1
|
Song CG, Yang Y, Cui W, Chen W, Wang S, Qin J, Liu J. Anti-TMV Activity and Functional Mechanisms of Two Diterpenoid Alkaloids Isolated from Dendrobium findlayanum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2443-2450. [PMID: 39810463 DOI: 10.1021/acs.jafc.4c12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Tobacco mosaic virus (TMV) is a major threat to crops, making the discovery of green biopesticides essential. Herein, we present two active ingredients derived from the medicinal plant Dendrobium findlayanum, findlayine A (1) and dendrofindline B (2), as promising precursor compounds for TMV inhibitors. Among them, 2 inhibited TMV infestation on tobacco leaves at a rate of 38.6%, which was close to that of the commercial antiviral agent ningnanmycin (43.1%). Both 1 and 2 could effectively alleviate the destruction of tobacco leaf protoplasts by TMV infestation, and enhance the resistance of tobacco to TMV by affecting the activities of phenylalaninammo-nialyase (PAL), peroxidase (POD) and superoxide dismutase (SOD). Additionally, 1 and 2 significantly down-regulated the expression of TMV coat protein (CP) and inhibited CP-mediated aggregation of TMV, thereby reducing its infestation capacity. This study systematically investigated the mechanism of anti-TMV activity of diterpenoid alkaloids from D. findlayanum, with a view to providing new insights into the creation of novel green antiviral agents.
Collapse
Affiliation(s)
- Cheng-Gang Song
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Yang Yang
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Wenjing Cui
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Wei Chen
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Shouxian Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jianchun Qin
- College of Plant Sciences, Jilin University, Changchun 130062, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
2
|
Zhang L, Meng S, Liu Y, Han F, Xu T, Zhao Z, Li Z. Advances in and Perspectives on Transgenic Technology and CRISPR-Cas9 Gene Editing in Broccoli. Genes (Basel) 2024; 15:668. [PMID: 38927604 PMCID: PMC11203320 DOI: 10.3390/genes15060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Broccoli, a popular international Brassica oleracea crop, is an important export vegetable in China. Broccoli is not only rich in protein, vitamins, and minerals but also has anticancer and antiviral activities. Recently, an Agrobacterium-mediated transformation system has been established and optimized in broccoli, and transgenic transformation and CRISPR-Cas9 gene editing techniques have been applied to improve broccoli quality, postharvest shelf life, glucoraphanin accumulation, and disease and stress resistance, among other factors. The construction and application of genetic transformation technology systems have led to rapid development in broccoli worldwide, which is also good for functional gene identification of some potential traits in broccoli. This review comprehensively summarizes the progress in transgenic technology and CRISPR-Cas9 gene editing for broccoli over the past four decades. Moreover, it explores the potential for future integration of digital and smart technologies into genetic transformation processes, thus demonstrating the promise of even more sophisticated and targeted crop improvements. As the field continues to evolve, these innovations are expected to play a pivotal role in the sustainable production of broccoli and the enhancement of its nutritional and health benefits.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Sufang Meng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Yumei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
| | - Tiemin Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| | - Zhiwei Zhao
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| | - Zhansheng Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (L.Z.); (S.M.); (Y.L.); (F.H.); (T.X.)
- Shouguang R&D Center of Vegetables, CAAS, Shouguang 262700, China;
| |
Collapse
|
3
|
Kumar A, Rawat N, Thakur S, Joshi R, Pandey SS. A highly efficient protocol for isolation of protoplast from China, Assam and Cambod types of tea plants [Camellia sinensis (L.) O. Kuntze]. PLANT METHODS 2023; 19:147. [PMID: 38102681 PMCID: PMC10724972 DOI: 10.1186/s13007-023-01120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Tea is the most popular beverage worldwide second only to water. Its demand is tremendously rising due to increased awareness of its medicinal importance. The quality and uses of tea depend on the tea-types which are mainly three types including China, Assam and Cambod type having distinct compositions of secondary metabolites. Huge variation in secondary metabolites in different tea-types and cultivars limited the successful application of various approaches used for its trait improvement. The efficiency of a protocol for isolation of protoplast is specific to the types and cultivars of tea plants. The existing tea protoplast-isolation protocols [which were optimized for tea-types (China and Assam type) and Chinese cultivars grown in China] were found ineffective on types/cultivars grown in India due to type/cultivar variability. Therefore, optimization of protoplast-isolation protocol is essential for tea-types/cultivars grown in India, as it is the second largest producer of tea and the largest producer of black tea. Here, efforts were made to develop an efficient protoplast-isolation protocol from all major types of tea (China, Assam and Cambod types) grown in India and also from three types of tender leaves obtained from field-grown, hydroponically-grown and tissue culture-grown tea plants. RESULTS Developed protoplast-isolation protocol was effective for different types of leaf tissue obtained from the tender leaves of field-grown, hydroponically-grown and tissue culture-grown tea plants. Moreover, optimized protocol effectively worked on all three types of tea including China, Assam and Cambod types cultivated in India. The digestion of leaves with 3% cellulase R-10, 0.6% macerozyme, 1% hemicellulase and 4% polyvinylpyrrolidone for 12 h at 28ºC yielded approximately 3.8-4.6 × 107 protoplasts per gram fresh tissue and 80-95% viability in selected tea cultivars, and tissue culture plant material was found most appropriate for protoplast isolation. CONCLUSIONS In conclusion, we reported an efficient protocol for isolation of protoplasts from tender tea leaves of all major tea-types (China, Assam and Cambod) grown in India. Moreover, the protocol is also effective for tender-leaf tissue of field-grown, hydroponically-grown and tissue culture-grown tea plants. The findings are expected to contribute to the genetic improvement of tea traits widely.
Collapse
Affiliation(s)
- Abhishek Kumar
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Nikhil Rawat
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shweta Thakur
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Rohit Joshi
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Shanker Pandey
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Mackowska K, Stelmach-Wityk K, Grzebelus E. Early selection of carrot somatic hybrids: a promising tool for species with high regenerative ability. PLANT METHODS 2023; 19:104. [PMID: 37805561 PMCID: PMC10559629 DOI: 10.1186/s13007-023-01080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Since its discovery, somatic hybridization has been used to overcome the sexual barriers between cultivated and wild species. A combination of two somatic cells might provide a novel set of features, often of agronomical importance. Here, we report a successful approach for production and selection of interspecific somatic hybrid plants between cultivated and wild carrot using dual-labelling of protoplasts and an early selection of fused cells via micromanipulator. Both subspecies used in this study are characterised by a very high regenerative ability in protoplast cultures. Thus, a precise and effective method of hybrid selection is essential to assure the development and regeneration of much less numerous heterokaryons in the post-fusion cell mixture. RESULTS Electrofusion parameters, such as alternating current and direct current, were optimised for an efficient alignment of protoplasts and reversible membrane breakdown followed by a cell fusion. Four hundred twenty-nine cells emitting green-red fluorescence, identified as hybrids, were obtained. Co-culture with donor-derived protoplasts in the alginate feeder layer system stimulated re-synthesis of the cell wall and promoted cell divisions of fusants. Somatic embryogenesis occurred in hybrid-derived microcalli cultures, followed by plant regeneration. Regenerated hybrids produced yellowish storage roots and leaves of an intermediate shape between cultivated and wild subspecies. The intron length polymorphism analysis revealed that 123 of 124 regenerated plants were hybrids. CONCLUSIONS The developed protocol for protoplast fusion and an early selection of hybrids may serve as an alternative to combining genomes and transferring nuclear or cytoplasmatic traits from wild Daucus species to cultivated carrot.
Collapse
Affiliation(s)
- Katarzyna Mackowska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Mickiewicza 21, 31-120, Krakow, Poland
| | - Katarzyna Stelmach-Wityk
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Mickiewicza 21, 31-120, Krakow, Poland.
| | - Ewa Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Mickiewicza 21, 31-120, Krakow, Poland.
| |
Collapse
|
5
|
Wang R, Li X, Zhu S, Zhang D, Han S, Li Z, Lu J, Chu H, Xiao J, Li S. Integrated flow cytometric and proteomics analyses reveal the regulatory network underlying sugarcane protoplast responses to fusion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107918. [PMID: 37619268 DOI: 10.1016/j.plaphy.2023.107918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Somatic cell fusion is a process that transfers cytoplasmic and nuclear genes to create new germplasm resources. But our limited understanding of the physiological and molecular mechanisms that shape protoplast responses to fusion. METHOD We employed flow cytometry, cytology, proteomics, and gene expression analysis to examine the sugarcane (Saccharum spp.) protoplast fusion. RESULTS Flow cytometry analysis revealed the fusion rate of protoplasts was 1.95%, the FSC value and SSC of heterozygous cells was 1.17-1.47 times higher than that of protoplasts. The protoplasts viability decreased and the MDA increased after fusion. During fusion, the cell membranes were perforated to different degrees, nuclear activity was weakened, while microtubules depolymerized and formed several short rod like structures in the protoplasts. The most abundant proteins during fusion were mainly involved in RNA processing and modification, cell cycle control, cell division, chromosome partition, nuclear structure, extracellular structures, and nucleotide transport and metabolism. Moreover, the expression of key regeneration genes, such as WUS, GAUT, CESA, PSK, Aux/IAA, Cdc2, Cyclin D3, Cyclin A, and Cyclin B, was significantly altered following fusion. PURPOSE AND SIGNIFICANCE Overall, our findings provide a theoretical basis that increases our knowledge of the mechanisms underlying protoplast fusion.
Collapse
Affiliation(s)
- Rui Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Xinzhu Li
- School of Biomedical Engineering, South-Central Minzu University, No. 182, Minzu Avenue, Wuhan, 430074, China.
| | - Shuifang Zhu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Demei Zhang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Shijian Han
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Zhigang Li
- Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Jiahui Lu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Haiwei Chu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Jiming Xiao
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| | - Suli Li
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning, 530004, China.
| |
Collapse
|
6
|
Ranaware AS, Kunchge NS, Lele SS, Ochatt SJ. Protoplast Technology and Somatic Hybridisation in the Family Apiaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:1060. [PMID: 36903923 PMCID: PMC10005591 DOI: 10.3390/plants12051060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/03/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Species of the family Apiaceae occupy a major market share but are hitherto dependent on open pollinated cultivars. This results in a lack of production uniformity and reduced quality that has fostered hybrid seed production. The difficulty in flower emasculation led breeders to use biotechnology approaches including somatic hybridization. We discuss the use of protoplast technology for the development of somatic hybrids, cybrids and in-vitro breeding of commercial traits such as CMS (cytoplasmic male sterility), GMS (genetic male sterility) and EGMS (environment-sensitive genic male sterility). The molecular mechanism(s) underlying CMS and its candidate genes are also discussed. Cybridization strategies based on enucleation (Gamma rays, X-rays and UV rays) and metabolically arresting protoplasts with chemicals such as iodoacetamide or iodoacetate are reviewed. Differential fluorescence staining of fused protoplast as routinely used can be replaced by new tagging approaches using non-toxic proteins. Here, we focused on the initial plant materials and tissue sources for protoplast isolation, the various digestion enzyme mixtures tested, and on the understanding of cell wall re-generation, all of which intervene in somatic hybrids regeneration. Although there are no alternatives to somatic hybridization, various approaches also discussed are emerging, viz., robotic platforms, artificial intelligence, in recent breeding programs for trait identification and selection.
Collapse
Affiliation(s)
- Ankush S. Ranaware
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India
| | - Nandkumar S. Kunchge
- Research and Development Division, Kalash Seeds Pvt. Ltd., Jalna 431203, Maharashtra, India
| | - Smita S. Lele
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India
| | - Sergio J. Ochatt
- Agroécologie, InstitutAgro Dijon, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| |
Collapse
|
7
|
Li S, Zhao R, Ye T, Guan R, Xu L, Ma X, Zhang J, Xiao S, Yuan D. Isolation, purification and PEG-mediated transient expression of mesophyll protoplasts in Camellia oleifera. PLANT METHODS 2022; 18:141. [PMID: 36550558 PMCID: PMC9773467 DOI: 10.1186/s13007-022-00972-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Camellia oleifera (C. oleifera) is a woody edible oil crop of great economic importance. Because of the lack of modern biotechnology research, C. oleifera faces huge challenges in both breeding and basic research. The protoplast and transient transformation system plays an important role in biological breeding, plant regeneration and somatic cell fusion. The objective of this present study was to develop a highly efficient protocol for isolating and purifying mesophyll protoplasts and transient transformation of C. oleifera. Several critical factors for mesophyll protoplast isolation from C. oleifera, including starting material (leaf age), pretreatment, enzymatic treatment (type of enzyme, concentration and digestion time), osmotic pressure and purification were optimized. Then the factors affecting the transient transformation rate of mesophyll protoplasts such as PEG molecular weights, PEG4000 concentration, plasmid concentration and incubation time were explored. RESULTS The in vitro grown seedlings of C. oleifera 'Huashuo' were treated in the dark for 24 h, then the 1st to 2nd true leaves were picked and vacuumed at - 0.07 MPa for 20 min. The maximum yield (3.5 × 107/g·FW) and viability (90.9%) of protoplast were reached when the 1st to 2nd true leaves were digested in the enzymatic solution containing1.5% (w/v) Cellulase R-10, 0.5% (w/v) Macerozyme R-10 and 0.25% (w/v) Snailase and 0.4 M mannitol for 10 h. Moreover, the protoplast isolation method was also applicable to the other two cultivars, the protoplast yield for 'TXP14' and 'DP47' was 1.1 × 107/g·FW and 2.6 × 107/g·FW, the protoplast viability for 'TXP14' and 'DP47' was 90.0% and 88.2%. The purification effect was the best when using W buffer as a cleaning agent by centrifugal precipitation. The maximum transfection efficiency (70.6%) was obtained with the incubation of the protoplasts with 15 µg plasmid and 40% PEG4000 for 20 min. CONCLUSION In summary, a simple and efficient system for isolation and transient transformation of C. oleifera mesophyll protoplast is proposed, which is of great significance in various aspects of C. oleifera research, including the study of somatic cell fusion, genome editing, protein function, signal transduction, transcriptional regulation and multi-omics analyses.
Collapse
Affiliation(s)
- Sufang Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Rui Zhao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Tianwen Ye
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Rui Guan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, 23053, Skåne, Sweden
| | - Linjie Xu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Xiaoling Ma
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jiaxi Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Shixin Xiao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
- Key Laboratory of Non-wood Forest Products of State Forestry Administration, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|