1
|
Au E, Panganiban KJ, Wu S, Sun K, Humber B, Remington G, Agarwal SM, Giacca A, Pereira S, Hahn M. Antipsychotic-Induced Dysregulation of Glucose Metabolism Through the Central Nervous System: A Scoping Review of Animal Models. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:244-257. [PMID: 39461717 DOI: 10.1016/j.bpsc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The use of antipsychotic drugs is associated with adverse metabolic effects. Disruptions in glucose metabolism such as hyperglycemia and insulin resistance have been shown to occur with antipsychotic use, independent of changes in body weight or adiposity. The regulation of whole-body glucose metabolism is partly mediated by the central nervous system. In particular, the hypothalamus and brainstem are responsive to peripheral energy signals and subsequently mediate feedback mechanisms to maintain peripheral glucose homeostasis. In this scoping review of preclinical in vivo studies, we aimed to explore central mechanisms through which antipsychotics dysregulate glucose metabolism. A systematic search for animal studies identified 29 studies that met our eligibility criteria for qualitative synthesis. The studies suggest that antipsychotic-induced changes in autonomic nervous system activity, certain neurotransmitter systems, expression of neuropeptides, and central insulin action mediate impairments in glucose metabolism. These findings provide insight into potential targets for the mitigation of the adverse effects of antipsychotics on glucose metabolism.
Collapse
Affiliation(s)
- Emily Au
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Kristoffer J Panganiban
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kira Sun
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Bailey Humber
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Adria Giacca
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Margaret Hahn
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Scairati R, Auriemma RS, Di Meglio S, Del Vecchio G, Pirchio R, Graziadio C, Pivonello C, Pivonello R, Colao A. Risk Assessment of Diabetes Mellitus During and After Pregnancy in Women With Prolactinomas. J Clin Endocrinol Metab 2024; 109:3245-3253. [PMID: 38693775 DOI: 10.1210/clinem/dgae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
CONTEXT Prolactin (PRL) is a crucial mediator of glucoinsulinemic metabolism. OBJECTIVE This work aims to dissect glucose metabolism during and after pregnancy in patients with prolactinomas. METHODS A total of 52 patients treated with cabergoline (CAB) were evaluated before conception, during pregnancy, and up to 10 years after delivery. During pregnancy, CAB was discontinued, while it was restarted in 57.7% of patients after delivery, due to recurrent hyperprolactinemia (RH). Hormonal (serum PRL) and metabolic (glycated hemoglobin A1c [HbA1c], fasting glucose [FG], glucose tolerance) parameters were assessed. RESULTS During pregnancy, PRL gradually increased, while FG remained stable. An inverse correlation between PRL and FG was found in the first (P = .032) and third (P = .048) trimester. PRL percentage increase across pregnancy was inversely correlated with third-trimester FG. Serum PRL before conception emerged as a predictive biomarker of third-trimester FG (t = 2.603; P = .048). Older patients with lower HbA1c in the first trimester and lower FG at 3 years post partum delivered infants with reduced birth weight. Breastfeeding up to 6 months correlated with lower FG at 4 and 10 years post partum. A positive correlation between BMI and FG at 10 years after delivery (P = .03) was observed, particularly in overweight/obese patients requiring higher CAB doses. Patients with RH who had to restart CAB showed shorter breastfeeding duration and higher FG at 2 years post partum. CONCLUSION Low PRL levels before pregnancy may be detrimental to FG during pregnancy. CAB duration and dose may influence long-term glucose tolerance, besides family history and BMI. Preconception metabolic management should be recommended to reduce the risk of gestational and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Roberta Scairati
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, 80131, Naples, Italy
| | - Renata S Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, 80131, Naples, Italy
| | - Sara Di Meglio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, 80131, Naples, Italy
| | - Guendalina Del Vecchio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, 80131, Naples, Italy
| | - Rosa Pirchio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, 80131, Naples, Italy
| | - Chiara Graziadio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, 80131, Naples, Italy
| | - Claudia Pivonello
- Dipartimento di Sanità Pubblica, Università Federico II di Napoli, 80131, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, 80131, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Università Federico II, 80131, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, 80131, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, Università Federico II, 80131, Naples, Italy
| |
Collapse
|
3
|
Li Y, Usman M, Sapp E, Ke Y, Wang Z, Boudi A, DiFiglia M, Li X. Chronic pharmacologic manipulation of dopamine transmission ameliorates metabolic disturbance in Trappc9-linked brain developmental syndrome. JCI Insight 2024; 9:e181339. [PMID: 38889014 PMCID: PMC11383600 DOI: 10.1172/jci.insight.181339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Loss-of-function mutations of the gene encoding the trafficking protein particle complex subunit 9 (Trappc9) cause autosomal recessive intellectual disability and obesity by unknown mechanisms. Genome-wide analysis links Trappc9 to nonalcoholic fatty liver disease (NAFLD). Trappc9-deficient mice have been shown to appear overweight shortly after weaning. Here, we analyzed serum biochemistry and histology of adipose and liver tissues to determine the incidence of obesity and NAFLD in Trappc9-deficient mice and combined transcriptomic and proteomic analyses, pharmacological studies, and biochemical and histological examinations of postmortem mouse brains to unveil mechanisms involved. We found that Trappc9-deficient mice presented with systemic glucose homeostatic disturbance, obesity, and NAFLD, which were relieved upon chronic treatment combining dopamine receptor D2 (DRD2) agonist quinpirole and DRD1 antagonist SCH23390. Blood glucose homeostasis in Trappc9-deficient mice was restored upon administering quinpirole alone. RNA-sequencing analysis of DRD2-containing neurons and proteomic study of brain synaptosomes revealed signs of impaired neurotransmitter secretion in Trappc9-deficient mice. Biochemical and histological studies of mouse brains showed that Trappc9-deficient mice synthesized dopamine normally, but their dopamine-secreting neurons had a lower abundance of structures for releasing dopamine in the striatum. Our study suggests that Trappc9 loss of function causes obesity and NAFLD by constraining dopamine synapse formation.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Muhammad Usman
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Yuting Ke
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Xueyi Li
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
4
|
Scairati R, Auriemma RS, Del Vecchio G, Di Meglio S, Pivonello R, Colao A. Prolactin effects on the pathogenesis of diabetes mellitus. Eur J Clin Invest 2024; 54:e14190. [PMID: 38470045 DOI: 10.1111/eci.14190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Prolactin (PRL) is a pituitary hormone promoting lactation in response to the suckling reflex. Beyond its well-known effects, novel tissue-specific and metabolic functions of PRL are emerging. AIMS To dissect PRL as a critical mediator of whole-body gluco-insulinemic sensitivity. METHODS PubMed-based search with the following terms 'prolactin', 'glucose metabolism', 'type 2 diabetes mellitus', 'type 1 diabetes mellitus', 'gestational diabetes mellitus' was performed. DISCUSSION The identification of the PRL-glucose metabolism network poses the basis for unprecedented avenues of research in the pathogenesis of diabetes mellitus type 1 or 2, as well as of gestational diabetes. In this regard, it is of timely relevance to define properly the homeostatic PRL serum levels since glucose metabolism could be influenced by the circulating amount of the hormone. RESULTS This review underscores the basic mechanisms of regulation of pancreatic β-cell functions by PRL and provides a revision of articles which have investigated the connection between PRL unbalancing and diabetes mellitus. Future studies are needed to elucidate the burden and the role of PRL in the regulation of glucose metabolism and determine the specific PRL threshold that may impact the management of diabetes. CONCLUSION A careful evaluation and context-driven interpretation of PRL levels (e.g., pregnancy, PRL-secreting pituitary adenomas, drug-related hyper- and hypoprolactinemia) could be critical for the correct screening and management of glucometabolic disorders, such as type 1 or 2 as well as gestational diabetes mellitus.
Collapse
Affiliation(s)
- Roberta Scairati
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Renata Simona Auriemma
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Guendalina Del Vecchio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Sara Di Meglio
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, University Federico II, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Università Federico II di Napoli, Naples, Italy
- UNESCO Chair for Health Education and Sustainable Development, University Federico II, Naples, Italy
| |
Collapse
|
5
|
Vázquez-Carrillo DI, Ocampo-Ruiz AL, Báez-Meza A, Ramírez- Hernández G, Adán-Castro E, García-Rodrigo JF, Dena-Beltrán JL, de los Ríos EA, Sánchez-Martínez MK, Ortiz MG, Martínez de la Escalera G, Clapp C, Macotela Y. Dopamine D2 receptor antagonist counteracts hyperglycemia and insulin resistance in diet-induced obese male mice. PLoS One 2024; 19:e0301496. [PMID: 38635745 PMCID: PMC11025782 DOI: 10.1371/journal.pone.0301496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Obesity leads to insulin resistance (IR) and type 2 diabetes. In humans, low levels of the hormone prolactin (PRL) correlate with IR, adipose tissue (AT) dysfunction, and increased prevalence of T2D. In obese rats, PRL treatment promotes insulin sensitivity and reduces visceral AT adipocyte hypertrophy. Here, we tested whether elevating PRL levels with the prokinetic and antipsychotic drug sulpiride, an antagonist of dopamine D2 receptors, improves metabolism in high fat diet (HFD)-induced obese male mice. Sulpiride treatment (30 days) reduced hyperglycemia, IR, and the serum and pancreatic levels of triglycerides in obese mice, reduced visceral and subcutaneous AT adipocyte hypertrophy, normalized markers of visceral AT function (PRL receptor, Glut4, insulin receptor and Hif-1α), and increased glycogen stores in skeletal muscle. However, the effects of sulpiride reducing hyperglycemia were also observed in obese prolactin receptor null mice. We conclude that sulpiride reduces obesity-induced hyperglycemia by mechanisms that are independent of prolactin/prolactin receptor activity. These findings support the therapeutic potential of sulpiride against metabolic dysfunction in obesity.
Collapse
Affiliation(s)
- Dina I. Vázquez-Carrillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Ana Luisa Ocampo-Ruiz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Arelí Báez-Meza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Gabriela Ramírez- Hernández
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Elva Adán-Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - José Fernando García-Rodrigo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - José Luis Dena-Beltrán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Ericka A. de los Ríos
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - María Georgina Ortiz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| |
Collapse
|
6
|
Motger-Albertí A, de la Calle E, Giménez M, Blasco G, Biarnés C, Arnoriaga-Rodríguez M, Puig J, Coll-Martínez C, Contreras-Rodríguez O, Fernández-Real JM. Increased brain fractional perfusion in obesity using intravoxel incoherent motion (IVIM) MRI metrics. Obesity (Silver Spring) 2024; 32:756-767. [PMID: 38383843 DOI: 10.1002/oby.24001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/24/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024]
Abstract
OBJECTIVE This research seeks to shed light on the associations between brain perfusion, cognitive function, and mental health in individuals with and without obesity. METHODS In this study, we employed the noninvasive intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) technique to examine brain fractional perfusion (FP) in two groups: individuals with obesity (N = 72) and healthy controls (N = 66). Additionally, we investigated potential associations between FP, cognitive function, and depressive symptoms in the participants with and without obesity. Finally, artificial intelligence algorithms (Boruta analysis) were also used. RESULTS Participants with obesity exhibited increased FP within dopaminergic brain circuits, particularly involving prefrontal cortex areas, anterior and posterior sections of the cingulate cortex, the right striatum, and the midbrain. Additionally, these individuals demonstrated lower working memory and higher depressive symptoms compared to the control group. Notably, higher FP in the inferior temporal and occipital cortices correlated with greater depressive symptoms, whereas increased FP in the right ventral caudate and the midbrain was associated with better working memory performance. A link between inflammatory and metabolic variables, with a particular emphasis on monocytes, and FP in obesity was also evidenced by Boruta analysis. CONCLUSIONS Increased brain perfusion in individuals with obesity is associated with cognitive function and mental health through interaction with metabolic and inflammatory factors.
Collapse
Affiliation(s)
- Anna Motger-Albertí
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Elena de la Calle
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - Mònica Giménez
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - Gerard Blasco
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - Carles Biarnés
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Department of Radiology-Medical Imaging, Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
| | - Clàudia Coll-Martínez
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Josep Trueta University Hospital, Girona, Spain
- Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute, Department of Medical Sciences, University of Girona, Girona, Spain
| | - Oren Contreras-Rodríguez
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute, Josep Trueta University Hospital, Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| |
Collapse
|
7
|
Wu Q, Long Y, Peng X, Song C, Xiao J, Wang X, Liu F, Xie P, Yang J, Shi Z, Hu Z, McCaig C, St Clair D, Lang B, Wu R. Prefrontal cortical dopamine deficit may cause impaired glucose metabolism in schizophrenia. Transl Psychiatry 2024; 14:79. [PMID: 38320995 PMCID: PMC10847097 DOI: 10.1038/s41398-024-02800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/04/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
The brain neurotramsmitter dopamine may play an important role in modulating systemic glucose homeostasis. In seven hundred and four drug- naïve patients with first-episode schizophrenia, we provide robust evidence of positive associations between negative symptoms of schizophrenia and high fasting blood glucose. We then show that glucose metabolism and negative symptoms are improved when intermittent theta burst stimulation (iTBS) on prefrontal cortex (PFC) is performed in patients with predominantly negative symptoms of schizophrenia. These findings led us to hypothesize that the prefrontal cortical dopamine deficit, which is known to be associated with negative symptoms, may be responsible for abnormal glucose metabolism in schizophrenia. To explore this, we optogenetically and chemogenetically inhibited the ventral tegmental area (VTA)-medial prefrontal cortex (mPFC) dopamine projection in mice and found both procedures caused glucose intolerance. Moreover, microinjection of dopamine two receptor (D2R) neuron antagonists into mPFC in mice significantly impaired glucose tolerance. Finally, a transgenic mouse model of psychosis named Disc1tr exhibited depressive-like symptoms, impaired glucose homeostasis, and compared to wild type littermates reduced D2R expression in prefrontal cortex.
Collapse
Affiliation(s)
- Qiongqiong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
| | - Yujun Long
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xingjie Peng
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Chuhan Song
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jingmei Xiao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoyi Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Furu Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peng Xie
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jinqing Yang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhonghua Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Colin McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - David St Clair
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Bing Lang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Renrong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
8
|
Ikeda H, Mikami R, Yonemochi N, Waddington JL. Regulation of plasma glucose levels by central dopamine D 2 receptors is impaired in type 1 but not type 2 diabetic mouse models. Eur J Pharmacol 2023; 956:175984. [PMID: 37567458 DOI: 10.1016/j.ejphar.2023.175984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/22/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Glucose metabolism is reported to be regulated by the central nervous system, but it is unclear whether this regulation is altered in diabetes. We investigated whether regulation of glucose metabolism by central dopamine D2 receptors is altered in type 1 and type 2 diabetic models. Intracerebroventricular injections of both the dopamine D2 receptor agonist quinpirole and the antagonist l-sulpiride induced hyperglycemia in control mice, but not in streptozotocin (STZ)-induced diabetic mice, a type 1 diabetic model. Hyperglycemia induced by quinpirole or l-sulpiride was diminished following fasting and these drugs did not affect hyperglycemia in the pyruvate tolerance test. In addition, both quinpirole and l-sulpiride increased hepatic glucose-6-phosphatase (G6Pase) mRNA. In STZ-induced diabetic mice, dopamine and dopamine D2 receptor mRNA in the hypothalamus, which regulates glucose homeostasis, were decreased. Hepatic glycogen and G6Pase mRNA were also decreased in STZ-induced diabetic mice. Neither quinpirole nor l-sulpiride increased hepatic G6Pase mRNA in STZ-induced diabetic mice. In diet-induced obesity mice, a type 2 diabetic model, both quinpirole and l-sulpiride induced hyperglycemia, and hypothalamic dopamine and dopamine D2 receptor mRNA were not altered. These results indicate that (i) stimulation or blockade of dopamine D2 receptors causes hyperglycemia by increasing hepatic glycogenolysis, and (ii) stimulation or blockade of dopamine D2 receptors does not affect glucose levels in type 1 but does so in type 2 diabetic models. Moreover, hypothalamic dopaminergic function and hepatic glycogenolysis are decreased in the type 1 diabetic model, which reduces hyperglycemia induced by stimulation or blockade of dopamine D2 receptors.
Collapse
Affiliation(s)
- Hiroko Ikeda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Risa Mikami
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Naomi Yonemochi
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, 111 St Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
9
|
Smith ECC, Au E, Pereira S, Sharma E, Venkatasubramanian G, Remington G, Agarwal SM, Hahn M. Clinical improvement in schizophrenia during antipsychotic treatment in relation to changes in glucose parameters: A systematic review. Psychiatry Res 2023; 328:115472. [PMID: 37722239 DOI: 10.1016/j.psychres.2023.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Antipsychotics (APs) are the cornerstone of treatment for schizophrenia (SCZ) spectrum disorders. Previous research suggests that there may be a positive association between AP-induced weight gain and/or dyslipidemia and improvement in psychiatric symptoms, often referred to as a "metabolic threshold". To determine whether a similar relationship exists for glucose parameters, we conducted a systematic search in six databases from inception to June 2022 for all longitudinal studies that directly examined the relationship between changes in glucose-related outcomes and changes in psychopathology among patients with SCZ treated with APs. We identified 10 relevant studies and one additional study that considered cognition. In most cases, we found that increased levels of fasting glucose and insulin following treatment were associated with clinical improvement. These findings contribute to existing literature that could suggest a common mechanism between AP action and metabolic side effects and support a need for additional work aimed at exploring the validity of a glucose-psychopathology relation in SCZ.
Collapse
Affiliation(s)
- Emily Chen Chen Smith
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen St. W, Toronto, ON M6J 1H3, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
| | - Emily Au
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen St. W, Toronto, ON M6J 1H3, Canada; Department of Pharmacology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 4207, Toronto, ON, Canada
| | - Sandra Pereira
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen St. W, Toronto, ON M6J 1H3, Canada; Department of Physiology, University of Toronto, 1 King's College Circle, Medical Sciences Building, 3rd floor, Toronto, ON M5S 1A8, Canada
| | - Eesha Sharma
- National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore - 560029, Karnataka, India
| | | | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen St. W, Toronto, ON M6J 1H3, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen St. W, Toronto, ON M6J 1H3, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada; Banting and Best Diabetes Centre, University of Toronto, 200 Elizabeth Street, Eaton Building, 12th Floor, Room 12E248, Toronto, ON M5G 2C4, Canada
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen St. W, Toronto, ON M6J 1H3, Canada; Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada; Department of Psychiatry, University of Toronto, 250 College Street, 8th floor, Toronto, ON M5T 1R8, Canada; Banting and Best Diabetes Centre, University of Toronto, 200 Elizabeth Street, Eaton Building, 12th Floor, Room 12E248, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
10
|
Li Y, Tan Y, Ren L, Li Q, Sui J, Liu S. Structural and expression analysis of the dopamine receptors reveals their crucial roles in regulating the insulin signaling pathway in oysters. Int J Biol Macromol 2023; 247:125703. [PMID: 37414315 DOI: 10.1016/j.ijbiomac.2023.125703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Dopamine performs its critical role upon binding to receptors. Since dopamine receptors are numerous and versatile, understanding their protein structures and evolution status, and identifying the key receptors involved in the modulation of insulin signaling will provide essential clues to investigate the molecular mechanism of neuroendocrine regulating the growth in invertebrates. In this study, seven dopamine receptors were identified in the Pacific oysters (Crassostrea gigas) and were classified into four subtypes according to their protein secondary and tertiary structures, and ligand-binding activities. Of which, DR2 (dopamine receptor 2) and D(2)RA-like (D(2) dopamine receptor A-like) were considered the invertebrate-specific type 1 and type 2 dopamine receptors, respectively. Expression analysis indicated that the DR2 and D(2)RA-like were highly expressed in the fast-growing oyster "Haida No.1". After in vitro incubation of ganglia and adductor muscle with exogenous dopamine and dopamine receptor antagonists, the expression of these two dopamine receptors and ILPs (insulin-like peptides) was also significantly affected. Dual-fluorescence in situ hybridization results showed that D(2)RA-like and DR2 were co-localized with MIRP3 (molluscan insulin-related peptide 3) and MIRP3-like (molluscan insulin-related peptide 3-like) in the visceral ganglia, and were co-localized with ILP (insulin-like peptide) in the adductor muscle. Furthermore, the downstream components of dopamine signaling, including PKA, ERK, CREB, CaMKK1, AKT, and GSK3β were also significantly affected by the exogenous dopamine and dopamine receptor antagonists. These findings confirmed that dopamine might affect the secretion of ILPs through the invertebrate-specific dopamine receptors D(2)RA-like and DR2, and thus played crucial roles in the growth regulation of the Pacific oysters. Our study establishes the potential regulatory relationship between the dopaminergic system and insulin-like signaling pathway in marine invertebrates.
Collapse
Affiliation(s)
- Yongjing Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ying Tan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Liting Ren
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
11
|
Zhou R, He M, Fan J, Li R, Zuo Y, Li B, Gao G, Sun T. The role of hypothalamic endoplasmic reticulum stress in schizophrenia and antipsychotic-induced weight gain: A narrative review. Front Neurosci 2022; 16:947295. [PMID: 36188456 PMCID: PMC9523121 DOI: 10.3389/fnins.2022.947295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental illness that affects 1% of people worldwide. SCZ is associated with a higher risk of developing metabolic disorders such as obesity. Antipsychotics are the main treatment for SCZ, but their side effects include significant weight gain/obesity. Despite extensive research, the underlying mechanisms by which SCZ and antipsychotic treatment induce weight gain/obesity remain unclear. Hypothalamic endoplasmic reticulum (ER) stress is one of the most important pathways that modulates inflammation, neuronal function, and energy balance. This review aimed to investigate the role of hypothalamic ER stress in SCZ and antipsychotic-induced weight gain/obesity. Preliminary evidence indicates that SCZ is associated with reduced dopamine D2 receptor (DRD2) signaling, which significantly regulates the ER stress pathway, suggesting the importance of ER stress in SCZ and its related metabolic disorders. Antipsychotics such as olanzapine activate ER stress in hypothalamic neurons. These effects may induce decreased proopiomelanocortin (POMC) processing, increased neuropeptide Y (NPY) and agouti-related protein (AgRP) expression, autophagy, and leptin and insulin resistance, resulting in hyperphagia, decreased energy expenditure, and central inflammation, thereby causing weight gain. By activating ER stress, antipsychotics such as olanzapine activate hypothalamic astrocytes and Toll-like receptor 4 signaling, thereby causing inflammation and weight gain/obesity. Moreover, evidence suggests that antipsychotic-induced ER stress may be related to their antagonistic effects on neurotransmitter receptors such as DRD2 and the histamine H1 receptor. Taken together, ER stress inhibitors could be a potential effective intervention against SCZ and antipsychotic-induced weight gain and inflammation.
Collapse
Affiliation(s)
- Ruqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- *Correspondence: Meng He,
| | - Jun Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ruoxi Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Zuo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Benben Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Guanbin Gao,
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Taolei Sun,
| |
Collapse
|
12
|
Gao Z, Min X, Kim KM, Liu H, Hu L, Wu C, Zhang X. The tyrosine phosphorylation of GRK2 is responsible for activated D2R-mediated insulin resistance. Biochem Biophys Res Commun 2022; 628:40-48. [DOI: 10.1016/j.bbrc.2022.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
|
13
|
Keller RM, Beaver LM, Prater MC, Truong L, Tanguay RL, Stevens JF, Hord NG. Nitrate exposure reprograms hepatic amino acid and nutrient sensing pathways prior to exercise: A metabolomic and transcriptomic investigation in zebrafish (Danio rerio). Front Mol Biosci 2022; 9:903130. [PMID: 35928228 PMCID: PMC9343839 DOI: 10.3389/fmolb.2022.903130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Scope: Nitrate supplementation is a popular ergogenic aid that improves exercise performance by reducing oxygen consumption during exercise. We investigated the effect of nitrate exposure and exercise on metabolic pathways in zebrafish liver.Materials and methods: Fish were exposed to sodium nitrate (606.9 mg/L), or control water, for 21 days and analyzed at intervals during an exercise test. We utilized untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and measured gene expression of 24 genes central to energy metabolism and redox signaling.Results: We observed a greater abundance of metabolites involved in endogenous nitric oxide (NO) metabolism and amino acid metabolism in nitrate-treated liver at rest, compared to rested controls. In the absence of exercise, nitrate treatment upregulated expression of genes central to nutrient sensing (pgc1a), protein synthesis (mtor) and purine metabolism (pnp5a and ampd1) and downregulated expression of genes involved in mitochondrial fat oxidation (acaca and cpt2).Conclusion: Our data support a role for sub-chronic nitrate treatment in the improvement of exercise performance, in part, by improving NO bioavailability, sparing arginine, and modulating hepatic gluconeogenesis and glycolytic capacity in the liver.
Collapse
Affiliation(s)
- Rosa M. Keller
- University of California, San Francisco, San Francisco, CA, United States
| | - Laura M. Beaver
- University of California, San Francisco, San Francisco, CA, United States
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Mary C. Prater
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA, United States
| | - Lisa Truong
- Sinnhuber Aquatic Research Laboratory and the Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Robyn L. Tanguay
- Sinnhuber Aquatic Research Laboratory and the Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Jan F. Stevens
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
- College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Norman G. Hord
- OU Health, Harold Hamm Diabetes Center, Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- *Correspondence: Norman G. Hord,
| |
Collapse
|
14
|
Kabir MT, Ferdous Mitu J, Akter R, Akhtar MF, Saleem A, Al-Harrasi A, Bhatia S, Rahman MS, Damiri F, Berrada M, Rahman MH. Therapeutic potential of dopamine agonists in the treatment of type 2 diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46385-46404. [PMID: 35486279 DOI: 10.1007/s11356-022-20445-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Diabetes is a global health concern that has affected almost 415 million people globally. Bromocriptine is a dopamine D2 agonist, which is a Food and Drug Administration (FDA)-approved drug to treat type 2 diabetes mellitus (T2DM) patients. However, it is considered that a novel treatment therapy is required which can be used in the treatment of diabetes with or without other antidiabetic agents. Dopamine agonists are usually used in neurological disorders like Parkinson's disease (PD), restless leg syndrome, and hyperprolactinemia. However, dopamine agonists including bromocriptine and cabergoline are also effective in reducing the glycemic level in T2DM patients. Bromocriptine was formerly used for the treatment of PD, hyperprolactinemia, and restless leg syndrome, but now it is used for improving glycemic levels as well as reducing free fatty acids and triglycerides. In addition, cabergoline has been found to be effective in glycemic control, but this drug is yet to be approved by the FDA due to its limitations and lack of study. Findings of the clinical trials of bromocriptine have suggested that it reduces almost 0.4-0.8% glycated hemoglobin and cardiovascular risk by 40% in insulin-resistant patients. Moreover, the safe use of bromocriptine in obese T2DM patients makes it a more attractive option as it causes weight loss. Indeed, bromocriptine is a novel therapy for T2DM patients, as its mechanism of action is unique in T2DM patients with minimal adverse effects. This review summarizes the potential of dopamine agonists in the treatment of T2DM.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | | | - Raushanara Akter
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Md Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal, 8200, Bangladesh
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca, Morocco
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca, Morocco
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Gangwon-do, Korea.
| |
Collapse
|
15
|
Arata Y, Shiga I, Ikeda Y, Jurica P, Kimura H, Kiyono K, Sako Y. Insulin signaling shapes fractal scaling of C. elegans behavior. Sci Rep 2022; 12:10481. [PMID: 35729173 PMCID: PMC9213454 DOI: 10.1038/s41598-022-13022-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
Fractal scaling in animal behavioral activity, where similar temporal patterns appear repeatedly over a series of magnifications among time scales, governs the complex behavior of various animal species and, in humans, can be altered by neurodegenerative diseases and aging. However, the mechanism underlying fractal scaling remains unknown. Here, we cultured C. elegans in a microfluidic device for 3 days and analyzed temporal patterns of C. elegans activity by fractal analyses. The residence-time distribution of C. elegans behaviors shared a common feature with those of human and mice. Specifically, the residence-time power-law distribution of the active state changed to an exponential-like decline at a longer time scale, whereas the inactive state followed a power-law distribution. An exponential-like decline appeared with nutrient supply in wild-type animals, whereas this decline disappeared in insulin-signaling-defective daf-2 and daf-16 mutants. The absolute value of the power-law exponent of the inactive state distribution increased with nutrient supply in wild-type animals, whereas the value decreased in daf-2 and daf-16 mutants. We conclude that insulin signaling differentially affects mechanisms that determine the residence time in active and inactive states in C. elegans behavior. In humans, diabetes mellitus, which is caused by defects in insulin signaling, is associated with mood disorders that affect daily behavioral activities. We hypothesize that comorbid behavioral defects in patients with diabetes may be attributed to altered fractal scaling of human behavior.
Collapse
Affiliation(s)
- Yukinobu Arata
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Itsuki Shiga
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Yusaku Ikeda
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Peter Jurica
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, School of Engineering, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
16
|
Wang K, You S, Hu H, Li X, Yin J, Shi Y, Qi L, Li P, Zhao Y, Yan S. Effect of TLR4/MyD88/NF-kB axis in paraventricular nucleus on ventricular arrhythmias induced by sympathetic hyperexcitation in post-myocardial infarction rats. J Cell Mol Med 2022; 26:2959-2971. [PMID: 35393774 PMCID: PMC9097841 DOI: 10.1111/jcmm.17309] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022] Open
Abstract
Sympathetic activation after myocardial infarction (MI) leads to ventricular arrhythmias (VAs), which can result in sudden cardiac death (SCD). The toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-kappa B (NF-kB) axis within the hypothalamic paraventricular nucleus (PVN), a cardiac-neural sympathetic nerve centre, plays an important role in causing VAs. An MI rat model and a PVN-TLR4 knockdown model were constructed. The levels of protein were detected by Western blotting and immunofluorescence, and localizations were visualized by multiple immunofluorescence staining. Central and peripheral sympathetic activation was visualized by immunohistochemistry for c-fos protein, renal sympathetic nerve activity (RSNA) measurement, heart rate variability (HRV) analysis and norepinephrine (NE) level detection in serum and myocardial tissue measured by ELISA. The arrhythmia scores were measured by programmed electrical stimulation (PES), and cardiac function was detected by the pressure-volume loop (P-V loop). The levels of TLR4 and MyD88 and the nuclear translocation of NF-kB within the PVN were increased after MI, while sympathetic activation and arrhythmia scores were increased and cardiac function was decreased. However, inhibition of TLR4 significantly reversed these conditions. PVN-mediated sympathetic activation via the TLR4/MyD88/NF-kB axis ultimately leads to the development of VAs after MI.
Collapse
Affiliation(s)
- Kang Wang
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuling You
- Adicon Clinical Laboratories.Inc., Department of Pathology, Wangkai Infectious Diseases Hospital of Zaozhuang City, Zaozhuang, Shandong, China
| | - Hesheng Hu
- Department of Cardiology, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Xiaolu Li
- Department of Emergency Medicine, Shandong Medicine and Health Key Laboratory of Emergency Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Jie Yin
- Department of Cardiology, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yugen Shi
- Department of Cardiology, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Lei Qi
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Pingjiang Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuepeng Zhao
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Suhua Yan
- Department of Cardiology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Cardiology, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
17
|
A prospective comparative study of the MNA-SF and GNRI nutritional screening tools in predicting infectious complications among elderly patients over 70 years undergoing posterior lumbar arthrodesis. Aging Clin Exp Res 2021; 33:1947-1953. [PMID: 33044736 DOI: 10.1007/s40520-020-01725-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Malnutrition is a risk factor for postoperative infectious complications of elderly patients undergoing posterior lumbar arthrodesis. At present, there is no gold standard for nutrition screening tools. We analyzed the value of predicting infectious complications among elderly patients over 70 years undergoing posterior lumbar arthrodesis by comparing the MNA-SF and GNRI. Demographic data, anthropometric measurements, serum albumin, surgical data and the occurrence of infectious complications and LOS were collected. Mini Nutritional Assessment short form (MNA-SF), Geriatric Nutritional Risk Index (GNRI) were performed within 24 h before surgery. Multivariable logistic regression analyses were used to identify predictors of infectious complications. The discriminatory performances of GNRI and MNA-SF scores for the occurrence of infectious complications were determined by receiver operating characteristic curves (ROC) analyses and the area under the curve (AUC). The study included 252 patients with a median age of 76.82 ± 6.41 years (range 70-84 years), and 142 patients (56.3%) were female. There were no significant differences in infectious complications (p = 0.236) and LOS (p = 0.580) among different GNRI categories. 27.3% malnourished patients evaluated by the MNA-SF suffered from infectious complications and 10.1% patients at risk of malnourished had infectious complications. Those patients had statistically significant higher prevalence of infectious complications (p = 0.002) and longer LOS (p = 0.023) than well-nourished patients. Multivariable analysis revealed that preoperative malnutrition and at risk of malnourished by the MNA-SF was significantly associated with infections. The area under the curve (AUC) of MNA-SF was 0.754, which was significantly high than AUC of GNRI (0.623) (Delong's test, p = 0.033). This study demonstrated that MNA-SF is a simple and effective tool for predicting the risk of infectious complications in elderly patients undergoing posterior lumbar arthrodesis.
Collapse
|
18
|
Increase in brain l-lactate enhances fear memory in diabetic mice: Involvement of glutamate neurons. Brain Res 2021; 1767:147560. [PMID: 34129854 DOI: 10.1016/j.brainres.2021.147560] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Previous reports suggest that diabetes mellitus is associated with psychiatric disorders, including depression and anxiety, but the mechanisms involved are unknown. We have reported that streptozotocin (STZ)-induced diabetic mice show enhancement of conditioned fear memory. To clarify the mechanisms through which diabetes affects conditioned fear memory, the present study investigated the role of l-lactate and glutamatergic function in enhancement of conditioned fear memory in diabetes. l-lactate levels in the amygdala and hippocampus, which are known to play important roles in fear memory, were significantly increased in STZ-induced diabetic mice. The glucose transporter (GLUT) 1 was significantly increased both in the amygdala and in the hippocampus. In contrast, GLUT3, the monocarboxylic acid transporter (MCT) 1 and MCT2 in the amygdala and hippocampus were not altered in STZ-induced diabetic mice. I.c.v. injection of l-lactate to non-diabetic mice significantly increased duration of freezing, whereas the MCT inhibitor 4-CIN significantly inhibited duration of freezing in STZ-induced diabetic mice. Injection of l-lactate significantly increased glutamate levels in the amygdala and hippocampus. Duration of freezing induced by l-lactate was significantly inhibited by the AMPA receptor antagonist NBQX. In addition, injection of NBQX into the amygdala and hippocampus significantly inhibited duration of freezing in STZ-induced diabetic mice. These results suggest that l-lactate levels are increased in the amygdala and hippocampus in diabetic mice, which may enhance fear memory though activation of glutamatergic function in the amygdala and hippocampus.
Collapse
|