1
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Heart Failure: A Deficiency of Energy-A Path Yet to Discover and Walk. Biomedicines 2024; 12:2589. [PMID: 39595155 PMCID: PMC11592498 DOI: 10.3390/biomedicines12112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure is a complex syndrome and our understanding and therapeutic approach relies mostly on its phenotypic presentation. Notably, the heart is characterized as the most energy-consuming organ, being both a producer and consumer, in order to satisfy multiple cardiac functions: ion exchange, electromechanical coordination, excitation-contraction coupling, etc. By obtaining further knowledge of the cardiac energy field, we can probably better characterize the basic pathophysiological events occurring in heart disease patients and understand the metabolic substance changes, the relationship between the alteration of energy production/consumption, and hence energetic deficiency not only in the heart as a whole but in every single cardiac territory, which will hopefully provide us with the opportunity to uncover the beginning of the heart failure process. In this respect, using (a) newer imaging techniques, (b) biomedicine, (c) nanotechnology, and (d) artificial intelligence, we can gain a deeper understanding of this complex syndrome. This, in turn, can lead to earlier and more effective therapeutic approaches, ultimately improving human health. To date, the scientific community has not given sufficient attention to the energetic starvation model. In our view, this review aims to encourage scientists and the medical community to conduct studies for a better understanding and treatment of this syndrome.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| | - Christos Kourek
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 115 21 Athens, Greece;
| | - Dimitrios Farmakis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistiran University of Athens, 124 62 Athens, Greece
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| |
Collapse
|
2
|
Stevens JA, Dobratz TC, Fischer KD, Palmer A, Bourdage K, Wong AJ, Chapoy-Villanueva H, Garry DJ, Liu JC, Kay MW, Kuzmiak-Glancy S, Townsend D. Mechanisms of reduced myocardial energetics of the dystrophic heart. Am J Physiol Heart Circ Physiol 2024; 326:H396-H407. [PMID: 38099842 PMCID: PMC11219055 DOI: 10.1152/ajpheart.00636.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Heart disease is a leading cause of death in patients with Duchenne muscular dystrophy (DMD), characterized by the progressive replacement of contractile tissue with scar tissue. Effective therapies for dystrophic cardiomyopathy will require addressing the disease before the onset of fibrosis, however, the mechanisms of the early disease are poorly understood. To understand the pathophysiology of DMD, we perform a detailed functional assessment of cardiac function of the mdx mouse, a model of DMD. These studies use a combination of functional, metabolomic, and spectroscopic approaches to fully characterize the contractile, energetic, and mitochondrial function of beating hearts. Through these innovative approaches, we demonstrate that the dystrophic heart has reduced cardiac reserve and is energetically limited. We show that this limitation does not result from poor delivery of oxygen. Using spectroscopic approaches, we provide evidence that mitochondria in the dystrophic heart have attenuated mitochondrial membrane potential and deficits in the flow of electrons in complex IV of the electron transport chain. These studies provide evidence that poor myocardial energetics precede the onset of significant cardiac fibrosis and likely results from mitochondrial dysfunction centered around complex IV and reduced membrane potential. The multimodal approach used here implicates specific molecular components in the etiology of reduced energetics. Future studies focused on these targets may provide therapies that improve the energetics of the dystrophic heart leading to improved resiliency against damage and preservation of myocardial contractile tissue.NEW & NOTEWORTHY Dystrophic hearts have poor contractile reserve that is associated with a reduction in myocardial energetics. We demonstrate that oxygen delivery does not contribute to the limited energy production of the dystrophic heart even with increased workloads. Cytochrome optical spectroscopy of the contracting heart reveals alterations in complex IV and evidence of depolarized mitochondrial membranes. We show specific alterations in the electron transport chain of the dystrophic heart that may contribute to poor myocardial energetics.
Collapse
Affiliation(s)
- Jackie A Stevens
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Tyler C Dobratz
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Kaleb D Fischer
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Alexandria Palmer
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Kira Bourdage
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Anne J Wong
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Hector Chapoy-Villanueva
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
- Institute for Obesity Research Tecnologico de Monterrey, Monterrey, Mexico
| | - Daniel J Garry
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
- Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota, United States
- Paul and Sheila Muscular Dystrophy Center, University of Minnesota, Minneapolis, Minnesota, United States
| | - Julia C Liu
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
| | - Matthew W Kay
- Department of Biomedical Engineering, School of Engineering and Applied Science, George Washington University, Washington, District of Columbia, United States
| | - Sarah Kuzmiak-Glancy
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, United States
| | - DeWayne Townsend
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, United States
- Lillehei Heart Institute, Cardiovascular Division, University of Minnesota, Minneapolis, Minnesota, United States
- Paul and Sheila Muscular Dystrophy Center, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
3
|
Vermathen M, Kämpfer T, Nuoffer JM, Vermathen P. Intracellular Fate of the Photosensitizer Chlorin e4 with Different Carriers and Induced Metabolic Changes Studied by 1H NMR Spectroscopy. Pharmaceutics 2023; 15:2324. [PMID: 37765292 PMCID: PMC10537485 DOI: 10.3390/pharmaceutics15092324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Porphyrinic photosensitizers (PSs) and their nano-sized polymer-based carrier systems are required to exhibit low dark toxicity, avoid side effects, and ensure high in vivo tolerability. Yet, little is known about the intracellular fate of PSs during the dark incubation period and how it is affected by nanoparticles. In a systematic study, high-resolution magic angle spinning NMR spectroscopy combined with statistical analyses was used to study the metabolic profile of cultured HeLa cells treated with different concentrations of PS chlorin e4 (Ce4) alone or encapsulated in carrier systems. For the latter, either polyvinylpyrrolidone (PVP) or the micelle-forming polyethylene glycol (PEG)-polypropylene glycol triblock copolymer Kolliphor P188 (KP) were used. Diffusion-edited spectra indicated Ce4 membrane localization evidenced by Ce4 concentration-dependent chemical shift perturbation of the cellular phospholipid choline resonance. The effect was also visible in the presence of KP and PVP but less pronounced. The appearance of the PEG resonance in the cell spectra pointed towards cell internalization of KP, whereas no conclusion could be drawn for PVP that remained NMR-invisible. Multivariate statistical analyses of the cell spectra (PCA, PLS-DA, and oPLS) revealed a concentration-dependent metabolic response upon exposure to Ce4 that was attenuated by KP and even more by PVP. Significant Ce4-concentration-dependent alterations were mainly found for metabolites involved in the tricarboxylic acid cycle and the phosphatidylcholine metabolism. The data underline the important protective role of the polymeric carriers following cell internalization. Moreover, to our knowledge, for the first time, the current study allowed us to trace intracellular PS localization on an atomic level by NMR methods.
Collapse
Affiliation(s)
- Martina Vermathen
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland;
| | - Tobias Kämpfer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland;
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Jean-Marc Nuoffer
- Institute of Clinical Chemistry, Bern University Hospital, 3010 Bern, Switzerland;
- Department of Pediatric Endocrinology, Diabetology and Metabolism, University Children’s Hospital of Bern, 3010 Bern, Switzerland
| | - Peter Vermathen
- Department of BioMedical Research, University of Bern, 3008 Bern, Switzerland
- University Institute of Diagnostic and Interventional Neuroradiology, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, 3010 Bern, Switzerland
| |
Collapse
|
4
|
1H HR-MAS NMR Based Metabolic Profiling of Lung Cancer Cells with Induced and De-Induced Cisplatin Resistance to Reveal Metabolic Resistance Adaptations. Molecules 2021; 26:molecules26226766. [PMID: 34833859 PMCID: PMC8625954 DOI: 10.3390/molecules26226766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/01/2022] Open
Abstract
Cisplatin (cisPt) is an important drug that is used against various cancers, including advanced lung cancer. However, drug resistance is still a major ongoing problem and its investigation is of paramount interest. Here, a high-resolution magic angle spinning (HR-MAS) NMR study is presented deciphering the metabolic profile of non-small cell lung cancer (NSCLC) cells and metabolic adaptations at different levels of induced cisPt-resistance, as well as in their de-induced counterparts (cells cultivated in absence of cisPt). In total, fifty-three metabolites were identified and quantified in the 1H-HR-MAS NMR cell spectra. Metabolic adaptations to cisPt-resistance were detected, which correlated with the degree of resistance. Importantly, de-induced cell lines demonstrated similar metabolic adaptations as the corresponding cisPt-resistant cell lines. Metabolites predominantly changed in cisPt resistant cells and their de-induced counterparts include glutathione and taurine. Characteristic metabolic patterns for cisPt resistance may become relevant as biomarkers in cancer medicine.
Collapse
|
5
|
Seidlmayer LK, Hanson BJ, Thai PN, Schaefer S, Bers DM, Dedkova EN. PK11195 Protects From Cell Death Only When Applied During Reperfusion: Succinate-Mediated Mechanism of Action. Front Physiol 2021; 12:628508. [PMID: 34149440 PMCID: PMC8212865 DOI: 10.3389/fphys.2021.628508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: Reperfusion after myocardial ischemia causes cellular injury, in part due to changes in mitochondrial Ca2+ handling, oxidative stress, and myocyte energetics. We have previously shown that the 18-kDa translocator protein of the outer mitochondrial membrane (TSPO) can modulate Ca2+ handling. Here, we aim to evaluate the role of the TSPO in ischemia/reperfusion (I/R) injury. Methods: Rabbit ventricular myocytes underwent simulated acute ischemia (20 min) and reperfusion (at 15 min, 1 h, and 3 h) in the absence and presence of 50 μM PK11195, a TSPO inhibitor. Cell death was measured by lactate dehydrogenase (LDH) assay, while changes in mitochondrial Ca2+, membrane potential (ΔΨm), and reactive oxygen species (ROS) generation were monitored using confocal microscopy in combination with fluorescent indicators. Substrate utilization was measured with Biolog mitochondrial plates. Results: Cell death was increased by ~200% following I/R compared to control untreated ventricular myocytes. Incubation with 50 μM PK11195 during both ischemia and reperfusion did not reduce cell death but increased mitochondrial Ca2+ uptake and ROS generation. However, application of 50 μM PK11195 only at the onset and during reperfusion effectively protected against cell death. The large-scale oscillations in ΔΨm observed after ~1 h of reperfusion were significantly delayed by 1 μM cyclosporin A and almost completely prevented by 50 μM PK11195 applied during 3 h of reperfusion. After an initial increase, mitochondrial Ca2+, measured with Myticam, rapidly declined during 3 h of reperfusion after the initial transient increase. This decline was prevented by application of PK11195 at the onset and during reperfusion. PK11195 prevented a significant increase in succinate utilization following I/R and succinate-induced forward-mode ROS generation. Treatment with PK11195 was also associated with a significant increase in glutamate and a decrease in leucine utilization. Conclusion: PK11195 administered specifically at the moment of reperfusion limited ROS-induced ROS release and cell death, likely in part, by a shift from succinate to glutamate utilization. These data demonstrate a unique mechanism to limit cardiac injury after I/R.
Collapse
Affiliation(s)
- Lea K Seidlmayer
- Department of Cardiology, University Hospital Olbenburg, Olbenburg, Germany
| | - Benjamin J Hanson
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Phung N Thai
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Saul Schaefer
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Donald M Bers
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Elena N Dedkova
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|