIP genes were differentially expressed in six S. rebaudiana cultivars ('023', '110', 'B1188', '11-14', 'GP' and 'GX'). Moreover, the expression levels of selected 15 SrbZIP genes in response to light, abiotic stress (low temperature, salt and drought), phytohormones (methyl jasmonate, gibberellic acid and salicylic acid) treatment and in different tissues were analyzed utilizing qRT-PCR. Some SrbZIP genes were further identified to be highly induced by factors affecting glycoside synthesis. Among them, three SrbZIP genes (SrbZIP54, SrbZIP63 and SrbZIP32) were predicted to be related to stress-responsive terpenoid synthesis in S. rebaudiana. The protein-protein interaction network expanded the potential functions of SrbZIP genes. This study firstly provided the comprehensive genome-wide report of the SrbZIP gene family, laying a foundation for further research on the evolution, function and regulatory role of the bZIP gene family in terpenoid synthesis in S. rebaudiana.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Wu
- Agronomy College, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (J.C.); (W.T.); (Y.J.); (Z.H.); (D.X.); (K.H.); (Y.C.)
| |
Collapse
|
15
|
Song X, Hou X, Zeng Y, Jia D, Li Q, Gu Y, Miao H. Genome-wide identification and comprehensive analysis of WRKY transcription factor family in safflower during drought stress. Sci Rep 2023; 13:16955. [PMID: 37805641 PMCID: PMC10560227 DOI: 10.1038/s41598-023-44340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023] Open
Abstract
The WRKY family is an important family of transcription factors in plant development and stress response. Currently, there are few reports on the WRKY gene family in safflower (Carthamus tinctorius L.). In this study, a total of 82 CtWRKY genes were identified from the safflower genome and could be classified into 3 major groups and 5 subgroups based on their structural and phylogenetic characteristics. The results of gene structure, conserved domain and motif analyses indicated that CtWRKYs within the same subfamily maintained a consistent exon/intron organization and composition. Chromosomal localization and gene duplication analysis results showed that CtWRKYs were randomly localized on 12 chromosomes and that fragment duplication and purification selection may have played an important role in the evolution of the WRKY gene family in safflower. Promoter cis-acting element analysis revealed that the CtWRKYs contain many abiotic stress response elements and hormone response elements. Transcriptome data and qRT-PCR analyses revealed that the expression of CtWRKYs showed tissue specificity and a strong response to drought stress. Notably, the expression level of the CtWRKY55 gene rapidly increased more than eightfold under drought treatment and rehydration, indicating that it may be a key gene in response to drought stress. These results provide useful insights for investigating the regulatory function of the CtWRKY gene in safflower growth and development, as well as identifying key genes for future molecular breeding programmes.
Collapse
Affiliation(s)
- Xianming Song
- Economic Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, China
| | - Xianfei Hou
- Economic Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Youling Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi, 830046, China.
| | - Donghai Jia
- Economic Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Qiang Li
- Economic Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Yuanguo Gu
- Economic Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Haocui Miao
- Economic Crop Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| |
Collapse
|
16
|
Zhang H, Ding X, Wang H, Chen H, Dong W, Zhu J, Wang J, Peng S, Dai H, Mei W. Systematic evolution of bZIP transcription factors in Malvales and functional exploration of AsbZIP14 and AsbZIP41 in Aquilaria sinensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1243323. [PMID: 37719219 PMCID: PMC10499555 DOI: 10.3389/fpls.2023.1243323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 09/19/2023]
Abstract
Introduction Agarwood, the dark-brown resin produced by Aquilaria trees, has been widely used as incense, spice, perfume or traditional medicine and 2-(2-phenethyl) chromones (PECs) are the key markers responsible for agarwood formation. But the biosynthesis and regulatory mechanism of PECs were still not illuminated. The transcription factor of basic leucine zipper (bZIP) presented the pivotal regulatory roles in various secondary metabolites biosynthesis in plants, which might also contribute to regulate PECs biosynthesis. However, molecular evolution and function of bZIP are rarely reported in Malvales plants, especially in Aquilaria trees. Methods and results Here, 1,150 bZIPs were comprehensively identified from twelve Malvales and model species genomes and the evolutionary process were subsequently analyzed. Duplication types and collinearity indicated that bZIP is an ancient or conserved TF family and recent whole genome duplication drove its evolution. Interesting is that fewer bZIPs in A. sinensis than that species also experienced two genome duplication events in Malvales. 62 AsbZIPs were divided into 13 subfamilies and gene structures, conservative domains, motifs, cis-elements, and nearby genes of AsbZIPs were further characterized. Seven AsbZIPs in subfamily D were significantly regulated by ethylene and agarwood inducer. As the typical representation of subfamily D, AsbZIP14 and AsbZIP41 were localized in nuclear and potentially regulated PECs biosynthesis by activating or suppressing type III polyketide synthases (PKSs) genes expression via interaction with the AsPKS promoters. Discussion Our results provide a basis for molecular evolution of bZIP gene family in Malvales and facilitate the understanding the potential functions of AsbZIP in regulating 2-(2-phenethyl) chromone biosynthesis and agarwood formation.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xupo Ding
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huiqin Chen
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenhua Dong
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiahong Zhu
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jian Wang
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan, College of Forestry, Hainan University, Haikou, China
| | - Shiqing Peng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
17
|
Amin N, Ahmad N, Khalifa MAS, Du Y, Mandozai A, Khattak AN, Piwu W. Identification and Molecular Characterization of RWP-RK Transcription Factors in Soybean. Genes (Basel) 2023; 14:369. [PMID: 36833296 PMCID: PMC9956977 DOI: 10.3390/genes14020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The RWP-RK is a small family of plant-specific transcription factors that are mainly involved in nitrate starvation responses, gametogenesis, and root nodulation. To date, the molecular mechanisms underpinning nitrate-regulated gene expression in many plant species have been extensively studied. However, the regulation of nodulation-specific NIN proteins during nodulation and rhizobial infection under nitrogen starvation in soybean still remain unclear. Here, we investigated the genome-wide identification of RWP-RK transcription factors and their essential role in nitrate-inducible and stress-responsive gene expression in soybean. In total, 28 RWP-RK genes were identified from the soybean genome, which were unevenly distributed on 20 chromosomes from 5 distinct groups during phylogeny classification. The conserved topology of RWP-RK protein motifs, cis-acting elements, and functional annotation has led to their potential as key regulators during plant growth, development, and diverse stress responses. The RNA-seq data revealed that the up-regulation of GmRWP-RK genes in the nodules indicated that these genes might play crucial roles during root nodulation in soybean. Furthermore, qRT-PCR analysis revealed that most GmRWP-RK genes under Phytophthora sojae infection and diverse environmental conditions (such as heat, nitrogen, and salt) were significantly induced, thus opening a new window of possibilities into their regulatory roles in adaptation mechanisms that allow soybean to tolerate biotic and abiotic stress. In addition, the dual luciferase assay indicated that GmRWP-RK1 and GmRWP-RK2 efficiently bind to the promoters of GmYUC2, GmSPL9, and GmNIN, highlighting their possible involvement in nodule formation. Together, our findings provide novel insights into the functional role of the RWP-RK family during defense responses and root nodulation in soybean.
Collapse
Affiliation(s)
- Nooral Amin
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mohamed A. S. Khalifa
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Yeyao Du
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Ajmal Mandozai
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Aimal Nawaz Khattak
- Institute of Crop Science Chinese Academy of Agriculture Sciences, Beijing 100000, China
| | - Wang Piwu
- Plant Biotechnology Centre, College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
18
|
Genome-Wide Identification of MADS-Box Family Genes in Safflower ( Carthamus tinctorius L.) and Functional Analysis of CtMADS24 during Flowering. Int J Mol Sci 2023; 24:ijms24021026. [PMID: 36674539 PMCID: PMC9862418 DOI: 10.3390/ijms24021026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
Safflower is an important economic crop with a plethora of industrial and medicinal applications around the world. The bioactive components of safflower petals are known to have pharmacological activity that promotes blood circulation and reduces blood stasis. However, fine-tuning the genetic mechanism of flower development in safflower is still required. In this study, we report the genome-wide identification of MADS-box transcription factors in safflower and the functional characterization of a putative CtMADS24 during vegetative and reproductive growth. In total, 77 members of MADS-box-encoding genes were identified from the safflower genome. The phylogenetic analysis divided CtMADS genes into two types and 15 subfamilies. Similarly, bioinformatic analysis, such as of conserved protein motifs, gene structures, and cis-regulatory elements, also revealed structural conservation of MADS-box genes in safflower. Furthermore, the differential expression pattern of CtMADS genes by RNA-seq data indicated that type II genes might play important regulatory roles in floral development. Similarly, the qRT-PCR analysis also revealed the transcript abundance of 12 CtMADS genes exhibiting tissue-specific expression in different flower organs. The nucleus-localized CtMADS24 of the AP1 subfamily was validated by transient transformation in tobacco using GFP translational fusion. Moreover, CtMADS24-overexpressed transgenic Arabidopsis exhibited early flowering and an abnormal phenotype, suggesting that CtMADS24 mediated the expression of genes involved in floral organ development. Taken together, these findings provide valuable information on the regulatory role of CtMADS24 during flower development in safflower and for the selection of important genes for future molecular breeding programs.
Collapse
|
19
|
Guan R, Xu S, Lu Z, Su L, Zhang L, Sun W, Zhang Y, Jiang C, Liu Z, Duan L, Ji A. Genomic characterization of bZIP transcription factors related to andrographolide biosynthesis in Andrographis paniculata. Int J Biol Macromol 2022; 223:1619-1631. [PMID: 36356875 DOI: 10.1016/j.ijbiomac.2022.10.283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Abstract
The basic leucine zipper (bZIP) transcription factor family plays an important role in various biological processes in plants. Andrographis paniculata (Burm.f) Nees, belonging to the family Acanthaceae, has been widely used as an important traditional herb with a wide range of pharmacological activities, such as antivenom, antiretroviral, anticancer and so on. However, there was no comprehensive analysis of bZIP gene family in the Andrographis paniculata been reported. In this study, we identified 62 bZIPs in Andrographis paniculata and grouped them into 12 subfamilies through the phylogenetic tree analysis. The bZIPs in the same groups have similar motif composition, exon-intron structure and domain distribution. In addition, the RNA-seq data gave a reference for selecting candidate bZIPs to make further function verification. Lastly, qRT-PCR analyses revealed seven ApbZIPs (ApbZIP4, ApbZIP19, ApbZIP30, ApbZIP42, ApbZIP50, ApbZIP52, ApbZIP62) were the most highly expressed in leaf and significantly up-regulated with MeJA and ABA treatment which may be involved in biosynthesis regulation of andrographolide. These data pave the way for further revealing the function of the bZIPs in Andrographis paniculata.
Collapse
Affiliation(s)
- Rui Guan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shun Xu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhimei Lu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lirong Su
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Libing Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, 100070 Beijing, China
| | - Yu Zhang
- Shanxi University of Chinese Medicine, 030619 Jinzhong, China
| | - Chunhong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co. Ltd., Ganzhou 100022, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Lixin Duan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Aijia Ji
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
20
|
Tao YT, Chen LX, Jin J, Du ZK, Li JM. Genome-wide identification and analysis of bZIP gene family reveal their roles during development and drought stress in Wheel Wingnut (Cyclocarya paliurus). BMC Genomics 2022; 23:743. [DOI: 10.1186/s12864-022-08978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The bZIP gene family has important roles in various biological processes, including development and stress responses. However, little information about this gene family is available for Wheel Wingnut (Cyclocarya paliurus).
Results
In this study, we identified 58 bZIP genes in the C. paliurus genome and analyzed phylogenetic relationships, chromosomal locations, gene structure, collinearity, and gene expression profiles. The 58 bZIP genes could be divided into 11 groups and were unevenly distributed among 16 C. paliurus chromosomes. An analysis of cis-regulatory elements indicated that bZIP promoters were associated with phytohormones and stress responses. The expression patterns of bZIP genes in leaves differed among developmental stages. In addition, several bZIP members were differentially expressed under drought stress. These expression patterns were verified by RT-qPCR.
Conclusions
Our results provide insights into the evolutionary history of the bZIP gene family in C. paliurus and the function of these genes during leaf development and in the response to drought stress. In addition to basic genomic information, our results provide a theoretical basis for further studies aimed at improving growth and stress resistance in C. paliurus, an important medicinal plant.
Collapse
|
21
|
Yin Z, Meng X, Guo Y, Wei S, Lai Y, Wang Q. The bZIP Transcription Factor Family in Adzuki Bean ( Vigna Angularis): Genome-Wide Identification, Evolution, and Expression Under Abiotic Stress During the Bud Stage. Front Genet 2022; 13:847612. [PMID: 35547244 PMCID: PMC9081612 DOI: 10.3389/fgene.2022.847612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Adzuki bean (Vigna angularis) is an important dietary legume crop that was first cultivated and domesticated in Asia. Currently, little is known concerning the evolution and expression patterns of the basic leucine zipper (bZIP) family transcription factors in the adzuki bean. Through the PFAM search, 72 bZIP members of adzuki bean (VabZIP) were identified from the reference genome. Most of them were located on 11 chromosomes and seven on an unknown chromosome. A comprehensive analysis, including evolutionary, motifs, gene structure, cis-elements, and collinearity was performed to identify VabZIP members. The subcellular localization results showed VabZIPs might locate on the nuclear. Quantitative real-time PCR (qRT-PCR) analysis of the relative expression of VabZIPs in different tissues at the bud stage revealed that VabZIPs had a tissue-specific expression pattern, and its expression was influenced by abiotic stress. These characteristics of VabZIPs provide insights for future research aimed at developing interventions to improve abiotic stress resistance.
Collapse
Affiliation(s)
- Zhengong Yin
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Xianxin Meng
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Yifan Guo
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Shuhong Wei
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Yongcai Lai
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| | - Qiang Wang
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences Harbin, Heilongjiang, China
| |
Collapse
|
22
|
Duan L, Mo Z, Fan Y, Li K, Yang M, Li D, Ke Y, Zhang Q, Wang F, Fan Y, Liu R. Genome-wide identification and expression analysis of the bZIP transcription factor family genes in response to abiotic stress in Nicotiana tabacum L. BMC Genomics 2022; 23:318. [PMID: 35448973 PMCID: PMC9027840 DOI: 10.1186/s12864-022-08547-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The basic leucine zipper (bZIP) transcription factor (TF) is one of the largest families of transcription factors (TFs). It is widely distributed and highly conserved in animals, plants, and microorganisms. Previous studies have shown that the bZIP TF family is involved in plant growth, development, and stress responses. The bZIP family has been studied in many plants; however, there is little research on the bZIP gene family in tobacco. RESULTS In this study, 77 bZIPs were identified in tobacco and named NtbZIP01 through to NtbZIP77. These 77 genes were then divided into eleven subfamilies according to their homology with Arabidopsis thaliana. NtbZIPs were unevenly distributed across twenty-two tobacco chromosomes, and we found sixteen pairs of segmental duplication. We further studied the collinearity between these genes and related genes of six other species. Quantitative real-time polymerase chain reaction analysis identified that expression patterns of bZIPs differed, including in different organs and under various abiotic stresses. NtbZIP49 might be important in the development of flowers and fruits; NtbZIP18 might be an important regulator in abiotic stress. CONCLUSIONS In this study, the structures and functions of the bZIP family in tobacco were systematically explored. Many bZIPs may play vital roles in the regulation of organ development, growth, and responses to abiotic stresses. This research has great significance for the functional characterisation of the tobacco bZIP family and our understanding of the bZIP family in higher plants.
Collapse
Affiliation(s)
- Lili Duan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, People's Republic of China
| | - Kuiyin Li
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Dongcheng Li
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuzhou Ke
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Qian Zhang
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Feiyan Wang
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yu Fan
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Renxiang Liu
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China.
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
23
|
Yingqi H, Lv Y, Zhang J, Ahmad N, Li Y, Wang N, Xiuming L, Na Y, Li X. Identification and functional characterization of safflower cysteine protease 1 as negative regulator in response to low-temperature stress in transgenic Arabidopsis. PLANTA 2022; 255:106. [PMID: 35445865 DOI: 10.1007/s00425-022-03875-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
We performed genome-wide and heterologous expression analysis of the safflower cysteine protease family and found that inhibition of CtCP1 expression enhanced plant cold resistance. Cysteine protease (CP) is mainly involved in plant senescence and stress responses. However, the molecular mechanism of endogenous cysteine protease inhibition in plant stress tolerance is yet unknown. Here, we report the discovery and functional characterization of a candidate CP1 gene from safflower. The conserved structural topology of CtCPs revealed important insights into their possible roles in plant growth and stress responses. The qRT-PCR results implied that most of CtCP genes were highly expressed at fading stage suggesting that they are most likely involved in senescence process. The CtCP1 expression was significantly induced at different time points under cold, NaCl, H2O2 and PEG stress, respectively. The in-vitro activity of heterologously expressed CtCP1 protein showed highest protease activity for casein and azocasein substrates. The expression and phenotypic data together with antioxidant activity and physiological indicators revealed that transgenic plants inhibited by CtCP1-anti showed higher tolerance to low temperature than WT and CtCP1-OE plants. Our findings demonstrated the discovery of a new Cysteine protease 1 gene that exerted a detrimental effect on transgenic Arabidopsis under low-temperature stress.
Collapse
Affiliation(s)
- Hong Yingqi
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Yanxi Lv
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Jianyi Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Naveed Ahmad
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, People's Republic of China
| | - Youbao Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Nan Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China
| | - Liu Xiuming
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| | - Yao Na
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Xiaokun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
- Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
24
|
Wang S, Zhang X, Li B, Zhao X, Shen Y, Yuan Z. Genome-wide identification and characterization of bZIP gene family and cloning of candidate genes for anthocyanin biosynthesis in pomegranate (Punica granatum). BMC PLANT BIOLOGY 2022; 22:170. [PMID: 35379169 PMCID: PMC8978422 DOI: 10.1186/s12870-022-03560-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/23/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND The basic leucine zipper (bZIP) transcription factor is one of the most abundant and conserved gene families in eukaryotes. In addition to participating in plant development and growth, bZIP transcription factors play crucial roles in various abiotic stress responses and anthocyanin accumulation. Up to now, analysis of bZIP gene family members in pomegranate (Punica granatum) has not been reported. Three published pomegranate genome sequences provide valuable resources for further gene function analysis. RESULTS Using bioinformatics analysis, 65 PgbZIPs were identified and analyzed from the 'Taishanhong' pomegranate genome. We divided them into 13 groups (A, B, C, D, E, F, G, H, I, J, K, M, and S) according to the phylogenetic relationship with those of Arabidopsis, each containing a different number of genes. The regularity of exon/intron number and distribution was consistent with the classification of groups in the evolutionary tree. Transcriptome analysis of different tissues showed that members of the PgbZIP gene family were differentially expressed in different developmental stages and tissues of pomegranate. Among them, we selected PgbZIP16 and PgbZIP34 as candidate genes which affect anthocyanin accumulation. The full-length CDS region of PgbZIP16 and PgbZIP34 were cloned from pomegranate petals by homologous cloning technique, encoding 170 and 174 amino acids, which were 510 bp and 522 bp, respectively. Subcellular localization assays suggested that both PgbZIP16 and PgbZIP34 were nucleus-localized. Real-time quantitative PCR (qPCR) was used to explore the expression of PgbZIP16 and PgbZIP34 in the petals of three kinds of ornamental pomegranates at the full flowering stage. The results demonstrated that the expression of PgbZIP16 in red petals was 5.83 times of that in white petals, while PgbZIP34 was 3.9 times. The results of transient expression in tobacco showed that consistent trends were observed in anthocyanin concentration and expression levels of related genes, which both increased and then decreased. Both PgbZIP16 and PgbZIP34 could promote anthocyanin accumulation in tobacco leaves. We obtained transgenic strains overexpressing PgbZIP16, and the histochemical staining for GUS activity showed that overexpressed PgbZIP16 seedlings were expressed in the stem. Transgenic experiments indicated that overexpression of PgbZIP16 significantly upregulated UF3GT, ANS and DFR genes in Arabidopsis and enhanced anthocyanin accumulation. CONCLUSIONS The whole genome identification, gene structure, phylogeny, gene cloning, subcellular location and functional verification of the pomegranate bZIP gene family provide a theoretical foundation for the functional study of the PgbZIP gene family and candidate genes for anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Sha Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xinhui Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Bianbian Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yu Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
25
|
Zhou L, Yarra R. Genome-wide identification and expression analysis of bZIP transcription factors in oil palm (Elaeis guineensis Jacq.) under abiotic stress. PROTOPLASMA 2022; 259:469-483. [PMID: 34212248 DOI: 10.1007/s00709-021-01666-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The bZIP transcription factors are well-known transcription regulators and play a key role in regulating various developmental, biological processes, and stress responses in plants. However, information on bZIP transcription factors is not yet available in oil palm, an important oil yielding crop. The present study identified the 97 bZIP transcription factor family members in oil palm genome via a genome-wide approach. Phylogenetic analysis clustered all EgbZIPs into 12 clusters with Arabidopsis and rice bZIPs. EgbZIP gene structure analysis showed a distinct variation in the intron-exon organization among all EgbZIPs. Conserved motif analysis demonstrated the occurrence of ten additional conserved motifs besides having a common bZIP domain. All the identified 97 EgbZIPs were unevenly distributed on 16 chromosomes and exhibited tandem duplication in oil palm genome. Our results aslo demonstrated that tissue-specific expression patterns of EgbZIPs based on the available transcriptome data of six different tissue of oil palm. Stress-responsive expression analysis showed that 11EgbZIP transcription factors were highly expressed under cold, salinity, drought stress conditions. Taken together, our findings will provide insightful information on bZIP transcription factors as one of the stress-responsive regulators in oil palm.
Collapse
Affiliation(s)
- Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, People's Republic of China.
| | - Rajesh Yarra
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, People's Republic of China
| |
Collapse
|
26
|
Li M, Hwarari D, Li Y, Ahmad B, Min T, Zhang W, Wang J, Yang L. The bZIP transcription factors in Liriodendron chinense: Genome-wide recognition, characteristics and cold stress response. FRONTIERS IN PLANT SCIENCE 2022; 13:1035627. [PMID: 36420021 PMCID: PMC9676487 DOI: 10.3389/fpls.2022.1035627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 05/08/2023]
Abstract
The basic leucine zipper (bZIP) is a transcription factor family that plays critical roles in abiotic and biotic stress responses as well as plant development and growth. A comprehensive genome-wide study in Liriodendron chinense was conducted to identify 45 bZIP transcription factors (LchibZIPs), which were divided into 13 subgroups according the phylogenetic analysis. Proteins in the same subgroup shared similar gene structures and conserved domains, and a total of 20 conserved motifs were revealed in LchibZIP proteins. Gene localization analysis revealed that LchibZIP genes were unequally distributed across 16 chromosomes, and that 4 pairs of tandem and 9 segmental gene duplications existed. Concluding that segmental duplication events may be strongly associated with the amplification of the L. chinense bZIP gene family. We also assessed the collinearity of LchibZIPs between the Arabidopsis and Oryza and showed that the LchibZIP is evolutionarily closer to O. sativa as compared to the A. thaliana. The cis-regulatory element analysis showed that LchibZIPs clustered in one subfamily are involved in several functions. In addition, we gathered novel research suggestions for further exploration of the new roles of LchibZIPs from protein-protein interactions and gene ontology annotations of the LchibZIP proteins. Using the RNA-seq data and qRT-PCR we analyzed the gene expression patterns of LchibZIP genes, and showed that LchibZIP genes regulate cold stress, especially LchibZIP4 and LchibZIP7; and LchibZIP2 and LchibZIP28 which were up-regulated and down-regulated by cold stress, respectively. Studies of genetic engineering and gene function in L. chinense can benefit greatly from the thorough investigation and characterization of the L. chinense bZIP gene family.
Collapse
Affiliation(s)
- Mingyue Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Innovation Center of Excellence, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yang Li
- Innovation Center of Excellence, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Baseer Ahmad
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Tian Min
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Wenting Zhang
- Innovation Center of Excellence, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jinyan Wang
- Innovation Center of Excellence, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- *Correspondence: Jinyan Wang, ; Liming Yang,
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- *Correspondence: Jinyan Wang, ; Liming Yang,
| |
Collapse
|
27
|
Liu SX, Qin B, Fang QX, Zhang WJ, Zhang ZY, Liu YC, Li WJ, Du C, Liu XX, Zhang YL, Guo YX. Genome-wide identification, phylogeny and expression analysis of the bZIP gene family in Alfalfa ( Medicago sativa). BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1938674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Shu-Xia Liu
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
- Laboratory of Economic Plants, Crop Cultivation Center, Daqing Branch of Heilongjiang Academy of Sciences, Daqing, Heilongjiang, PR China
| | - Bin Qin
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Qing-xi Fang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Wen-Jing Zhang
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Zhe-Yu Zhang
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Yang-Cheng Liu
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Wei-Jia Li
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Chao Du
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Xian-xian Liu
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - You-li Zhang
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| | - Yong-Xia Guo
- Department of Crop Cultivation, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, PR China
| |
Collapse
|