1
|
Lobete M, Salinas T, Izquierdo-Bermejo S, Socas S, Oset-Gasque MJ, Martín-de-Saavedra MD. A methodology to globally assess ectodomain shedding using soluble fractions from the mouse brain. Front Psychiatry 2024; 15:1367526. [PMID: 38962061 PMCID: PMC11219901 DOI: 10.3389/fpsyt.2024.1367526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/20/2024] [Indexed: 07/05/2024] Open
Abstract
Ectodomain shedding (ES) is a fundamental process involving the proteolytic cleavage of membrane-bound proteins, leading to the release of soluble extracellular fragments (shed ectodomains) with potential paracrine and autocrine signaling functions. In the central nervous system (CNS), ES plays pivotal roles in brain development, axonal regulation, synapse formation, and disease pathogenesis, spanning from cancer to Alzheimer's disease. Recent evidence also suggests its potential involvement in neurodevelopmental conditions like autism and schizophrenia. Past investigations of ES in the CNS have primarily relied on cell culture supernatants or cerebrospinal fluid (CSF) samples, but these methods have limitations, offering limited insights into how ES is modulated in the intact brain parenchyma. In this study, we introduce a methodology for analyzing shed ectodomains globally within rodent brain samples. Through biochemical tissue subcellular separation, mass spectrometry, and bioinformatic analysis, we show that the brain's soluble fraction sheddome shares significant molecular and functional similarities with in vitro neuronal and CSF sheddomes. This approach provides a promising means of exploring ES dynamics in the CNS, allowing for the evaluation of ES at different developmental stages and pathophysiological states. This methodology has the potential to help us deepen our understanding of ES and its role in CNS function and pathology, offering new insights and opportunities for research in this field.
Collapse
Affiliation(s)
| | | | | | | | | | - M. Dolores Martín-de-Saavedra
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Hori I, Harashima H, Yamada Y. Development of Liposomes That Target Axon Terminals Encapsulating Berberine in Cultured Primary Neurons. Pharmaceutics 2023; 16:49. [PMID: 38258060 PMCID: PMC10821366 DOI: 10.3390/pharmaceutics16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Most of the energy in neurons is produced in mitochondria. Mitochondria generate the ATP that is essential for neuronal growth, function, and regeneration. Mitochondrial axonal transport plays a crucial role in maintaining neuronal homeostasis and biological activity. Decreased mitochondrial axonal transport at axon terminals, where the metabolism of substances is likely to be delayed, may contribute to neurological dysfunction. Therefore, regulation of mitochondrial dynamics at axon terminals has attracted considerable interest as a strategy to modulate neuronal function. Nanoparticles may be useful in controlling local mitochondrial dynamics. Nevertheless, there are few reports on the influence of drug delivery that nanoparticles impart on the mitochondrial dynamics in neurons. This paper reports the results of a study using liposomes (LPs) to examine local drug delivery and pharmacological actions on neurons. We tested berberine (BBR), which is an activator of AMP-activated protein kinase (AMPK), to examine the utility of this drug as a cellular energy sensor. Axon terminals targeting LPs were prepared. The amount of axon terminals targeting LPs was increased compared with treatment using cationic LPs. Moreover, axon terminal-targeting LPs increased anterograde transport by about 40% compared with that of either naked BBR or cationic LPs and suppressed axonal retraction. Our findings suggest that local drug delivery to neurons is important for enhancing pharmacological activity in axon terminals.
Collapse
Affiliation(s)
- Ikuma Hori
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan;
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan;
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan;
| |
Collapse
|
3
|
Li P, Wei J, Zhu Y. CellGO: a novel deep learning-based framework and webserver for cell-type-specific gene function interpretation. Brief Bioinform 2023; 25:bbad417. [PMID: 37995133 PMCID: PMC10790717 DOI: 10.1093/bib/bbad417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
Interpreting the function of genes and gene sets identified from omics experiments remains a challenge, as current pathway analysis tools often fail to consider the critical biological context, such as tissue or cell-type specificity. To address this limitation, we introduced CellGO. CellGO tackles this challenge by leveraging the visible neural network (VNN) and single-cell gene expressions to mimic cell-type-specific signaling propagation along the Gene Ontology tree within a cell. This design enables a novel scoring system to calculate the cell-type-specific gene-pathway paired active scores, based on which, CellGO is able to identify cell-type-specific active pathways associated with single genes. In addition, by aggregating the activities of single genes, CellGO extends its capability to identify cell-type-specific active pathways for a given gene set. To enhance biological interpretation, CellGO offers additional features, including the identification of significantly active cell types and driver genes and community analysis of pathways. To validate its performance, CellGO was assessed using a gene set comprising mixed cell-type markers, confirming its ability to discern active pathways across distinct cell types. Subsequent benchmarking analyses demonstrated CellGO's superiority in effectively identifying cell types and their corresponding cell-type-specific pathways affected by gene knockouts, using either single genes or sets of genes differentially expressed between knockout and control samples. Moreover, CellGO demonstrated its ability to infer cell-type-specific pathogenesis for disease risk genes. Accessible as a Python package, CellGO also provides a user-friendly web interface, making it a versatile and accessible tool for researchers in the field.
Collapse
Affiliation(s)
- Peilong Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Junfeng Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Li X, Zhou L, Zhang X, Jin Y, Zhao B, Zhang D, Xi C, Ruan J, Zhu Z, Jia JM. Proteins secreted by brain arteriolar smooth muscle cells are instructive for neural development. Mol Brain 2022; 15:97. [PMID: 36451193 PMCID: PMC9710182 DOI: 10.1186/s13041-022-00983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Intercellular communication between vascular and nerve cells mediated by diffusible proteins has recently emerged as a critical intrinsic program for neural development. However, whether the vascular smooth muscle cell (VSMC) secretome regulates the connectivity of neural circuits remains unknown. Here, we show that conditioned medium from brain VSMC cultures enhances multiple neuronal functions, such as neuritogenesis, neuronal maturation, and survival, thereby improving circuit connectivity. However, protein denaturation by heating compromised these effects. Combined omics analyses of donor VSMC secretomes and recipient neuron transcriptomes revealed that overlapping pathways of extracellular matrix receptor signaling and adhesion molecule integrin binding mediate VSMC-dependent neuronal development. Furthermore, we found that human arterial VSMCs promote neuronal development in multiple ways, including expanding the time window for nascent neurite initiation, increasing neuronal density, and promoting synchronized firing, whereas human umbilical vein VSMCs lack this capability. These in vitro data indicate that brain arteriolar VSMCs may carry direct instructive information for neural development through intercellular communication in vivo.
Collapse
Affiliation(s)
- Xuzhao Li
- grid.8547.e0000 0001 0125 2443Fudan University, Shanghai, 200433 China ,grid.494629.40000 0004 8008 9315Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024 China
| | - Lili Zhou
- grid.494629.40000 0004 8008 9315Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024 China ,grid.13402.340000 0004 1759 700XZhejiang University School of Medicine, Hangzhou, 310058 China
| | - Xiaoxuan Zhang
- grid.8547.e0000 0001 0125 2443Fudan University, Shanghai, 200433 China ,grid.494629.40000 0004 8008 9315Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024 China
| | - Yuxiao Jin
- grid.8547.e0000 0001 0125 2443School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Bingrui Zhao
- grid.494629.40000 0004 8008 9315Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024 China
| | - Dongdong Zhang
- grid.494629.40000 0004 8008 9315Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024 China
| | - Chengjie Xi
- grid.40263.330000 0004 1936 9094Biotechnology Master’s Program, Brown University, Providence, USA
| | - Jiayu Ruan
- grid.494629.40000 0004 8008 9315Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024 China
| | - Zhu Zhu
- grid.494629.40000 0004 8008 9315Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024 China
| | - Jie-Min Jia
- grid.494629.40000 0004 8008 9315Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024 China ,grid.494629.40000 0004 8008 9315Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024 China
| |
Collapse
|
5
|
Hall J, Bray NJ. Schizophrenia Genomics: Convergence on Synaptic Development, Adult Synaptic Plasticity, or Both? Biol Psychiatry 2022; 91:709-717. [PMID: 34974922 PMCID: PMC8929434 DOI: 10.1016/j.biopsych.2021.10.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/19/2022]
Abstract
Large-scale genomic studies of schizophrenia have identified hundreds of genetic loci conferring risk to the disorder. This progress offers an important route toward defining the biological basis of the condition and potentially developing new treatments. In this review, we discuss insights from recent genome-wide association study, copy number variant, and exome sequencing analyses of schizophrenia, together with functional genomics data from the pre- and postnatal brain, in relation to synaptic development and function. These data provide strong support for the view that synaptic dysfunction within glutamatergic and GABAergic (gamma-aminobutyric acidergic) neurons of the cerebral cortex, hippocampus, and other limbic structures is a central component of schizophrenia pathophysiology. Implicated genes and functional genomic data suggest that disturbances in synaptic connectivity associated with susceptibility to schizophrenia begin in utero but continue throughout development, with some alleles conferring risk to the disorder through direct effects on synaptic function in adulthood. This model implies that novel interventions for schizophrenia could include broad preventive approaches aimed at enhancing synaptic health during development as well as more targeted treatments aimed at correcting synaptic function in affected adults.
Collapse
Affiliation(s)
- Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom; Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.
| | | |
Collapse
|
7
|
Feldhoff F, Toepfer H, Harczos T, Klefenz F. Periodicity Pitch Perception Part III: Sensibility and Pachinko Volatility. Front Neurosci 2022; 16:736642. [PMID: 35356050 PMCID: PMC8959216 DOI: 10.3389/fnins.2022.736642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/07/2022] [Indexed: 11/29/2022] Open
Abstract
Neuromorphic computer models are used to explain sensory perceptions. Auditory models generate cochleagrams, which resemble the spike distributions in the auditory nerve. Neuron ensembles along the auditory pathway transform sensory inputs step by step and at the end pitch is represented in auditory categorical spaces. In two previous articles in the series on periodicity pitch perception an extended auditory model had been successfully used for explaining periodicity pitch proved for various musical instrument generated tones and sung vowels. In this third part in the series the focus is on octopus cells as they are central sensitivity elements in auditory cognition processes. A powerful numerical model had been devised, in which auditory nerve fibers (ANFs) spike events are the inputs, triggering the impulse responses of the octopus cells. Efficient algorithms are developed and demonstrated to explain the behavior of octopus cells with a focus on a simple event-based hardware implementation of a layer of octopus neurons. The main finding is, that an octopus' cell model in a local receptive field fine-tunes to a specific trajectory by a spike-timing-dependent plasticity (STDP) learning rule with synaptic pre-activation and the dendritic back-propagating signal as post condition. Successful learning explains away the teacher and there is thus no need for a temporally precise control of plasticity that distinguishes between learning and retrieval phases. Pitch learning is cascaded: At first octopus cells respond individually by self-adjustment to specific trajectories in their local receptive fields, then unions of octopus cells are collectively learned for pitch discrimination. Pitch estimation by inter-spike intervals is shown exemplary using two input scenarios: a simple sinus tone and a sung vowel. The model evaluation indicates an improvement in pitch estimation on a fixed time-scale.
Collapse
Affiliation(s)
- Frank Feldhoff
- Advanced Electromagnetics Group, Technische Universität Ilmenau, Ilmenau, Germany
| | - Hannes Toepfer
- Advanced Electromagnetics Group, Technische Universität Ilmenau, Ilmenau, Germany
| | - Tamas Harczos
- Fraunhofer-Institut für Digitale Medientechnologie, Ilmenau, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- audifon GmbH & Co. KG, Kölleda, Germany
| | - Frank Klefenz
- Fraunhofer-Institut für Digitale Medientechnologie, Ilmenau, Germany
| |
Collapse
|