1
|
Zhang M, Yuan L, Yang X, Zhao X, Xie J, Liu X, Wang F. TRAF1 promotes the progression of Helicobacter pylori-associated gastric cancer through EGFR/STAT/OAS signalling. Life Sci 2025; 373:123656. [PMID: 40287055 DOI: 10.1016/j.lfs.2025.123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
AIMS Helicobacter pylori (H. pylori) is associated with various gastric diseases and is one of the pathogenic factors of gastric cancer (GC). We found that H. pylori induce the expression of TRAF1, but its mechanism of action is still unclear. Therefore, we wanted to determine whether TRAF1 is involved in the mechanism of H. pylori-related GC progression. MATERIALS AND METHODS In this study, we analysed TRAF1 expression and its prognostic significance using clinical specimens, performed functional studies involving TRAF1 overexpression or knockdown in cellular models, identified downstream signalling pathways regulated via RNA-seq, validated these mechanisms through pathway blockade and rescue experiments, and further confirmed the findings in an H. pylori-infected gastritis mouse model. KEY FINDINGS TRAF1 expression was significantly elevated in GC tissues and served as a poor prognostic biomarker. TRAF1 promoted GC cell proliferation, migration and invasion. RNA-seq analysis revealed that TRAF1 activated the EGFR/STAT/OAS signalling axis, upregulated STAT3 expression and increased the transcription of the OAS gene family. Pharmacological inhibition with ruxolitinib and AG490 effectively blocked EGFR/STAT/OAS signalling. In H. pylori-treated cell models, H. pylori infection activated the EGFR/STAT/OAS signalling axis. In vivo, we established an H. pylori-induced gastritis mouse model to validate the activation of this signalling pathway during the gastritis-carcinoma transition. SIGNIFICANCE TRAF1 may promote the proliferation, migration and invasion of H. pylori-associated GC by activating the EGFR/STAT/OAS signalling axis, suggesting that TRAF1 is a promising novel prognostic biomarker and therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Lingzhi Yuan
- Department of Digestive Nutrition, Hunan Children's Hospital, Central South University Affiliated Children's Hospital, Changsha, China
| | - Xueer Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Xuelin Zhao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Jie Xie
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Xiaoming Liu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China.
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China.
| |
Collapse
|
2
|
Zhu Z, Hua Y, Wu J, Mei J. Elevated Levels of MUC and JADE1 Predict Poor Prognosis of Patients with Gastric Cancer. Cancer Manag Res 2025; 17:577-587. [PMID: 40098804 PMCID: PMC11912898 DOI: 10.2147/cmar.s493015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/08/2025] [Indexed: 03/19/2025] Open
Abstract
Objective This study aimed to investigate the relationship between the expression of mucin (MUC) and JADE family PHD finger factor 1 (JADE1) and Helicobacter pylori (HP) infection as well as depth of tumor invasion in gastric cancer. Methods According to the results of immunohistochemical staining, 132 gastric cancer patients diagnosed and treated in our hospital from March 2018 to May 2019 were divided into MUC2 negative group (n=43), MUC2 positive group (n=89), JADE1 negative group (n=36) and JADE1 positive group (n=96). The relationship between MUC2 and JADE1 expression and clinicopathological features of gastric cancer was analyzed. The diagnostic value of MUC2 and JADE1 alone or in combination in gastric cancer was analyzed using ROC curve. Results The MUC2 and JADE1 expressions in gastric cancer tissues was increased (P<0.05). MUC2 and JADE1 expressions were related to different tumor size, differentiation degree, HP infection, lymph node metastasis, depth of tumor invasion and Lauren classification (P<0.05). Kaplan-Meier survival analysis showed that the survival rate of patients with negative expression of MUC2 and JADE1 was significantly lower than that of patients with positive expression of MUC2 and JADE1 (P<0.05). The area under the curve, sensitivity and specificity of MUC2 alone, JADE1 alone and the two combined in detection of gastric cancer was 0.774, 72.46% and 80.03%, 0.796, 82.14% and 76.48%, and 0.918, 91.34% and 89.57%, respectively. Conclusion The expressions of MUC2 and JADE1 in gastric cancer tissues were significantly increased, and their expressions were associated with tumor size, differentiation degree, HP infection, lymph node metastasis, depth of tumor infiltration, Lauren's staging. The combined detection of the two has a high value in the diagnosis of gastric cancer. Analysis of the relationship between MUC2 and JADE1 expression and HP infection is helpful for clinical medical staff to effectively evaluate the condition of patients.
Collapse
Affiliation(s)
- Zhaowei Zhu
- Graduate School, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Department of General Surgery, The General Surgery of Lanxi People’s Hospital, Jinhua, Zhejiang, 321100, People’s Republic of China
| | - Yanming Hua
- Department of General Surgery, The General Surgery of Lanxi People’s Hospital, Jinhua, Zhejiang, 321100, People’s Republic of China
| | - Jianta Wu
- Department of General Surgery, The General Surgery of Lanxi People’s Hospital, Jinhua, Zhejiang, 321100, People’s Republic of China
| | - Jianfeng Mei
- Department of General Surgery, The General Surgery of Lanxi People’s Hospital, Jinhua, Zhejiang, 321100, People’s Republic of China
| |
Collapse
|
3
|
Bruno PS, Arshad A, Gogu MR, Waterman N, Flack R, Dunn K, Darie CC, Neagu AN. Post-Translational Modifications of Proteins Orchestrate All Hallmarks of Cancer. Life (Basel) 2025; 15:126. [PMID: 39860065 PMCID: PMC11766951 DOI: 10.3390/life15010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins. In this review, we summarized and analyzed a wide spectrum of PTMs of proteins involved in all regulatory mechanisms that drive tumorigenesis, genetic instability, epigenetic reprogramming, all events of the metastatic cascade, cytoskeleton and extracellular matrix (ECM) remodeling, angiogenesis, immune response, tumor-associated microbiome, and metabolism rewiring as the most important hallmarks of cancer. All cancer hallmarks develop due to PTMs of proteins, which modulate gene transcription, intracellular and extracellular signaling, protein size, activity, stability and localization, trafficking, secretion, intracellular protein degradation or half-life, and protein-protein interactions (PPIs). PTMs associated with cancer can be exploited to better understand the underlying molecular mechanisms of this heterogeneous and chameleonic disease, find new biomarkers of cancer progression and prognosis, personalize oncotherapies, and discover new targets for drug development.
Collapse
Affiliation(s)
- Pathea Shawnae Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Maria-Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania;
| | - Natalie Waterman
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Rylie Flack
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Kimberly Dunn
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
4
|
Jeong HY, Park JS, Choi JW, Lee KH, Yang SC, Kang HY, Cho SH, Lee SY, Lee AR, Park Y, Park SH, Cho ML. GRIM-19-mediated induction of mitochondrial STAT3 alleviates systemic sclerosis by inhibiting fibrosis and Th2/Th17 cells. Exp Mol Med 2024; 56:2739-2746. [PMID: 39643607 DOI: 10.1038/s12276-024-01366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 12/09/2024] Open
Abstract
The gene associated with the retinoid-IFN-induced mortality-19 (GRIM-19) protein is a regulator of a cell death regulatory protein that inhibits STAT3, which is a critical transcription factor for interleukin (IL)-17-producing T (Th17) cells and a key integrator of extracellular matrix accumulation in systemic sclerosis (SSc). This protein is also a component of mitochondrial complex I, where it directly binds to STAT3 and recruits STAT3 to the mitochondria via the mitochondrial importer Tom20. In this study, the role of GRIM19 and its relationship with STAT3 in SSc development was investigated using a murine model of SSc. We observed a decrease in the level of GRIM-19 in the lesional skin of mice with bleomycin-induced SSc, which was negatively correlated with the level of STAT3. Overexpression of GRIM-19 reduced dermal thickness and fibrosis and the frequency of Th2 and Th17 cells in SSc mice. Mitophagic dysfunction promoted fibrosis in mice lacking PINK1, which is a mitophagy inducer. In an in vitro system, the overexpression of GRIM-19 increased the level of mitochondrial STAT3 (mitoSTAT3), induced mitophagy, and alleviated fibrosis progression. MitoSTAT3 overexpression hindered the development of bleomycin-induced SSc by reducing fibrosis. These results suggest that GRIM-19 is an effective therapeutic target for alleviating the development of SSc by increasing mitophagy.
Collapse
Affiliation(s)
- Ha Yeon Jeong
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jin-Sil Park
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Jeong Won Choi
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Kun Hee Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seung Cheon Yang
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Hye Yeon Kang
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, 06591, South Korea
| | - Sang Hee Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, 06591, South Korea
| | - Seon-Yeong Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - A Ram Lee
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Youngjae Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
| | - Mi-La Cho
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, 06591, South Korea.
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, 06591, South Korea.
| |
Collapse
|
5
|
Kandpal M, Baral B, Varshney N, Jain AK, Chatterji D, Meena AK, Pandey RK, Jha HC. Gut-brain axis interplay via STAT3 pathway: Implications of Helicobacter pylori derived secretome on inflammation and Alzheimer's disease. Virulence 2024; 15:2303853. [PMID: 38197252 PMCID: PMC10854367 DOI: 10.1080/21505594.2024.2303853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Helicobacter pylori is a pathogenic bacterium that causes gastritis and gastric carcinoma. Besides gastric complications its potential link with gut-brain axis disruption and neurological disorders has also been reported. The current study investigated the plausible role and its associated molecular mechanism underlying H. pylori mediated gut-brain axis disruption and neuroinflammation leading to neurological modalities like Alzheimer's disease (AD). We have chosen the antimicrobial resistant and susceptible H. pylori strains on the basis of broth dilution method. We have observed the increased inflammatory response exerted by H. pylori strains in the gastric as well as in the neuronal compartment after treatment with Helicobacter pylori derived condition media (HPCM). Further, elevated expression of STAT1, STAT3, and AD-associated proteins- APP and APOE4 was monitored in HPCM-treated neuronal and neuron-astrocyte co-cultured cells. Excessive ROS generation has been found in these cells. The HPCM treatment to LN229 causes astrogliosis, evidenced by increased glial fibrillary acidic protein. Our results indicate the association of STAT3 as an important regulator in the H. pylori-mediated pathogenesis in neuronal cells. Notably, the inhibition of STAT3 by its specific inhibitor, BP-1-102, reduced the expression of pSTAT3 and AD markers in neuronal compartment induced by HPCM. Thus, our study demonstrates that H. pylori infection exacerbates inflammation in AGS cells and modulates the activity of STAT3 regulatory molecules. H. pylori secretome could affect neurological compartments by promoting STAT3 activation and inducing the expression of AD-associated signature markers. Further, pSTAT-3 inhibition mitigates the H. pylori associated neuroinflammation and amyloid pathology.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| | - Budhadev Baral
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| | - Ajay Kumar Jain
- Department of Gastroenterology, Choithram Hospital and Research Center, Indore, Madhya Pradesh, India
| | - Debi Chatterji
- Department of Gastroenterology, Choithram Hospital and Research Center, Indore, Madhya Pradesh, India
| | | | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, India
| |
Collapse
|
6
|
Chen M, Wang T, Tian D, Hai C, Qiu Z. Induction, growth, drug resistance, and metastasis: A comprehensive summary of the relationship between STAT3 and gastric cancer. Heliyon 2024; 10:e37263. [PMID: 39309860 PMCID: PMC11416542 DOI: 10.1016/j.heliyon.2024.e37263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Gastric cancer is a prevalent and highly lethal malignancy that poses substantial challenges to healthcare systems globally. Owing to its often asymptomatic nature in early stages, diagnosis frequently occurs at advanced stages when surgical intervention is no longer a viable option, forcing most patients to rely on nonsurgical treatments such as chemotherapy, targeted therapies, and emerging immunotherapies. Unfortunately, the therapeutic response rates for these treatments are suboptimal, and even among responders, the eventual development of drug resistance remains a significant clinical hurdle. Signal transducer and activator of transcription 3 (STAT3) is a widely expressed cellular protein that plays crucial roles in regulating cellular processes such as growth, metabolism, and immune function. Aberrant activation of the STAT3 pathway has been implicated in the initiation, progression, and therapeutic resistance of several cancers, with gastric cancer being particularly affected. Dysregulated STAT3 signaling not only drives tumorigenesis but also facilitates the development of resistance to chemotherapy and targeted therapies, as well as promotes metastatic dissemination. In this study, we explored the critical role of the STAT3 signaling cascade in the pathogenesis of gastric cancer, its contribution to drug resistance, and its involvement in the metastatic process. Furthermore, we assess recent advances in the development of STAT3 inhibitors and their potential application as therapeutic agents in the treatment of gastric cancer. This work provides a comprehensive overview of the current understanding of STAT3 in gastric cancer and offers a foundation for future research aimed at improving therapeutic outcomes in this challenging disease.
Collapse
Affiliation(s)
- Muyang Chen
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Tongshan Wang
- Gastric Cancer Center, Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dianzhe Tian
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chaorui Hai
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zixuan Qiu
- School of Public Health, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
7
|
Gao DL, Lin MR, Ge N, Guo JT, Yang F, Sun SY. From macroautophagy to mitophagy: Unveiling the hidden role of mitophagy in gastrointestinal disorders. World J Gastroenterol 2024; 30:2934-2946. [PMID: 38946875 PMCID: PMC11212700 DOI: 10.3748/wjg.v30.i23.2934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
In this editorial, we comment on an article titled "Morphological and biochemical characteristics associated with autophagy in gastrointestinal diseases", which was published in a recent issue of the World Journal of Gastroenterology. We focused on the statement that "autophagy is closely related to the digestion, secretion, and regeneration of gastrointestinal cells". With advancing research, autophagy, and particularly the pivotal role of the macroautophagy in maintaining cellular equilibrium and stress response in the gastrointestinal system, has garnered extensive study. However, the significance of mitophagy, a unique selective autophagy pathway with ubiquitin-dependent and independent variants, should not be overlooked. In recent decades, mitophagy has been shown to be closely related to the occurrence and development of gastrointestinal diseases, especially inflammatory bowel disease, gastric cancer, and colorectal cancer. The interplay between mitophagy and mitochondrial quality control is crucial for elucidating disease mechanisms, as well as for the development of novel treatment strategies. Exploring the pathogenesis behind gastrointestinal diseases and providing individualized and efficient treatment for patients are subjects we have been exploring. This article reviews the potential mechanism of mitophagy in gastrointestinal diseases with the hope of providing new ideas for diagnosis and treatment.
Collapse
Affiliation(s)
- Duo-Lun Gao
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Meng-Ran Lin
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Nan Ge
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Jin-Tao Guo
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Fan Yang
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Si-Yu Sun
- Department of Gastroenterology, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
8
|
Yang R, Ouyang J, Jiang J, Zhao Y, Wu D, Chen D, Xi B. Discussion on the mechanism of Tiaoqi Xiaowei decoction in the treatment of chronic atrophic gastritis based on network pharmacology and molecular docking: An observational study. Medicine (Baltimore) 2024; 103:e38224. [PMID: 39259113 PMCID: PMC11142837 DOI: 10.1097/md.0000000000038224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/23/2024] [Accepted: 04/23/2024] [Indexed: 09/12/2024] Open
Abstract
To explore the mechanism of Tiaoqi Xiaowei decoction in the treatment of chronic atrophic gastritis by network pharmacology and molecular docking. The main active components and targets of Tiaoqi Xiaowei decoction were obtained from TCMSP database. The databases of Disgenet, GeneCards, and OMIM were used to obtain chronic atrophic gastritis-related targets. The component-target-disease network was constructed by Cytoscape 3.7.1 software, and the protein-protein interaction network was constructed by String database. The core targets were screened by CytoNCA plug-in. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis were performed using the Metascape database. The core components and targets were subjected to molecular docking verification using AutoDock Tools 1.5.6 software, and the binding score was obtained. A total of 48 active components were identified, involving 82 action targets. Core active components such as quercetin, beta-sitosterol, kaempferol, luteolin, and naringenin, and core targets such as AKT1, TP53, VEGFA, TNF, IL6, and PTGS2 were obtained. A total of 188 signaling pathways were screened out, including cancer pathway, PI3K-Akt, IL-17, and TNF signaling pathway. Molecular docking results showed that the key components of Tiaoqi Xiaowei decoction had a favorable binding affinity with key targets. Tiaoqi Xiaowei decoction acts on multiple targets such as AKT1, TP53, VEGFA, TNF, IL6, PTGS2, and synergistically treats chronic atrophic gastritis by regulating inflammatory responses and tumor-related signaling pathways.
Collapse
Affiliation(s)
- Ruwen Yang
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Jun Ouyang
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Jiawei Jiang
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Yuanpei Zhao
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Defeng Wu
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Dongmei Chen
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| | - Biao Xi
- Department of Gastroenterology, Zhenjiang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhenjiang, Jiangsu, China
| |
Collapse
|
9
|
Akbari A, Noorbakhsh Varnosfaderani SM, Haeri MS, Fathi Z, Aziziyan F, Yousefi Rad A, Zalpoor H, Nabi-Afjadi M, Malekzadegan Y. Autophagy induced by Helicobacter Pylori infection can lead to gastric cancer dormancy, metastasis, and recurrence: new insights. Hum Cell 2024; 37:139-153. [PMID: 37924488 DOI: 10.1007/s13577-023-00996-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
According to the findings of recent research, Helicobacter Pylori (H. pylori) infection is not only the primary cause of gastric cancer (GC), but it is also linked to the spread and invasion of GC through a number of processes and factors that contribute to virulence. In this study, we discussed that H. pylori infection can increase autophagy in GC tumor cells, leading to poor prognosis in such patients. Until now, the main concerns have been focused on H. pylori's role in GC development. According to our hypothesis, however, H. pylori infection may also lead to GC dormancy, metastasis, and recurrence by stimulating autophagy. Therefore, understanding how H. pylori possess these processes through its virulence factors and various microRNAs can open new windows for providing new prevention and/or therapeutic approaches to combat GC dormancy, metastasis, and recurrence which can occur in GC patients with H. pylori infection with targeting autophagy and eradicating H. pylori infection.
Collapse
Affiliation(s)
- Abdullatif Akbari
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Melika Sadat Haeri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zeinab Fathi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Yousefi Rad
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | | |
Collapse
|
10
|
Nabavi-Rad A, Yadegar A, Sadeghi A, Aghdaei HA, Zali MR, Klionsky DJ, Yamaoka Y. The interaction between autophagy, Helicobacter pylori, and gut microbiota in gastric carcinogenesis. Trends Microbiol 2023; 31:1024-1043. [PMID: 37120362 PMCID: PMC10523907 DOI: 10.1016/j.tim.2023.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023]
Abstract
Chronic infection with Helicobacter pylori is the primary risk factor for the development of gastric cancer. Hindering our ability to comprehend the precise role of autophagy during H. pylori infection is the complexity of context-dependent autophagy signaling pathways. Recent and ongoing progress in understanding H. pylori virulence allows new frontiers of research for the crosstalk between autophagy and H. pylori. Novel approaches toward discovering autophagy signaling networks have further revealed their critical influence on the structure of gut microbiota and the metabolome. Here we intend to present a holistic view of the perplexing role of autophagy in H. pylori pathogenesis and carcinogenesis. We also discuss the intermediate role of autophagy in H. pylori-mediated modification of gut inflammatory responses and microbiota structure.
Collapse
Affiliation(s)
- Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Oita, Japan; Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, USA; Research Center for Global and Local Infectious Diseases, Oita University, Oita, Japan.
| |
Collapse
|
11
|
Panagi I, Thurston TL. Ready, STAT3, Go! Bacteria in the race for M2 macrophage polarisation. Curr Opin Microbiol 2023; 73:102285. [PMID: 36857844 DOI: 10.1016/j.mib.2023.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 03/03/2023]
Abstract
Despite macrophages representing professional immune cells that are integral to the host defences against microbial threats, several intracellular bacteria not only infect, but survive, replicate and often persist in these cells. This is perhaps possible because not all macrophages are the same. Instead, macrophages are loosely divided into two classes: the M1 'classically activated' pro-inflammatory subset and the M2 'alternatively activated' cells that are generally anti-inflammatory and infection-permissive. In this review, we summarise recent findings explaining how several intracellular pathogens, often using secreted effectors, rewire host circuitry in favour of an anti-inflammatory niche. A common theme is the phosphorylation and activation of the signal transducer and activator of transcription-3 (STAT3) transcription factor. We describe and compare the diverse mechanisms employed and reflect how such non-canonical processes may have evolved to circumvent regulation by the host, providing a potent means by which different pathogens manipulate the cells they infect.
Collapse
Affiliation(s)
- Ioanna Panagi
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, SW7 2AZ, UK
| | - Teresa Lm Thurston
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
12
|
Zhong YL, Wang PQ, Hao DL, Sui F, Zhang FB, Li B. Traditional Chinese medicine for transformation of gastric precancerous lesions to gastric cancer: A critical review. World J Gastrointest Oncol 2023; 15:36-54. [PMID: 36684050 PMCID: PMC9850768 DOI: 10.4251/wjgo.v15.i1.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Gastric cancer (GC) is a common gastrointestinal tumor. Gastric precancerous lesions (GPL) are the last pathological stage before normal gastric mucosa transforms into GC. However, preventing the transformation from GPL to GC remains a challenge. Traditional Chinese medicine (TCM) has been used to treat gastric disease for millennia. A series of TCM formulas and active compounds have shown therapeutic effects in both GC and GPL. This article reviews recent progress on the herbal drugs and pharmacological mechanisms of TCM in preventing the transformation from GPL to GC, especially focusing on anti-inflammatory, anti-angiogenesis, proliferation, and apoptosis. This review may provide a meaningful reference for the prevention of the transformation from GPL to GC using TCM.
Collapse
Affiliation(s)
- Yi-Lin Zhong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng-Qian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dan-Li Hao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feng Sui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Feng-Bin Zhang
- Department of Gastroenterology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
13
|
Chang R, Tang Y, Jia H, Dong Z, Gao S, Song Q, Dong H, Xu Q, Jiang Q, Loor JJ, Sun X, Xu C. Activation of PINK1-mediated mitophagy protects bovine mammary epithelial cells against lipopolysaccharide-induced mitochondrial and inflammatory damage in vitro. Free Radic Biol Med 2023; 194:172-183. [PMID: 36464026 DOI: 10.1016/j.freeradbiomed.2022.11.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Increased metabolic stress during early lactation results in damage of mitochondria and inflammatory responses in bovine mammary epithelial cells, both of which could be aggravated by inhibition of mitophagy. PTEN-induced putative kinase 1 (PINK1)-mediated mitophagy is essential in the removal of damaged mitochondria and the regulation of inflammatory responses. The aim of the present study was to elucidate the role of PINK1-mediated mitophagy on mitochondrial damage and inflammatory responses in bovine mammary epithelial cells challenged with lipopolysaccharide (LPS). Exogenous LPS activated mitophagy and led to lower protein abundance of oxidative phosphorylation (OXPHOS) complexes (COI-V) and lower oxygen consumption rate (OCR) along with increased mitochondrial reactive oxygen species (Mito-ROS) content. These effects were also associated with increased protein abundance of Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) in a time-dependent manner. Pretreatment with 3-Methyladenine (3-MA) or knockdown of PINK1 aggravated the downregulation of COI-V protein abundance, the increase in Mito-ROS content, and the protein abundance of NLRP3, Cleaved-Caspase-1 and IL-1β induced by LPS. Overexpression of PINK1 activated mitophagy and alleviated LPS-induced NLRP3 inflammasome activation by reducing Mito-ROS production. Overall, the data suggested that PINK1-mediated mitophagy is a crucial anti-inflammatory mechanism that removes damaged mitochondria in bovine mammary epithelial cells experiencing an increased inflammatory load.
Collapse
Affiliation(s)
- Renxu Chang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yan Tang
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongdou Jia
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhihao Dong
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuang Gao
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qian Song
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hao Dong
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiushi Xu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, USA
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, USA
| | - Xudong Sun
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Chuang Xu
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China.
| |
Collapse
|
14
|
Ciclopirox drives growth arrest and autophagic cell death through STAT3 in gastric cancer cells. Cell Death Dis 2022; 13:1007. [PMID: 36443287 PMCID: PMC9705325 DOI: 10.1038/s41419-022-05456-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Ciclopirox (CPX), an antifungal drug, has recently been identified as a promising agent for cancer treatment. However, the effects and underlying mechanism of CPX as an antitumor agent of gastric cancer (GC) remain largely unknown. Here, we found that CPX dramatically suppresses GC xenograft growth in vitro via inhibiting proliferation and stimulating autophagic cell death rather than apoptosis. Moreover, CPX (20 mg/kg, intraperitoneally) substantially inhibits GC xenograft tumor growth in vivo. Mechanistically, CPX promotes growth arrest and autophagic cell death through suppressing the phosphorylation of signal transducers and activators of transcription 3 (STAT3) at tyrosine 705 (Tyr705) and serine 727 (Ser727) sites, respectively. Additionally, CPX induces STAT3 ubiquitination, which subsequently leads to a decrease in the p-STAT3 (Ser727) level. On the other hand, CPX represses the p-STAT3 (Tyr705) level via p-Src (Tyr416) inhibition. Collectively, our findings unmask a novel mechanism by which CPX regulates growth and autophagic cell death in GC cells via regulating the phosphorylation of STAT3 both at Tyr705 and Ser727 residues, and suggest that CPX may be a potential treatment for GC.
Collapse
|
15
|
He P, Miao Y, Sun Y, Bian A, Jin W, Chen H, Ye J, He J, Peng Y, Gu H, Liu M, Yi Z, Chen Y. Discovery of a Novel Potent STAT3 Inhibitor HP590 with Dual p-Tyr 705/Ser 727 Inhibitory Activity for Gastric Cancer Treatment. J Med Chem 2022; 65:12650-12674. [DOI: 10.1021/acs.jmedchem.2c00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peng He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Miao
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Sun
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Aiwu Bian
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wangrui Jin
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huang Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiangnan Ye
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jia He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haijun Gu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
16
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
17
|
Wang L, Yi J, Yin XY, Hou JX, Chen J, Xie B, Chen G, Wang QF, Wang LN, Wang XY, Sun J, Huo LM, Che TJ, Wei HL. Vacuolating Cytotoxin A Triggers Mitophagy in Helicobacter pylori-Infected Human Gastric Epithelium Cells. Front Oncol 2022; 12:881829. [PMID: 35912184 PMCID: PMC9329568 DOI: 10.3389/fonc.2022.881829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Helicobacter pylori (H. pylori)-derived vacuolating cytotoxin A (VacA) causes damage to various organelles, including mitochondria, and induces autophagy and cell death. However, it is unknown whether VacA-induced mitochondrial damage can develop into mitophagy. In this study, we found that H. pylori, H. pylori culture filtrate (HPCF), and VacA could activate autophagy in a gastric epithelial cell line (GES-1). VacA-caused mitochondrial depolarization retards the import of PINK1 into the damaged mitochondria and evokes mitophagy. And, among mass spectrometry (LC-MS/MS) identified 25 mitochondrial proteins bound with VacA, Tom20, Tom40, and Tom70, TOM complexes responsible for PINK1 import, were further identified as having the ability to bind VacA in vitro using pull-down assay, co-immunoprecipitation, and protein–protein docking. Additionally, we found that the cell membrane protein STOM and the mitochondrial inner membrane protein PGAM5 also interacted with VacA. These findings suggest that VacA captured by STOM forms endosomes to enter cells and target mitochondria. Then, VacA is transported into the mitochondrial membrane space through the TOM complexes, and PGAM5 aids in inserting VacA into the inner mitochondrial membrane to destroy the membrane potential, which promotes PINK1 accumulation and Parkin recruitment to induce mitophagy. This study helps us understand VacA entering mitochondria to induce the mitophagy process.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Yi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Yang Yin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jin-Xia Hou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bei Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gang Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qun-Feng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Li-Na Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Sun
- Geriatrics Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Lei-Ming Huo
- Neurosurgery Department, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tuan-Jie Che
- Key Laboratory of Functional Genomics and Molecular Diagnosis of Gansu Province, Lanzhou Baiyuan Gene Technology Co., Ltd, Lanzhou, China
- *Correspondence: Tuan-Jie Che, ; Hu-Lai Wei,
| | - Hu-Lai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Functional Genomics and Molecular Diagnosis of Gansu Province, Lanzhou Baiyuan Gene Technology Co., Ltd, Lanzhou, China
- *Correspondence: Tuan-Jie Che, ; Hu-Lai Wei,
| |
Collapse
|
18
|
Chen J, Gao P, Peng L, Liu T, Wu F, Xu K, Chen L, Tan F, Xing P, Wang Z, Di J, Jiang B, Su X. Downregulation of STK25 promotes autophagy via the Janus kinase 2/signal transducer and activator of transcription 3 pathway in colorectal cancer. Mol Carcinog 2022; 61:572-586. [PMID: 35349179 DOI: 10.1002/mc.23403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
Autophagy plays a crucial role in colorectal cancer (CRC) development. Our previous study suggested that serine/threonine protein kinase 25 (STK25) regulates aerobic glycolysis in CRC cells. Glycolysis modulates cellular autophagy during tumor growth; however, the role of STK25 in autophagy remains unclear. In this study, we found that STK25 expression was decreased in CRC tissues and CRC patients with high STK25 expression had a favorable prognosis. Functional assays suggested that STK25 inhibition promoted autophagy in CRC cells. Overexpression of STK25 exhibited the opposite effects. Moreover, the results of western blot demonstrated that silencing STK25 induced autophagy by activating the JAK2/STAT3 pathway. Therefore, STK25 could be a potential indicator for therapies targeting the JAK2/STAT3 pathway in CRC.
Collapse
Affiliation(s)
- Jiangbo Chen
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Pin Gao
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Peng
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Tianqi Liu
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Fan Wu
- Inner Mongolia People's Hospital, Hohhot, China
| | - Kai Xu
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lei Chen
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Fei Tan
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Pu Xing
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Zaozao Wang
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiabo Di
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Beihai Jiang
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangqian Su
- Department of Gastrointestinal Surgery IV, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
19
|
Frauenlob T, Neuper T, Mehinagic M, Dang HH, Boraschi D, Horejs-Hoeck J. Helicobacter pylori Infection of Primary Human Monocytes Boosts Subsequent Immune Responses to LPS. Front Immunol 2022; 13:847958. [PMID: 35309333 PMCID: PMC8924073 DOI: 10.3389/fimmu.2022.847958] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
Infection with Helicobacter pylori (H. pylori) affects almost half of the world's population and is a major cause of stomach cancer. Although immune cells react strongly to this gastric bacterium, H. pylori is still one of the rare pathogens that can evade elimination by the host and cause chronic inflammation. In the present study, we characterized the inflammatory response of primary human monocytes to repeated H. pylori infection and their responsiveness to an ensuing bacterial stimulus. We show that, although repeated stimulations with H. pylori do not result in an enhanced response, H. pylori-primed monocytes are hyper-responsive to an Escherichia coli-lipopolysaccharide (LPS) stimulation that takes place shortly after infection. This hyper-responsiveness to bacterial stimuli is observed upon infection with viable H. pylori only, while heat-killed H. pylori fails to boost both cytokine secretion and STAT activation in response to LPS. When the secondary challenge occurs several days after the primary infection with live bacteria, H. pylori-infected monocytes lose their hyper-responsiveness. The observation that H. pylori makes primary human monocytes more susceptible to subsequent/overlapping stimuli provides an important basis to better understand how H. pylori can maintain chronic inflammation and thus contribute to gastric cancer progression.
Collapse
Affiliation(s)
- Tobias Frauenlob
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
| | - Theresa Neuper
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Muamera Mehinagic
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Department of Biology and Evolution of Marine Organisms, Napoli, Italy
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jutta Horejs-Hoeck
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg (CCS), Salzburg, Austria
| |
Collapse
|
20
|
Li N, Wang Z. Integrative Analysis of Deregulated miRNAs Reveals Candidate Molecular Mechanisms Linking H. pylori Infected Peptic Ulcer Disease with Periodontitis. DISEASE MARKERS 2022; 2022:1498525. [PMID: 35132337 PMCID: PMC8817886 DOI: 10.1155/2022/1498525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Periodontitis is a highly prevalent oral infectious disease and has been increasingly associated with H. pylori infection, gastric inflammation, and gastric cancer but little is known about epigenetic machinery underlying this potentially bidirectional association. The present study is aimed at identifying key deregulated miRNA, their associated genes, signaling pathways, and compounds linking periodontitis with H. pylori-associated peptic ulcer disease. METHODS miRNA expression datasets for periodontitis-affected and H. pylori-associated peptic ulcer disease-affected tissues were sought from the GEO database. Differentially expressed miRNA (DEmiRNAs) were identified and the overlapping, shared-DEmiRNA between both datasets were determined. Shared-DEmiRNA-target networks construction and functional analyses were constructed using miRNet 2.0, including shared-DEmiRNA-gene, shared-DEmiRNA-transcription factor (TF), and shared-DEmiRNA-compound networks. Functional enrichment analysis for shared DEmiRNA-gene and shared DEmiRNA-TF networks was performed using the KEGG, Reactome, and Geno Ontology (GO) pathways. RESULTS 11 shared-DEmiRNAs were identified, among which 9 showed similar expression patterns in both diseases, and 7 were overexpressed. miRNA hsa-hsa-mir-155-5p and hsa-mir-29a-3p were top miRNA nodes in both gene and TF networks. The topmost candidate miRNA-deregulated genes were PTEN, CCND1, MDM2, TNRC6A, and SCD while topmost deregulated TFs included STAT3, HIF1A, EZH2, CEBPA, and RUNX1. Curcumin, 5-fluorouracil, and the gallotanin 1,2,6-Tri-O-galloyl-beta-D-glucopyranose emerged as the most relevant linkage compound targets. Functional analyses revealed multiple cancer-associated pathways, PI3K pathways, kinase binding, and transcription factor binding among as enriched by the network-associated genes and TFs. CONCLUSION Integrative analysis of deregulated miRNAs revealed candidate molecular mechanisms comprising of top miRNA, their gene, and TF targets linking H. pylori-infected peptic ulcer disease with periodontitis and highlighted compounds targeting both diseases. These findings provide basis for directing future experimental research.
Collapse
Affiliation(s)
- Ning Li
- Department of Prosthetic Dentistry, The Affiliated Stomatological Hospital of Wenzhou Medical University, Longyao Avenue No. 1288, Yongzhong Street, Longwan District, Wenzhou 325000, Zhejiang Province, China
| | - Zhen Wang
- Department of Stomatology, The Quzhou Affiliated Hospital of Wenzhou Medical University (Quzhou People's Hospital), Kecheng District, Minjiang Avenue No. 100, Quzhou 332400, Zhejiang Province, China
| |
Collapse
|
21
|
Zhou L, Pei X, Zhang Y, Ning Y, Li L, Hu X, Chalasani SL, Sharma K, Nkwocha J, Yu J, Bandyopadhyay D, Sebti SM, Grant S. Chk1 inhibition potently blocks STAT3 tyrosine705 phosphorylation, DNA binding activity, and activation of downstream targets in human multiple myeloma cells. Mol Cancer Res 2021; 20:456-467. [PMID: 34782371 DOI: 10.1158/1541-7786.mcr-21-0366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/21/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
The relationship between the checkpoint kinase Chk1 and the STAT3 pathway was examined in multiple myeloma (MM) cells. Gene expression profiling of U266 cells exposed to low (nM) Chk1 inhibitor (PF-477736) concentrations revealed STAT3 pathway-related gene down-regulation (e.g., BCL-XL, MCL-1, c-Myc), findings confirmed by RT-PCR. This was associated with marked inhibition of STAT3 Tyr705 (but not Ser727) phosphorylation, dimerization, nuclear localization, DNA binding, STAT3 promoter activity by ChIP assay, and down-regulation of STAT-3-dependent proteins. Similar findings were obtained in other MM cells and with alternative Chk1 inhibitors (e.g., prexasertib, CEP3891). While PF did not reduce GP130 expression or modify SOCS or PRL-3 phosphorylation, the phosphatase inhibitor pervanadate antagonized PF-mediated Tyr705 dephosphorylation. Significantly, PF attenuated Chk1-mediated STAT3 phosphorylation in in vitro assays. SPR analysis suggested Chk1/STAT3 interactions and PF reduced Chk1/STAT3 co-immunoprecipitation. Chk1 CRISPR knockout or shRNA knockdown cells also displayed STAT3 inactivation and STAT-3-dependent protein down-regulation. Constitutively active STAT3 diminished PF-mediated STAT3 inactivation and down-regulate STAT3-dependent proteins while significantly reducing PF-induced DNA damage (rH2A.X formation) and apoptosis. Exposure of cells with low basal phospho-STAT3 expression to IL-6 or human stromal cell conditioned medium activated STAT3, an event attenuated by Chk1 inhibitors. PF also inactivated STAT3 in primary human CD138+ MM cells and tumors extracted from an NSG MM xenograft model while inhibiting tumor growth. Implications: These findings identify a heretofore unrecognized link between the Chk1 and STAT3 pathways and suggest that Chk1 pathway inhibitors warrant attention as novel and potent candidate STAT3 antagonists in myeloma.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Medicine, Virginia Commonwealth University and the Massey Cancer Center
| | - Xinyan Pei
- Internal Medicine, Virginia Commonwealth University, Massey Cancer Center
| | - Yu Zhang
- Department of Medicine, Massey Cancer Center, Virginia Commonwealth University
| | - Yanxia Ning
- Department of Medicine, Virginia Commonwealth University Medical Center
| | - Lin Li
- Department of Medicine, Virginia Commonwealth University Medical Center
| | - Xiaoyan Hu
- Department of Medicine, Virginia Commonwealth University Medical Center
| | | | - Kanika Sharma
- Medicine, Biochemistry, and Human and Molecular Genetics, Massey Cancer Center, Virginia Commonwealth University
| | - Jewel Nkwocha
- Virginia Commonwealth University, Massey Cancer Center
| | | | | | - Said M Sebti
- Pharmacology & Toxicology, Massey Cancer Center, Virginia Commonwealth University
| | - Steven Grant
- Medicine, Biochemistry, and Human and Molecular Genetics, Massey Cancer Center, Virginia Commonwealth University
| |
Collapse
|
22
|
Papaefthymiou A, Christodoulidis G, Koffas A, Doulberis M, Polyzos SA, Manolakis A, Potamianos S, Kapsoritakis A, Kountouras J. Role of autophagy in gastric carcinogenesis. World J Gastrointest Oncol 2021; 13:1244-1262. [PMID: 34721765 PMCID: PMC8529927 DOI: 10.4251/wjgo.v13.i10.1244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/06/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer represents a common and highly fatal malignancy, and thus a pathophysiology-based reconsideration is necessary, given the absence of efficient therapeutic regimens. In this regard, emerging data reveal a significant role of autophagy in gastric oncogenesis, progression, metastasis and chemoresistance. Although autophagy comprises a normal primordial process, ensuring cellular homeostasis under energy depletion and stress conditions, alterations at any stage of the complex regulatory system could stimulate a tumorigenic and promoting cascade. Among others, Helicobacter pylori infection induces a variety of signaling molecules modifying autophagy, during acute infection or after chronic autophagy degeneration. Subsequently, defective autophagy allows malignant transformation and upon cancer establishment, an overactive autophagy is stimulated. This overexpressed autophagy provides energy supplies and resistance mechanisms to gastric cancer cells against hosts defenses and anticancer treatment. This review interprets the implicated autophagic pathways in normal cells and in gastric cancer to illuminate the potential preventive, therapeutic and prognostic benefits of understanding and intervening autophagy.
Collapse
Affiliation(s)
- Apostolis Papaefthymiou
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki 54642, Macedonia, Greece
| | | | - Apostolos Koffas
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Michael Doulberis
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki 54642, Macedonia, Greece
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, Aarau 5001, Switzerland
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Anastasios Manolakis
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Spyros Potamianos
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Andreas Kapsoritakis
- Department of Gastroenterology, University Hospital of Larissa, Larissa 41110, Thessaly, Greece
| | - Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki 54642, Macedonia, Greece
| |
Collapse
|
23
|
Lu SY, Guo S, Chai SB, Yang JQ, Yue Y, Li H, Sun PM, Zhang T, Sun HW, Zhou JL, Yang JW, Yang HM, Li ZP, Cui Y. Autophagy in Gastric Mucosa: The Dual Role and Potential Therapeutic Target. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2648065. [PMID: 34195260 PMCID: PMC8214476 DOI: 10.1155/2021/2648065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 12/22/2022]
Abstract
The incidence of stomach diseases is very high, which has a significant impact on human health. Damaged gastric mucosa is more vulnerable to injury, leading to bleeding and perforation, which eventually aggravates the primary disease. Therefore, the protection of gastric mucosa is crucial. However, existing drugs that protect gastric mucosa can cause nonnegligible side effects, such as hepatic inflammation, nephritis, hypoacidity, impotence, osteoporotic bone fracture, and hypergastrinemia. Autophagy, as a major intracellular lysosome-dependent degradation process, plays a key role in maintaining intracellular homeostasis and resisting environmental pressure, which may be a potential therapeutic target for protecting gastric mucosa. Recent studies have demonstrated that autophagy played a dual role when gastric mucosa exposed to biological and chemical factors. More indepth studies are needed on the protective effect of autophagy in gastric mucosa. In this review, we focus on the mechanisms and the dual role of various biological and chemical factors regulating autophagy, such as Helicobacter pylori, virus, and nonsteroidal anti-inflammatory drugs. And we summarize the pathophysiological properties and pharmacological strategies for the protection of gastric mucosa through autophagy.
Collapse
Affiliation(s)
- Sheng-Yu Lu
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Song Guo
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Shao-Bin Chai
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jia-Qi Yang
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - He-Ming Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Zheng-Peng Li
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| |
Collapse
|
24
|
Liu Z, Li J, Hu X, Xu H. Helicobacter pylori-induced protein tyrosine phosphatase receptor type C as a prognostic biomarker for gastric cancer. J Gastrointest Oncol 2021; 12:1058-1073. [PMID: 34295557 DOI: 10.21037/jgo-21-305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Helicobacter pylori (H. pylori) infection is closely associated with the tumorigenesis of gastric cancer. The aim of the present study was to identify the key regulator in H. pylori-related gastric cancer and to study the expression level and clinical value of the indicated key regulator in gastric cancer. Methods The GSE6143 dataset was used to identify differentially expressed genes (DEGs) with limma R package, and enrichment analysis was done using the Metascape web-based portal. The protein-protein interaction analysis was done using Search Tool for the Retrieval of Interacting Genes/Proteins. Gastric adenocarcinoma AGS and BGC-823 cells were treated with H. pylori strain 26695 to construct the in vitro H. pylori infection model, and quantitative reverse transcription polymerase chain reaction was used to analyze the mRNA levels of indicated genes. The correlation analysis between two genes in gastric cancer was done by GEPIA. Furthermore, the PTPRC expression by pathological features analysis was conducted in UALCAN, an easy to use, interactive web-portal (http://ualcan.path.uab.edu). The survival analysis for gastric cancer, based on PTPRC expression levels, was done using the Kaplan-Meier plotter. Results DEGs in gastric mucosa with or without H. pylori infection were identified and enriched in immune-related pathways and cancer pathways. The protein-protein interaction analysis confirmed the enrichment analysis of gene ontology. H. pylori strain 26695 exposure also confirmed the alteration of gene expression levels in AGS and BGC-823 cells. PTPRC was co-expressed with CSF2RB and TNFRSF7, indicating a significant positive correlation in gastric cancer. PTPRC was overexpressed in gastric cancer, and the overexpression of PTPRC was positively correlated with the progression of gastric cancer. Furthermore, the high expression of PTPRC could act as a poor prognostic factor for gastric cancer patients, especially for those at advanced stage. Conclusions H. pylori-induced PTPRC is overexpressed in gastric cancer, and the overexpression of PTPRC is positively associated with the development of gastric cancer. The high expression of PTPRC could serve as poor prognostic biomarker for gastric cancer patients, especially for those at advanced stage. H. pylori-induced PTPRC is a prognostic biomarker for gastric cancer.
Collapse
Affiliation(s)
- Zichuan Liu
- Department of Internal Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jianchang Li
- Department of Internal Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoshan Hu
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Houwei Xu
- Department of Gastrointestinal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Li H, Xu L, Song H. MiR-29a Alleviates High Glucose-induced Inflammation and Mitochondrial Dysfunction via Modulation of IL-6/STAT3 in Diabetic Cataracts. Curr Eye Res 2021; 46:1325-1332. [PMID: 33615922 DOI: 10.1080/02713683.2021.1887272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: This in vitro study was designed to reveal the role of miR-29a in high glucose-induced cellular injury through the modulation of IL-6/STAT3 in diabetic cataracts.Methods: The expression of miR-29a and STAT3 in the lens capsules of patients with or without diabetes was determined by RT-PCR. The levels of the IL-6 proinflammatory cytokine in the aqueous humor were detected by ELISA. HLE B-3 cells were cultured in normal glucose (NG; 5 mM) or high glucose (HG; 40 mM). After transfection with miR-29a, si-STAT3, or a negative control vector, the levels of IL-6 and STAT3 were detected. A CCK-8 assay was used to determine cell viability. We used flow cytometry to assess changes in reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and apoptosis induced by oxidative stress. Western blotting was used to determine the expression of the oxidative injury markers superoxide dismutase (SOD) and malondialdehyde (MDA) and the apoptosis markers Bcl-2 and Bax.Results: Reduced miR-29a, increased STAT3 expression, and IL-6 release were demonstrated in the lens capsules and aqueous humor of patients with diabetes. The stimulation of apoptosis and the loss of MMP induced by HG were attenuated by transfection with a miR-29a mimic and si-STAT3. ROS production, increased MDA content, decreased SOD activity, and upregulation of the apoptotic proteins Bcl-2/Bax were also partially alleviated by miR-29a overexpression, which shows their roles in oxidative injury. Furthermore, transfection with a STAT3 overexpression vector reversed the effects of miR-29a.Conclusions: In conclusion, miR-29a mitigated HG-induced oxidative injury and exerted protective effects via IL-6/STAT3 signaling. Thus, miR-29a may be a potential therapeutic agent for diabetic cataracts.
Collapse
Affiliation(s)
- Hua Li
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Lingxiao Xu
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Hui Song
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin, China
| |
Collapse
|
26
|
Weiss HJ, O'Neill LA. Bridging the gap - a new role for STAT3 in TLR4-mediated metabolic reprogramming. Immunol Cell Biol 2020; 99:122-125. [PMID: 33179321 DOI: 10.1111/imcb.12414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Balic et al. describe a new role for STAT3 in TLR4 signalling in macrophages, linking LPS mediated activation of this innate immune receptor to phosphorylation of mitochondrial STAT3, resulting in distinct metabolic reprogramming.
Collapse
Affiliation(s)
- Hauke J Weiss
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Luke Aj O'Neill
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| |
Collapse
|