1
|
Argentel-Martínez L, Peñuelas-Rubio O, Herrera-Sepúlveda A, González-Aguilera J, Sudheer S, Salim LM, Lal S, Pradeep CK, Ortiz A, Sansinenea E, Hathurusinghe SHK, Shin JH, Babalola OO, Azizoglu U. Biotechnological advances in plant growth-promoting rhizobacteria for sustainable agriculture. World J Microbiol Biotechnol 2024; 41:21. [PMID: 39738995 DOI: 10.1007/s11274-024-04231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025]
Abstract
The rhizosphere, the soil zone surrounding plant roots, serves as a reservoir for numerous beneficial microorganisms that enhance plant productivity and crop yield, with substantial potential for application as biofertilizers. These microbes play critical roles in ecological processes such as nutrient recycling, organic matter decomposition, and mineralization. Plant growth-promoting rhizobacteria (PGPR) represent a promising tool for sustainable agriculture, enabling green management of crop health and growth, being eco-friendly alternatives to replace chemical fertilizers and pesticides. In this sense, biotechnological advancements respecting genomics and gene editing have been crucial to develop microbiome engineering which is pivotal in developing microbial consortia to improve crop production. Genome mining, which involves comprehensive analysis of the entire genome sequence data of PGPR, is crucial for identifying genes encoding valuable bacterial enzymes and metabolites. The CRISPR-Cas system, a cutting-edge genome-editing technology, has shown significant promise in beneficial microbial species. Advances in genetic engineering, particularly CRISPR-Cas, have markedly enhanced grain output, plant biomass, resistance to pests, and the sensory and nutritional quality of crops. There has been a great advance about the use of PGPR in important crops; however, there is a need to go further studying synthetic microbial communities, microbiome engineering, and gene editing approaches in field trials. This review focuses on future research directions involving several factors and topics around the use of PGPR putting special emphasis on biotechnological advances.
Collapse
Affiliation(s)
- Leandris Argentel-Martínez
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico.
| | - Ofelda Peñuelas-Rubio
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico
| | - Angélica Herrera-Sepúlveda
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico
| | - Jorge González-Aguilera
- Department of Agronomy, Universidad Estadual de Mato Grosso Do Sul (UEMS), Cassilândia, MS, 79540-000, Brazil
| | - Surya Sudheer
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, 51005, Tartu, Estonia
| | - Linu M Salim
- Faculty of Fisheries Engineering, Kerala University of Fisheries and Ocean Studies, Cochin, India
| | - Sunaina Lal
- Department of Biochemistry, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim, India
| | - Chittethu Kunjan Pradeep
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden & Research Institute, Palode, Thiruvananthapuram, Kerala, 695562, India
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, México
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, México
| | | | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye.
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
2
|
Dutilloy E, Arias AA, Richet N, Guise JF, Duban M, Leclere V, Selim S, Jacques P, Jacquard C, Clément C, Ait Barka E, Esmaeel Q. Bacillus velezensis BE2 controls wheat and barley diseases by direct antagonism and induced systemic resistance. Appl Microbiol Biotechnol 2024; 108:64. [PMID: 38189957 DOI: 10.1007/s00253-023-12864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/19/2023] [Accepted: 11/05/2023] [Indexed: 01/09/2024]
Abstract
Wheat and barley rank among the main crops cultivated on a global scale, providing the essential nutritional foundation for both humans and animals. Nevertheless, these crops are vulnerable to several fungal diseases, such as Septoria tritici blotch and net blotch, which significantly reduce yields by adversely affecting leaves and grain quality. To mitigate the effect of these diseases, chemical fungicides have proven to be genuinely effective; however, they impose a serious environmental burden. Currently, biocontrol agents have attracted attention as a sustainable alternative to fungicides, offering an eco-friendly option. The study aimed to assess the efficacy of Bacillus velezensis BE2 in reducing disease symptoms caused by Zymoseptoria tritici and Pyrenophora teres. This bacterium exhibited significant antagonistic effects in vitro by suppressing fungal development when pathogens and the beneficial strain were in direct confrontation. These findings were subsequently confirmed through microscopic analysis, which illustrated the strain's capacity to inhibit spore germination and mycelial growth in both pathogens. Additionally, the study analysed the cell-free supernatant of the bacterium using UPLC-MS (ultra-performance liquid chromatography-mass spectrometry). The results revealed that strain BE2 produces, among other metabolites, different families of cyclic lipopeptides that may be involved in biocontrol. Furthermore, the beneficial effects of strain BE2 in planta were assessed by quantifying the fungal DNA content directly at the leaf level after bacterization, using two different application methods (foliar and drenching). The results indicated that applying the beneficial bacterium at the root level significantly reduced pathogens pressure. Finally, gene expression analysis of different markers showed that BE2 application induced a priming effect within the first hours after infection. KEY POINTS: • BE2 managed Z. tritici and P. teres by direct antagonism and induced systemic resistance. • Strain BE2 produced seven metabolite families, including three cyclic lipopeptides. • Application of strain BE2 at the root level triggered plant defense mechanisms.
Collapse
Affiliation(s)
- Emma Dutilloy
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Anthony Arguëlles Arias
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Nicolas Richet
- Université de Reims Champagne Ardenne, Plateau Technique Mobile de Cytométrie Environnementale MOBICYTE, URCA/INERIS, UFR Sciences Exactes Et Naturelles, Reims, France
| | - Jean-François Guise
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Matthieu Duban
- Université de Lille, Université de Liège, UMRT, 1158 BioEcoAgro, Institut Charles Viollette, 59000, Lille, France
| | - Valérie Leclere
- Université de Lille, Université de Liège, UMRT, 1158 BioEcoAgro, Institut Charles Viollette, 59000, Lille, France
| | - Sameh Selim
- AGHYLE UP 2018.C101, SFR Condorcet FR CNRS 3417, Institut Polytechnique UniLaSalle, 19 Rue Pierre Waguet, BP 30313, F-60026, Beauvais Cedex, France
| | - Philippe Jacques
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Christophe Clément
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Essaïd Ait Barka
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, INRAE, RIBP USC 1488, 51100, Reims, France.
| |
Collapse
|
3
|
Zhang K, Chen X, Shi X, Yang Z, Yang L, Liu D, Yu F. Endophytic Bacterial Community, Core Taxa, and Functional Variations Within the Fruiting Bodies of Laccaria. Microorganisms 2024; 12:2296. [PMID: 39597685 PMCID: PMC11596330 DOI: 10.3390/microorganisms12112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Macrofungi do not exist in isolation but establish symbiotic relationships with microorganisms, particularly bacteria, within their fruiting bodies. Herein, we examined the fruiting bodies' bacteriome of seven species of the genus Laccaria collected from four locations in Yunnan, China. By analyzing bacterial diversity, community structure, and function through 16S rRNA sequencing, we observed the following: (1) In total, 4,840,291 high-quality bacterial sequences obtained from the fruiting bodies were grouped into 16,577 amplicon sequence variants (ASVs), and all samples comprised 23 shared bacterial ASVs. (2) The Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium complex was found to be the most abundant and presumably coexisting bacterium. (3) A network analysis revealed that endophytic bacteria formed functional groups, which were dominated by the genera Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Novosphingobium, and Variovorax. (4) The diversity, community structure, and dominance of ecological functions (chemoheterotrophy and nitrogen cycling) among endophytic bacteria were significantly shaped by geographic location, habitat, and fungal genotype, rather than fruiting body type. (5) A large number of the endophytic bacteria within Laccaria are bacteria that promote plant growth; however, some pathogenic bacteria that pose a threat to human health might also be present. This research advances our understanding of the microbial ecology of Laccaria and the factors shaping its endophytic bacterial communities.
Collapse
Affiliation(s)
- Kaixuan Zhang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xin Chen
- College of Life Sciences, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Zhenyan Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Lian Yang
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Dong Liu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| | - Fuqiang Yu
- The Germplasm Bank of Wild Species & Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (K.Z.); (X.S.); (Z.Y.); (L.Y.)
| |
Collapse
|
4
|
Guo S, Liu Y, Yin Y, Chen Y, Jia S, Wu T, Liao J, Jiang X, Kareem HA, Li X, Pan J, Wang Y, Shen X. Unveiling the multifaceted potential of Pseudomonas khavaziana strain SR9: a promising biocontrol agent for wheat crown rot. Microbiol Spectr 2024; 12:e0071224. [PMID: 39162535 PMCID: PMC11448100 DOI: 10.1128/spectrum.00712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Fusarium pseudograminearum, a soil-borne fungus, is the cause of the devastating wheat disease known as wheat crown rot (WCR). The persistence of this pathogen in the soil and crop residues contributes to the increased occurrence and severity of WCR. Therefore, developing effective strategies to prevent and manage WCR is of great importance. In this study, we isolated a bacterial strain, designated as SR9, from the stem of wheat, that exhibited potent antagonistic effects against F. pseudograminearum, as well as the biocontrol efficacy of SR9 on WCR was quantified at 83.99% ± 0.11%. We identified SR9 as Pseudomonas khavaziana and demonstrated its potential as a plant probiotic. SR9 displayed broad-spectrum antagonism against other fungal pathogens, including Neurospora dictyophora, Botrytis californica, and Botryosphaeria dothidea. Whole-genome sequencing analysis revealed that SR9 harbored genes encoding various cell wall-degrading enzymes, cellulases, and lipases, along with antifungal metabolites, which are responsible for its antagonistic activity. Gene knockout and quantitative PCR analyses reveal that phenazine is the essential factor for antagonism. SR9 possessed genes related to auxin synthesis, flagellar biosynthesis, biofilm adhesion, and the chemotaxis system, which play pivotal roles in plant colonization and growth promotion; we also evaluated the effects of SR9 on plant growth in wheat and Arabidopsis. Our findings strongly suggest that SR9 holds great promise as a biocontrol agent for WCR in sustainable agriculture.IMPORTANCEThe escalating prevalence of wheat crown rot, primarily attributed to Fusarium pseudograminearum, necessitates the development of cost-effective and eco-friendly biocontrol strategies. While plant endophytes are recognized for their biocontrol potential, reports on effective strains targeting wheat crown rot are sparse. This study introduces the Pseudomonas khavaziana SR9 strain as an efficacious antagonist to the wheat crown rot pathogen Fusarium pseudograminearum. Demonstrating a significant reduction in wheat crown rot incidence and notable plant growth promotion, SR9 emerges as a key contributor to plant health and agricultural sustainability. Our study outlines a biological approach to tackle wheat crown rot, establishing a groundwork for innovative sustainable agricultural practices.
Collapse
Affiliation(s)
- Shengzhi Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yuqi Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yanling Yin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
- Xinjiang Production and Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Xinjiang, China
| | - Yating Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Siyu Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Tong Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jun Liao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xinyan Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Hafiz Abdul Kareem
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xuejun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Xianyang, Shaanxi, China
| | - Junfeng Pan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi, China
- Xinjiang Production and Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Xinjiang, China
| |
Collapse
|
5
|
Yu C, Guan Y, Wang Q, Li Y, Wang L, Yu W, Wu J. Effects of calcium phosphate and phosphorus-dissolving bacteria on microbial structure and function during Torreya Grandis branch waste composting. BMC Microbiol 2024; 24:385. [PMID: 39358715 PMCID: PMC11445941 DOI: 10.1186/s12866-024-03535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND BURKHOLDERIA: is a phosphorus solubilizing microorganism discovered in recent years, which can dissolve insoluble phosphorus compounds into soluble phosphorus. To investigate the effects of Burkholderia and calcium phosphate on the composting of Torreya grandis branches and leaves, as well as to explain the nutritional and metabolic markers related to the composting process. METHODS In this study, we employed amplicon sequencing and untargeted metabolomics analysis to examine the interplay among phosphorus (P) components, microbial communities, and metabolites during T. grandis branch and leaf waste composting that underwent treatment with calcium phosphate and phosphate-solubilizing bacteria (Burkholderia). There were four composting treatments, 10% calcium phosphate (CaP) or 5 ml/kg (1 × 108/ml Burkholderia) microbial inoculum (WJP) or both (CaP + WJP), and the control group (CK). RESULTS The results indicated that Burkholderia inoculation and calcium phosphate treatment affected the phosphorus composition, pH, EC, and nitrogen content. Furthermore, these treatments significantly affected the diversity and structure of bacterial and fungal communities, altering microbial and metabolite interactions. The differential metabolites associated with lipids and organic acids and derivatives treated with calcium phosphate treatment are twice as high as those treated with Burkholderia in both 21d and 42d. The results suggest that calcium phosphate treatment alters the formation of some biological macromolecules. CONCLUSION Both Burkholderia inoculation and calcium phosphate treatment affected the phosphorus composition, nitrogen content and metabolites of T. grandis branch and leaf waste compost.These results extend our comprehension of the coupling of matter transformation and community succession in composting with the addition of calcium phosphate and phosphate-solubilizing bacteria.
Collapse
Affiliation(s)
- Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yuanyuan Guan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Qi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yi Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Lei Wang
- Department of Landscape Architecture, Jiyang College, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
- NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou, China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China.
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
- NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
6
|
Chen X, Liu J, Chen AJ, Wang L, Jiang X, Gong A, Liu W, Wu H. Burkholderia ambifaria H8 as an effective biocontrol strain against maize stalk rot via producing volatile dimethyl disulfide. PEST MANAGEMENT SCIENCE 2024; 80:4125-4136. [PMID: 38578571 DOI: 10.1002/ps.8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Maize stalk rot (MSR) caused by Fusarium graminearum is the primary factor contributing to the reduction in maize yield and quality. However, this soil-borne disease presents a significant challenge for sustainable control through field management and chemical agents. The screening of novel biocontrol agents can aid in developing innovative and successful strategies for MSR control. RESULTS A total of 407 strains of bacteria were isolated from the rhizosphere soil of a resistant maize inbred line. One strain exhibited significant antagonistic activity in plate and pot experiments, and was identified as Burkholderia ambifaria H8. The strain could significantly inhibit the mycelial growth and spore germination of F. graminearum, induce resistance to stalk rot, and promote plant growth. The volatile compounds produced by strain H8 and its secondary metabolites in the sterile fermentation broth exhibited antagonistic activity. The primary volatile compound produced by strain H8 was identified as dimethyl disulfide (DMDS) using gas chromatography tandem mass spectrometry. Through in vitro antagonistic activity assays and microscopic observation, it was confirmed that DMDS was capable of inhibiting mycelial growth and disrupting the mycelial structure of F. graminearum, suggesting it may be the major active compound for strain H8. The transcriptome data of F. graminearum further indicated that strain H8 and its volatile compounds could alter pathogenic fungi metabolism, influence the related metabolic pathways, and potentially induce cell apoptosis within F. graminearum. CONCLUSION Our results showed that B. ambifaria H8 was capable of producing the volatile substance dimethyl disulfide, which influenced the synthesis and permeability of cell membranes in pathogens. Thus, B. ambifaria H8 was found to be a promising biological control agent against MSR. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyu Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Jingrong Liu
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Amanda Juan Chen
- Microbiome Research Center, Moon (Beijing) Biotech Ltd., Beijing, P.R. China
| | - Lin Wang
- Microbiome Research Center, Moon (Beijing) Biotech Ltd., Beijing, P.R. China
| | - Xianzhi Jiang
- Microbiome Research Center, Moon (Beijing) Biotech Ltd., Beijing, P.R. China
| | - Andong Gong
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Hanxiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
7
|
Sykes EME, White D, McLaughlin S, Kumar A. Salicylic acids and pathogenic bacteria: new perspectives on an old compound. Can J Microbiol 2024; 70:1-14. [PMID: 37699258 DOI: 10.1139/cjm-2023-0123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Salicylic acids have been used in human and veterinary medicine for their anti-pyretic, anti-inflammatory, and analgesic properties for centuries. A key role of salicylic acid-immune modulation in response to microbial infection-was first recognized during studies of their botanical origin. The effects of salicylic acid on bacterial physiology are diverse. In many cases, they impose selective pressures leading to development of cross-resistance to antimicrobial compounds. Initial characterization of these interactions was in Escherichia coli, where salicylic acid activates the multiple antibiotic resistance (mar) operon, resulting in decreased antibiotic susceptibility. Studies suggest that stimulation of the mar phenotype presents similarly in closely related Enterobacteriaceae. Salicylic acids also affect virulence in many opportunistic pathogens by decreasing their ability to form biofilms and increasing persister cell populations. It is imperative to understand the effects of salicylic acid on bacteria of various origins to illuminate potential links between environmental microbes and their clinically relevant antimicrobial-resistant counterparts. This review provides an update on known effects of salicylic acid and key derivatives on a variety of bacterial pathogens, offers insights to possible potentiation of current treatment options, and highlights cellular regulatory networks that have been established during the study of this important class of medicines.
Collapse
Affiliation(s)
- Ellen M E Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Dawn White
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Sydney McLaughlin
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Webster G, Mullins AJ, Petrova YD, Mahenthiralingam E. Polyyne-producing Burkholderia suppress Globisporangium ultimum damping-off disease of Pisum sativum (pea). Front Microbiol 2023; 14:1240206. [PMID: 37692405 PMCID: PMC10485841 DOI: 10.3389/fmicb.2023.1240206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Extensive crop losses are caused by oomycete and fungal damping-off diseases. Agriculture relies heavily on chemical pesticides to control disease, but due to safety concerns multiple agents have been withdrawn. Burkholderia were successfully used as commercial biopesticides because of their fungicidal activity and plant protective traits. However, their potential for opportunistic pathogenicity led to a moratorium on their registration as biopesticides. Subsequently, Burkholderia were shown to produce multiple specialised metabolites including potent antimicrobial polyynes. Cepacin A, a polyyne produced by Burkholderia ambifaria biopesticide strains was shown to be an important metabolite for the protection of germinating peas against Globisporangium ultimum (formerly Pythium) damping-off disease. Recently, there has been an expansion in bacterial polyyne discovery, with the metabolites and their biosynthetic gene pathways found in several bacterial genera including Burkholderia, Collimonas, Trinickia, and Pseudomonas. To define the efficacy of these bacterial polyyne producers as biopesticidal agents, we systematically evaluated metabolite production, in vitro microbial antagonism, and G. ultimum biocontrol across a panel of 30 strains representing four bacterial genera. In vitro polyyne production and antimicrobial activity was demonstrated for most strains, but only Burkholderia polyyne producers were protective within the in vivo G. ultimum damping-off pea protection model. B. ambifaria was the most effective cepacin-expressing biopesticide, and despite their known potential for plant pathogenicity Burkholderia gladioli and Burkholderia plantarii were uniquely shown to be protective as caryoynencin-producing biopesticides. In summary, Burkholderia are effective biopesticides due to their suite of antimicrobials, but the ability to deploy polyyne metabolites, caryoynencin and cepacin, is strain and species dependent. Graphical Abstract.
Collapse
|
9
|
Wang D, Luo WZ, Zhang DD, Li R, Kong ZQ, Song J, Dai XF, Alkan N, Chen JY. Insights into the Biocontrol Function of a Burkholderia gladioli Strain against Botrytis cinerea. Microbiol Spectr 2023; 11:e0480522. [PMID: 36861984 PMCID: PMC10101029 DOI: 10.1128/spectrum.04805-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Pathogenic fungi are the main cause of yield loss and postharvest loss of crops. In recent years, some antifungal microorganisms have been exploited and applied to prevent and control pathogenic fungi. In this study, an antagonistic bacteria KRS027 isolated from the soil rhizosphere of a healthy cotton plant from an infected field was identified as Burkholderia gladioli by morphological identification, multilocus sequence analysis, and typing (MLSA-MLST) and physiobiochemical examinations. KRS027 showed broad spectrum antifungal activity against various phytopathogenic fungi by secreting soluble and volatile compounds. KRS027 also has the characteristics of plant growth promotion (PGP) including nitrogen fixation, phosphate, and potassium solubilization, production of siderophores, and various enzymes. KRS027 is not only proven safe by inoculation of tobacco leaves and hemolysis test but also could effectively protect tobacco and table grapes against gray mold disease caused by Botrytis cinerea. Furthermore, KRS027 can trigger plant immunity by inducing systemic resistance (ISR) activated by salicylic acid- (SA), jasmonic acid- (JA), and ethylene (ET)-dependent signaling pathways. The extracellular metabolites and volatile organic compounds (VOCs) of KRS027 affected the colony extension and hyphal development by downregulation of melanin biosynthesis and upregulation of vesicle transport, G protein subunit 1, mitochondrial oxidative phosphorylation, disturbance of autophagy process, and degrading the cell wall of B. cinerea. These results demonstrated that B. gladioli KRS027 would likely become a promising biocontrol and biofertilizer agent against fungal diseases, including B. cinerea, and would promote plant growth. IMPORTANCE Searching the economical, eco-friendly and efficient biological control measures is the key to protecting crops from pathogenic fungi. The species of Burkholderia genus are widespread in the natural environment, of which nonpathogenic members have been reported to have great potential for biological control agents and biofertilizers for agricultural application. Burkholderia gladioli strains, however, need more study and application in the control of pathogenic fungi, plant growth promotion, and induced systemic resistance (ISR). In this study, we found that a B. gladioli strain KRS027 has broad spectrum antifungal activity, especially in suppressing the incidence of gray mold disease caused by Botrytis cinerea, and can stimulate plant immunity response via ISR activated by salicylic acid- (SA), jasmonic acid- (JA), and ethylene (ET)-dependent signaling pathways. These results indicate that B. gladioli KRS027 may be a promising biocontrol and biofertilizer microorganism resource in agricultural applications.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Wan-Zhen Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Zhi-Qiang Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Noam Alkan
- Department of Postharvest Science, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
10
|
Orozco-Mosqueda MDC, Kumar A, Fadiji AE, Babalola OO, Puopolo G, Santoyo G. Agroecological Management of the Grey Mould Fungus Botrytis cinerea by Plant Growth-Promoting Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:637. [PMID: 36771719 PMCID: PMC9919678 DOI: 10.3390/plants12030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Botrytis cinerea is the causal agent of grey mould and one of the most important plant pathogens in the world because of the damage it causes to fruits and vegetables. Although the application of botrycides is one of the most common plant protection strategies used in the world, the application of plant-beneficial bacteria might replace botrycides facilitating agroecological production practices. Based on this, we reviewed the different stages of B. cinerea infection in plants and the biocontrol mechanisms exerted by plant-beneficial bacteria, including the well-known plant growth-promoting bacteria (PGPB). Some PGPB mechanisms to control grey mould disease include antibiosis, space occupation, nutrient uptake, ethylene modulation, and the induction of plant defence mechanisms. In addition, recent studies on the action of anti-Botrytis compounds produced by PGPB and how they damage the conidial and mycelial structures of the pathogen are reviewed. Likewise, the advantages of individual inoculations of PGPB versus those that require the joint action of antagonist agents (microbial consortia) are discussed. Finally, it should be emphasised that PGPB are an excellent option to prevent grey mould in different crops and their use should be expanded for environmentally friendly agricultural practices.
Collapse
Affiliation(s)
| | - Ajay Kumar
- Centre of Advanced study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Gerardo Puopolo
- Center Agriculture Food Environment (C3A), University of Trento, Via Edmund Mach 1, 38098 San Michele all’Adige, Italy
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mich, Mexico
| |
Collapse
|
11
|
Ramos M, Daranas N, Llugany M, Tolrà R, Montesinos E, Badosa E. Grapevine response to a Dittrichia viscosa extract and a Bacillus velezensis strain. FRONTIERS IN PLANT SCIENCE 2022; 13:1075231. [PMID: 36589113 PMCID: PMC9803176 DOI: 10.3389/fpls.2022.1075231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The present study aims to evaluate the response of the three Mediterranean local grapevines 'Garnacha Blanca', 'Garnacha Tinta', and 'Macabeo' to treatments with biocontrol products, namely a botanical extract (Akivi, Dittrichia viscosa extract) and a beneficial microorganism (Bacillus UdG, Bacillus velezensis). A combination of transcriptomics and metabolomics approaches were chosen in order to study grapevine gene expression and to identify gene marker candidates, as well as, to determine differentially concentrated grapevine metabolites in response to biocontrol product treatments. Grapevine plants were cultivated in greenhouse under controlled conditions and submitted to the treatments. Thereafter, leaves were sampled 24h after treatment to carry out the gene expression study by RT-qPCR for the three cultivars and by RNA-sequencing for 'Garnacha Blanca'. Differentially expressed genes (DEGs) were investigated for both treatments and highly influenced DEGs were selected to be tested in the three cultivars as treatment gene markers. In addition, the extraction of leaf components was performed to quantify metabolites, such as phytohormones, organic acids, and phenols. Considering the upregulated and downregulated genes and the enhanced metabolites concentrations, the treatments had an effect on jasmonic acid, ethylene, and phenylpropanoids defense pathways. In addition, several DEG markers were identified presenting a stable overexpression after the treatments in the three grapevine cultivars. These gene markers could be used to monitor the activity of the products in field treatments. Further research will be necessary to confirm these primary results under field conditions.
Collapse
Affiliation(s)
- Mélina Ramos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
- Plant Physiology (BABVE), Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Núria Daranas
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Mercè Llugany
- Plant Physiology (BABVE), Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Roser Tolrà
- Plant Physiology (BABVE), Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| | - Esther Badosa
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, Spain
| |
Collapse
|
12
|
Miotto Vilanova LC, Rondeau M, Robineau M, Guise JF, Lavire C, Vial L, Fontaine F, Clément C, Jacquard C, Esmaeel Q, Aït Barka E, Sanchez L. Paraburkholderia phytofirmans PsJN delays Botrytis cinerea development on grapevine inflorescences. Front Microbiol 2022; 13:1030982. [DOI: 10.3389/fmicb.2022.1030982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Grapevine flowering is an important stage in the epidemiology of Botrytis cinerea, the causal agent of gray mold disease. To prevent infection and to minimize postharvest losses, the control of this necrotrophic fungus is mainly based on chemical fungicides application. However, there is a growing interest in other control alternatives. Among them, the use of beneficial microorganisms appears as an eco-friendly strategy. This study aims to investigate the effect of Paraburkholderia phytofirmans PsJN, root-inoculated or directly sprayed on fruiting cuttings inflorescences to control B. cinerea growth. For this purpose, quantification by real time PCR of Botrytis development, direct effect of PsJN on fungal spore germination and chemotaxis were assayed. Our results showed a significant protective effect of PsJN only by direct spraying on inflorescences. Moreover, we demonstrated an inhibition exerted by PsJN on Botrytis spore germination, effective when there was a direct contact between the two microorganisms. This study showed that PsJN is positively attracted by the pathogenic fungus B. cinerea and forms a biofilm around the fungal hyphae in liquid co-culture. Finally, microscopic observations on fruit cuttings revealed a co-localization of both beneficial and pathogenic microorganisms on grapevine receptacle and stigma that might be correlated with the protective effect induced by PsJN against B. cinerea via a direct antimicrobial effect. Taking together, our findings allowed us to propose PsJN as a biofungicide to control grapevine gray mold disease.
Collapse
|
13
|
Muthu Narayanan M, Ahmad N, Shivanand P, Metali F. The Role of Endophytes in Combating Fungal- and Bacterial-Induced Stress in Plants. Molecules 2022; 27:6549. [PMID: 36235086 PMCID: PMC9571366 DOI: 10.3390/molecules27196549] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Plants are subjected to multifaceted stresses that significantly jeopardize crop production. Pathogenic microbes influence biotic stress in plants, which ultimately causes annual crop loss worldwide. Although the use of pesticides and fungicides can curb the proliferation of pathogens in plants and enhance crop production, they pollute the environment and cause several health issues in humans and animals. Hence, there is a need for alternative biocontrol agents that offer an eco-friendly mode of controlling plant diseases. This review discusses fungal- and bacterial-induced stress in plants, which causes various plant diseases, and the role of biocontrol defense mechanisms, for example, the production of hydrolytic enzymes, secondary metabolites, and siderophores by stress-tolerant fungi and bacteria to combat plant pathogens. It is observed that beneficial endophytes could sustain crop production and resolve the issues regarding crop yield caused by bacterial and fungal pathogens. The collated literature review indicates that future research is necessary to identify potential biocontrol agents that can minimize the utility of synthetic pesticides and increase the tenable agricultural production.
Collapse
Affiliation(s)
| | | | - Pooja Shivanand
- Environmental and Life Sciences Program, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan BE1410, Brunei
| | | |
Collapse
|
14
|
Heo AY, Koo YM, Choi HW. Biological Control Activity of Plant Growth Promoting Rhizobacteria Burkholderia contaminans AY001 against Tomato Fusarium Wilt and Bacterial Speck Diseases. BIOLOGY 2022; 11:biology11040619. [PMID: 35453817 PMCID: PMC9028202 DOI: 10.3390/biology11040619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Burkholderia contaminans belongs to B. cepacia complex (Bcc), those of which are found in various environmental conditions. In this study, a novel strain AY001 of B. contaminans (AY001) was identified from the rhizosphere soil sample. AY001 showed (i) various plant growth-promoting rhizobacteria (PGPR)-related traits, (ii) antagonistic activity against different plant pathogenic fungi, (iii) suppressive activity against tomato Fusarium wilt disease, (iv) induced systemic acquired resistance (ISR)-triggering activity, and (v) production of various antimicrobial and plant immune-inducing secondary metabolites. These results suggest that AY001 is, indeed, a successful PGPR, and it can be practically used in tomato cultivation to alleviate biotic and abiotic stresses. However, further safety studies on the use of AY001 will be needed to ensure its safe use in the Agricultural system. Abstract Plant growth promoting rhizobacteria (PGPR) is not only enhancing plant growth, but also inducing resistance against a broad range of pathogens, thus providing effective strategies to substitute chemical products. In this study, Burkholderia contaminans AY001 (AY001) is isolated based on its broad-spectrum antifungal activity. AY001 not only inhibited fungal pathogen growth in dual culture and culture filtrate assays, but also showed various PGPR traits, such as nitrogen fixation, phosphate solubilization, extracellular protease production, zinc solubilization and indole-3-acetic acid (IAA) biosynthesis activities. Indeed, AY001 treatment significantly enhanced growth of tomato plants and enhanced resistance against two distinct pathogens, F. oxysporum f.sp. lycopersici and Pseudomonas syringae pv. tomato. Real-time qPCR analyses revealed that AY001 treatment induced jasmonic acid/ethylene-dependent defense-related gene expression, suggesting its Induced Systemic Resistance (ISR)-eliciting activity. Gas chromatography–mass spectrometry (GC-MS) analysis of culture filtrate of AY001 revealed production of antimicrobial compounds, including di(2-ethylhexyl) phthalate and pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl). Taken together, our newly isolated AY001 showed promising PGPR and ISR activities in tomato plants, suggesting its potential use as a biofertilizer and biocontrol agent.
Collapse
Affiliation(s)
- A Yeong Heo
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
- Division of Forest Insect Pests & Diseases, National Institute of Forest Science, Seoul 02455, Korea
| | - Young Mo Koo
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
| | - Hyong Woo Choi
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729, Korea; (A.Y.H.); (Y.M.K.)
- Correspondence: ; Tel.: +82-54-820-5509
| |
Collapse
|
15
|
Lahlali R, Ezrari S, Radouane N, Kenfaoui J, Esmaeel Q, El Hamss H, Belabess Z, Barka EA. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022; 10:microorganisms10030596. [PMID: 35336171 PMCID: PMC8951280 DOI: 10.3390/microorganisms10030596] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
The increase in the world population has generated an important need for both quality and quantity agricultural products, which has led to a significant surge in the use of chemical pesticides to fight crop diseases. Consumers, however, have become very concerned in recent years over the side effects of chemical fungicides on human health and the environment. As a result, research into alternative solutions to protect crops has been imposed and attracted wide attention from researchers worldwide. Among these alternatives, biological controls through beneficial microorganisms have gained considerable importance, whilst several biological control agents (BCAs) have been screened, among them Bacillus, Pantoea, Streptomyces, Trichoderma, Clonostachys, Pseudomonas, Burkholderia, and certain yeasts. At present, biopesticide products have been developed and marketed either to fight leaf diseases, root diseases, or fruit storage diseases. However, no positive correlation has been observed between the number of screened BCAs and available marketed products. Therefore, this review emphasizes the development of biofungicides products from screening to marketing and the problems that hinder their development. Finally, particular attention was given to the gaps observed in this sector and factors that hamper its development, particularly in terms of efficacy and legislation procedures.
Collapse
Affiliation(s)
- Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
- Correspondence: (R.L.); (E.A.B.); Tel.: +212-55-30-02-39 (R.L.); +33-3-2691-3441 (E.A.B.)
| | - Said Ezrari
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Nabil Radouane
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Jihane Kenfaoui
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco
| | - Qassim Esmaeel
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Hajar El Hamss
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Menkes 50001, Morocco; (S.E.); (N.R.); (J.K.); (H.E.H.)
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research, Avenue Mohamed VI, BP428 Oujda, Oujda 60000, Morocco;
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707-USC INRAE1488, Université de Reims Champagne-Ardenne, 51100 Reims, France;
- Correspondence: (R.L.); (E.A.B.); Tel.: +212-55-30-02-39 (R.L.); +33-3-2691-3441 (E.A.B.)
| |
Collapse
|
16
|
Darriaut R, Lailheugue V, Masneuf-Pomarède I, Marguerit E, Martins G, Compant S, Ballestra P, Upton S, Ollat N, Lauvergeat V. Grapevine rootstock and soil microbiome interactions: Keys for a resilient viticulture. HORTICULTURE RESEARCH 2022; 9:uhac019. [PMID: 35184168 PMCID: PMC8985100 DOI: 10.1093/hr/uhac019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/18/2021] [Accepted: 01/17/2022] [Indexed: 05/10/2023]
Abstract
Soil microbiota has increasingly been shown to play an integral role in viticulture resilience. The emergence of new metagenomic and culturomic technologies has led to significant advances in the study of microbial biodiversity. In the agricultural sector, soil and plant microbiomes have been found to significantly improve resistance to environmental stressors and diseases, as well as influencing crop yields and fruit quality thus improving sustainability under shifting environments. Grapevines are usually cultivated as a scion grafted on rootstocks, which are selected according to pedoclimatic conditions and cultural practices, known as terroir. The rootstock connects the surrounding soil to the vine's aerial part and impacts scion growth and berry quality. Understanding rootstock and soil microbiome dynamics is a relevant and important field of study, which may be critical to improve viticulture sustainability and resilience. This review aims to highlight the relationship between grapevine roots and telluric microbiota diversity and activity. In addition, this review explores the concept of core microbiome regarding potential applications of soil microbiome engineering with the goal of enhancing grapevine adaptation to biotic and abiotic stress.
Collapse
Affiliation(s)
- Romain Darriaut
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Vincent Lailheugue
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Isabelle Masneuf-Pomarède
- Université de Bordeaux,
UMR Oenologie 1366, INRAE, Bordeaux INP, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
- Bordeaux Sciences Agro, 33170 Gradignan, France
| | - Elisa Marguerit
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Guilherme Martins
- Université de Bordeaux,
UMR Oenologie 1366, INRAE, Bordeaux INP, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
- Bordeaux Sciences Agro, 33170 Gradignan, France
| | - Stéphane Compant
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad Lorenz Straße 24, Tulln, A-3430, Austria
| | - Patricia Ballestra
- Université de Bordeaux,
UMR Oenologie 1366, INRAE, Bordeaux INP, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
| | | | - Nathalie Ollat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Virginie Lauvergeat
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| |
Collapse
|
17
|
Fournier P, Pellan L, Barroso-Bergadà D, Bohan DA, Candresse T, Delmotte F, Dufour MC, Lauvergeat V, Le Marrec C, Marais A, Martins G, Masneuf-Pomarède I, Rey P, Sherman D, This P, Frioux C, Labarthe S, Vacher C. The functional microbiome of grapevine throughout plant evolutionary history and lifetime. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|