1
|
Hansford KJ, Baker DH, McKenzie KJ, Preston CEJ. Illusory finger stretching and somatosensory responses in participants with chronic hand-based pain. PLoS One 2025; 20:e0317693. [PMID: 39903724 PMCID: PMC11793786 DOI: 10.1371/journal.pone.0317693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Current pharmaceutical interventions for chronic pain are reported to be minimally effective, leading researchers to investigate non-pharmaceutical avenues for chronic pain treatment. One such avenue is resizing illusions delivered using augmented reality. These illusions resize the affected body part through stretching or shrinking manipulations and have been shown to give analgesic effects; however, the neural underpinnings of these illusions remain undefined. Steady-state evoked potentials (SSEPs) have been studied within populations without chronic pain undergoing hand-based resizing illusions, finding no convincing differences in SSEP amplitudes during illusory stretching. Here, we present comparable findings from a sample with chronic pain, who are thought to have blurred cortical representations of painful body parts, but again find no clear differences in SSEP amplitude during illusory stretching. However, no significant decreases in pain ratings were found following illusory resizing, and changes in SSEP amplitudes are thought to possibly reflect experiences of illusory analgesia. Despite a lack of illusory analgesia across the sample, several participants experienced clinically meaningful levels of pain reduction following illusory resizing, highlighting the potential of resizing illusions as an analgesia treatment avenue. Subjective illusory experience data showed significantly greater experiences of the illusion in the multisensory (visuotactile) condition compared to non-illusion conditions and a unimodal visual condition, replicating findings from participants without chronic hand-based pain. Exploratory analyses using subjective disownership data show that the multisensory condition did not elicit significant disownership experiences, demonstrating that the pain reductions seen in the multisensory condition do not arise from disownership of the limb, but more likely as a direct result of the illusory resizing manipulations.
Collapse
Affiliation(s)
- Kirralise J. Hansford
- Department of Psychology, Faculty of Sciences, University of York, York, United Kingdom
| | - Daniel H. Baker
- Department of Psychology, Faculty of Sciences, University of York, York, United Kingdom
| | - Kirsten J. McKenzie
- School of Psychology Sport Science & Wellbeing, College of Health and Science, University of Lincoln, Lincoln, United Kingdom
| | | |
Collapse
|
2
|
Ando T, Matsui K, Okamoto Y, Atsuumi K, Taniguchi K, Hirai H, Nishikawa A. Physio-avatar EB: aftereffects in error learning with EMG manipulation of first-person avatar experience. Front Bioeng Biotechnol 2024; 12:1421765. [PMID: 39465003 PMCID: PMC11503014 DOI: 10.3389/fbioe.2024.1421765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Many studies have investigated the manipulation of a virtual upper arm using electromyogram (EMG); however, these studies primarily used a machine learning model or trigger control for this purpose. Furthermore, most of them could only display the constant motion of the virtual arm because the motion to be displayed was selected by pattern recognition or trigger control. In addition, these studies did not examine changes in the electromyographic signals after experiencing the virtual arm. By contrast, we propose a real-time, continuous, learning-free avatar that manipulates the virtual arm with electromyogram signals or physio-avatar EMG biofeedback (EB). The goal of the physio-avatar EB system is to induce physiological changes through experiential interactions. Methods We explored the possibility of changing motor control strategies by applying the system to healthy individuals as a case study. An intervention method that provided an experience of a body different from one's own was conducted on seven participants using a time-invariant calculation algorithm to determine the joint angles of the avatar. Control strategies for an indicator of the equilibrium point in the baseline and adaptation phases were determined to evaluate the physio-avatar EB intervention effect. The similarity of these BL and adaptation control strategies compared to those used during the washout period was assessed using the coefficient of determination. The accuracy and reliability of the virtual reality (VR) system were evaluated by comparison with existing studies and the required specs. Results and Discussion Changes in motor control strategies due to the physio-avatar EB system were observed in four experiments, where the participants gradually returned to their pre-intervention control strategies. This result can be attributed to the aftereffects caused by error learning. This implies that the developed system influenced their motor control strategies. The number of EMG acquisition bits was 16 bits, and the sampling rate was 1,000 Hz. The refresh rate of the head-mounted display was 90 Hz, and its resolution was 1440 × 1600 for a single eye. Additionally, the simulation frame rate was 30 FPS. These values were adequate compared to existing studies and required specs. The essential contribution of this study is the development of an avatar that is controlled by a different method than has been used in previous studies and the demonstration of changes in a subject's muscle activity after they experience an avatar. In the future, the clinical efficacy of the proposed system will be evaluated with actual patients.
Collapse
Affiliation(s)
- Tetsuya Ando
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Kazuhiro Matsui
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Yuto Okamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Keita Atsuumi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
- Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan
| | - Kazuhiro Taniguchi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
- Faculty of Human Ecology, Yasuda Women's University, Hiroshima, Japan
| | - Hiroaki Hirai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Atsushi Nishikawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
3
|
Okamoto Y, Matsui K, Ando T, Atsuumi K, Taniguchi K, Hirai H, Nishikawa A. Pilot study of the relation between various dynamics of avatar experience and perceptual characteristics. PeerJ Comput Sci 2024; 10:e2042. [PMID: 38855230 PMCID: PMC11157551 DOI: 10.7717/peerj-cs.2042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/15/2024] [Indexed: 06/11/2024]
Abstract
In recent years, due to the prevalence of virtual reality (VR) and human-computer interaction (HCI) research, along with the expectation that understanding the process of establishing sense of ownership, sense of agency, and limb heaviness (in this study, limb heaviness is replaced with comfort level) will contribute to the development of various medical rehabilitation, various studies have been actively conducted in these fields. Previous studies have indicated that each perceptual characteristics decrease in response to positive delay. However, it is still unclear how each perceptual characteristic changes in response to negative delay. Therefore, the purpose of this study was to deduce how changes occur in the perceptual characteristics when certain settings are manipulated using the avatar developed in this study. This study conducted experiments using an avatar system developed for this research that uses electromyography as the interface. Two separate experiments involved twelve participants: a preliminary experiment and a main experiment. As observed in the previous study, it was confirmed that each perceptual characteristics decreased for positive delay. In addition, the range of the preliminary experiment was insufficient for the purpose of this study, which was to confirm the perceptual characteristics for negative delay, thus confirming the validity of conducting this experiment. Meanwhile, the main experiment showed that the sense of ownership, sense of agency, and comfort level decreased gradually as delay time decreased, (i.e., this event is prior to action with intention, which could not be examined in the previous study). This suggests that control by the brain-machine interface is difficult to use when it is too fast. In addition, the distribution of the most strongly perceived settings in human perceptual characteristics was wider in regions with larger delays, suggesting this may lead to the evaluation of an internal model believed to exist in the human cerebellum. The avatar developed for this study may have the potential to create a new experimental paradigm for perceptual characteristics.
Collapse
Affiliation(s)
- Yuto Okamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Kazuhiro Matsui
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Tetsuya Ando
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Keita Atsuumi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
- Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan
| | - Kazuhiro Taniguchi
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
- Faculty of Human Ecology, Yasuda Women’s University, Hiroshima, Japan
| | - Hiroaki Hirai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Atsushi Nishikawa
- Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
4
|
Tarrano C, Galléa C, Delorme C, McGovern EM, Atkinson-Clement C, Barnham IJ, Brochard V, Thobois S, Tranchant C, Grabli D, Degos B, Corvol JC, Pedespan JM, Krystkowiak P, Houeto JL, Degardin A, Defebvre L, Valabrègue R, Beranger B, Apartis E, Vidailhet M, Roze E, Worbe Y. Association of abnormal explicit sense of agency with cerebellar impairment in myoclonus-dystonia. Brain Commun 2024; 6:fcae105. [PMID: 38601915 PMCID: PMC11004927 DOI: 10.1093/braincomms/fcae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Non-motor aspects in dystonia are now well recognized. The sense of agency, which refers to the experience of controlling one's own actions, has been scarcely studied in dystonia, even though its disturbances can contribute to movement disorders. Among various brain structures, the cerebral cortex, the cerebellum, and the basal ganglia are involved in shaping the sense of agency. In myoclonus dystonia, resulting from a dysfunction of the motor network, an altered sense of agency may contribute to the clinical phenotype of the condition. In this study, we compared the explicit and implicit sense of agency in patients with myoclonus dystonia caused by a pathogenic variant of SGCE (DYT-SGCE) and control participants. We utilized behavioural tasks to assess the sense of agency and performed neuroimaging analyses, including structural, resting-state functional connectivity, and dynamic causal modelling, to explore the relevant brain regions involved in the sense of agency. Additionally, we examined the relationship between behavioural performance, symptom severity, and neuroimaging findings. We compared 19 patients with DYT-SGCE and 24 healthy volunteers. Our findings revealed that patients with myoclonus-dystonia exhibited a specific impairment in explicit sense of agency, particularly when implicit motor learning was involved. However, their implicit sense of agency remained intact. These patients also displayed grey-matter abnormalities in the motor cerebellum, as well as increased functional connectivity between the cerebellum and pre-supplementary motor area. Dynamic causal modelling analysis further identified reduced inhibitory effects of the cerebellum on the pre-supplementary motor area, decreased excitatory effects of the pre-supplementary motor area on the cerebellum, and increased self-inhibition within the pre-supplementary motor area. Importantly, both cerebellar grey-matter alterations and functional connectivity abnormalities between the cerebellum and pre-supplementary motor area were found to correlate with explicit sense of agency impairment. Increased self-inhibition within the pre-supplementary motor area was associated with less severe myoclonus symptoms. These findings highlight the disruption of higher-level cognitive processes in patients with myoclonus-dystonia, further expanding the spectrum of neurological and psychiatric dysfunction already identified in this disorder.
Collapse
Affiliation(s)
- Clément Tarrano
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Cécile Galléa
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Research Neuroimaging, Centre de NeuroImagerie de Recherche (CENIR), Sorbonne Université, Paris 75013, France
| | - Cécile Delorme
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Eavan M McGovern
- Department of Neurology, Beaumont Hospital, Dublin 9, D09 VY21, Ireland
- School of Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02 YN77, Ireland
| | - Cyril Atkinson-Clement
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Vanessa Brochard
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Stéphane Thobois
- Department of Neurology, Hospices Civils de Lyon, Lyon 69000, France
| | - Christine Tranchant
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg 67098, France
- INSERM-U964/CNRS-UMR7104, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch 67404, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg 67000, France
| | - David Grabli
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Bertrand Degos
- Department of Neurology, Assistance Publique-Hôpitaux de Paris, Avicenne Hospital, Sorbonne Paris Nord, Bobigny 93000, France
| | - Jean Christophe Corvol
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Jean-Michel Pedespan
- Department of Neuropediatry, Universitary Hospital of Pellegrin, Bordeaux 33076, France
| | - Pierre Krystkowiak
- Department of Neurology, Abu Dhabi Stem Cells Centre, Abu Dhabi, United Arab Emirates
| | - Jean-Luc Houeto
- Department of Neurology CHU Limoges, Inserm U1094, IRD U270, Univ. Limoges, EpiMaCT—Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges 87000, France
| | - Adrian Degardin
- Department of Neurology, Tourcoing Hospital, Tourcoing 59599, France
| | - Luc Defebvre
- Department of Neurology, University of Lille, Lille 59000, France
- Department of Neurology, Lille Centre of Excellence for Neurodegenerative Diseases » (LiCEND), Lille F-59000, France
| | - Romain Valabrègue
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Research Neuroimaging, Centre de NeuroImagerie de Recherche (CENIR), Sorbonne Université, Paris 75013, France
| | - Benoit Beranger
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Research Neuroimaging, Centre de NeuroImagerie de Recherche (CENIR), Sorbonne Université, Paris 75013, France
| | - Emmanuelle Apartis
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Neurophysiology, Saint-Antoine Hospital, Paris 75012, France
| | - Marie Vidailhet
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Emmanuel Roze
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Yulia Worbe
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Neurophysiology, Saint-Antoine Hospital, Paris 75012, France
| |
Collapse
|
5
|
Kimoto M, Shiomi M. The experience of a tele-operated avatar being touched increases operator's sense of discomfort. PeerJ Comput Sci 2024; 10:e1926. [PMID: 38660207 PMCID: PMC11042036 DOI: 10.7717/peerj-cs.1926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/13/2024] [Indexed: 04/26/2024]
Abstract
Recent advancements in tele-operated avatars, both on-screen and robotic, have expanded opportunities for human interaction that exceed spatial and physical limitations. While numerous studies have enhanced operator control and improved the impression left on remote users, one area remains underexplored: the experience of operators during touch interactions between an avatar and a remote interlocutor. Touch interactions have become commonplace with avatars, especially those displayed on or integrated with touchscreen interfaces. Although the need for avatars to exhibit human-like touch responses has been recognized as beneficial for maintaining positive impressions on remote users, the sensations and experiences of the operators behind these avatars during such interactions remain largely uninvestigated. This study examines the sensations felt by an operator when their tele-operated avatar is touched remotely. Our findings reveal that operators can perceive a sensation of discomfort when their on-screen avatar is touched. This feeling is intensified when the touch is visualized and the avatar reacts to it. Although these autonomous responses may enhance the human-like perceptions of remote users, they might also lead to operator discomfort. This situation underscores the importance of designing avatars that address the experiences of both remote users and operators. We address this issue by proposing a tele-operated avatar system that minimizes unwarranted touch interactions from unfamiliar interlocutors based on social intimacy.
Collapse
Affiliation(s)
| | - Masahiro Shiomi
- Interaction Science Laboratories, ATR, Seika-cho, Kyoto, Japan
| |
Collapse
|
6
|
Nakamura T, Kuzuoka H. Rotational Motion Due to Skin Shear Deformation at Wrist and Elbow. IEEE TRANSACTIONS ON HAPTICS 2024; 17:108-115. [PMID: 38319766 DOI: 10.1109/toh.2024.3362407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The hanger reflex is an illusion phenomenon that induces strong force perception and rotational motion, and it occurs in multiple parts of the body. A potential application of this phenomenon is in upper limb rehabilitation for patients with upper-limb paralysis involving arm rotation. However, the only upper limb movements that have been confirmed in this phenomenon are the inward and outward movements of the wrist, which limits the applicable tasks. Therefore, we attempted to apply the hanger reflex to the elbow and use it simultaneously with the wrist. This phenomenon occurs due to shear deformation of the skin, so shear deformation was presented to the skin on the elbow. When shear deformation of the skin was presented to the elbow in the same manner as in previous studies applied to the wrist, movement and force perception of pronation and supination of the elbow were confirmed. The results of an experiment in which the hanger reflex was simultaneously presented to the elbow and wrist showed that each region independently perceived motion and force.
Collapse
|
7
|
Matsumiya K, Furukawa S. Perceptual decisions interfere more with eye movements than with reach movements. Commun Biol 2023; 6:882. [PMID: 37648896 PMCID: PMC10468498 DOI: 10.1038/s42003-023-05249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Perceptual judgements are formed through invisible cognitive processes. Reading out these judgements is essential for advancing our understanding of decision making and requires inferring covert cognitive states based on overt motor actions. Although intuition suggests that these actions must be related to the formation of decisions about where to move body parts, actions have been reported to be influenced by perceptual judgements even when the action is irrelevant to the perceptual judgement. However, despite performing multiple actions in our daily lives, how perceptual judgements influence multiple judgement-irrelevant actions is unknown. Here we show that perceptual judgements affect only saccadic eye movements when simultaneous judgement-irrelevant saccades and reaches are made, demonstrating that perceptual judgement-related signals continuously flow into the oculomotor system alone when multiple judgement-irrelevant actions are performed. This suggests that saccades are useful for making inferences about covert perceptual decisions, even when the actions are not tied to decision making.
Collapse
Affiliation(s)
| | - Shota Furukawa
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Morita T, Zhu Y, Aoyama T, Takeuchi M, Yamamoto K, Hasegawa Y. Auditory Feedback for Enhanced Sense of Agency in Shared Control. SENSORS (BASEL, SWITZERLAND) 2022; 22:9779. [PMID: 36560147 PMCID: PMC9787405 DOI: 10.3390/s22249779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
There is a growing need for robots that can be remotely controlled to perform tasks of one's own choice. However, the SoA (Sense of Agency: the sense of recognizing that the motion of an observed object is caused by oneself) is reduced because the subject of the robot motion is identified as external due to shared control. To address this issue, we aimed to suppress the decline in SoA by presenting auditory feedback that aims to blur the distinction between self and others. We performed the tracking task in a virtual environment under four different auditory feedback conditions, with varying levels of automation to manipulate the virtual robot gripper. Experimental results showed that the proposed auditory feedback suppressed the decrease in the SoA at a medium level of automation. It is suggested that our proposed auditory feedback could blur the distinction between self and others, and that the operator attributes the subject of the motion of the manipulated object to himself.
Collapse
Affiliation(s)
- Tomoya Morita
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Yaonan Zhu
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Tadayoshi Aoyama
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Masaru Takeuchi
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Kento Yamamoto
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Yasuhisa Hasegawa
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
9
|
Tanabe J, Amimoto K, Sakai K, Osaki S, Yoshihiro N, Kataoka T. Effects and Adaptation of Visual-Motor Illusion Using Different Visual Stimuli on Improving Ankle Joint Paralysis of Stroke Survivors—A Randomized Crossover Controlled Trial. Brain Sci 2022; 12:brainsci12091249. [PMID: 36138985 PMCID: PMC9496978 DOI: 10.3390/brainsci12091249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Visual-motor illusion (VMI) is an intervention to induce kinesthetic sensation from visual stimuli. We aimed to compare the effects of VMI of different visual stimuli on the paralyzed side ankle joint of stroke hemiplegic patients (hemiplegic patients) and to clarify their indication. We applied two types of VMI images of ankle dorsiflexion: ankle dorsiflexion without resistance (standard VMI (S-VMI)) and maximum effort dorsiflexion with resistance (power VMI (P-VMI)). Twenty-two hemiplegic patients were divided into two groups: Group A, which received S-VMI first and P-VMI one week later (n = 11), and Group B, which received P-VMI first and S-VMI one week later (n = 11). Immediate effects were evaluated. Outcomes were the dorsiflexion angle and angular velocity, degree of sense of agency (SoA), and sense of ownership. Patient’s characteristics of cognitive flexibility were assessed using the Trail making test-B (TMT-B). Fugl-Meyer assessment and the Composite-Spasticity-Scale were also assessed. P-VMI was significantly higher than S-VMI in SoA and dorsiflexion angular velocity. Additionally, the degree of improvement in dorsiflexion function with P-VMI was related to TMT-B and degree of muscle tone. Therefore, P-VMI improves ankle function in hemiplegic patients more than S-VMI but should be performed with cognitive flexibility and degree of muscle tone in mind.
Collapse
Affiliation(s)
- Junpei Tanabe
- Department Physical Therapy, Hiroshima Cosmopolitan University, Hiroshima 731-3166, Japan
- Department Physical Therapy, Tokyo Metropolitan University, Tokyo 116-8551, Japan
- Correspondence: ; Tel.: +81-82-849-6883
| | - Kazu Amimoto
- Department Physical Therapy, Tokyo Metropolitan University, Tokyo 116-8551, Japan
| | - Katsuya Sakai
- Department of Physical Therapy, Chiba Prefectural University of Health Sciences, Chiba 260-0801, Japan
| | - Shinpei Osaki
- Department Physical Therapy, Tokyo Metropolitan University, Tokyo 116-8551, Japan
- Department of Rehabilitation, Kansai Electric Power Hospital, Osaka 553-0003, Japan
| | - Nao Yoshihiro
- Department Physical Therapy, Tokyo Metropolitan University, Tokyo 116-8551, Japan
- Department of Occupational Therapy, Kansai University of Health Sciences, Osaka 590-0482, Japan
| | - Tokuei Kataoka
- Department of Rehabilitation, Kurashiki Rehabilitation Hospital, Okayama 710-0834, Japan
| |
Collapse
|
10
|
Multiple representations of the body schema for the same body part. Proc Natl Acad Sci U S A 2022; 119:2112318119. [PMID: 35046030 PMCID: PMC8795559 DOI: 10.1073/pnas.2112318119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/02/2022] Open
Abstract
Accurate motor control depends on maps of the body in the brain, called the body schema. Disorders of the body schema cause motor deficits. Although we often execute actions with different motor systems such as the eye and hand, how the body schema operates during such actions is unknown. In this study, participants simultaneously directed eye and hand movements to the same body part. These two movements were found to be guided by different body maps. This finding demonstrates multiple motor system–specific representations of the body schema, suggesting that the choice of motor system toward one’s body can determine which of the brain’s body maps is observed. This may offer a new way to visualize patients’ body schema. Purposeful motor actions depend on the brain’s representation of the body, called the body schema, and disorders of the body schema have been reported to show motor deficits. The body schema has been assumed for almost a century to be a common body representation supporting all types of motor actions, and previous studies have considered only a single motor action. Although we often execute multiple motor actions, how the body schema operates during such actions is unknown. To address this issue, I developed a technique to measure the body schema during multiple motor actions. Participants made simultaneous eye and reach movements to the same location of 10 landmarks on their hand. By analyzing the internal configuration of the locations of these points for each of the eye and reach movements, I produced maps of the mental representation of hand shape. Despite these two movements being simultaneously directed to the same bodily location, the resulting hand map (i.e., a part of the body schema) was much more distorted for reach movements than for eye movements. Furthermore, the weighting of visual and proprioceptive bodily cues to build up this part of the body schema differed for each effector. These results demonstrate that the body schema is organized as multiple effector-specific body representations. I propose that the choice of effector toward one’s body can determine which body representation in the brain is observed and that this visualization approach may offer a new way to understand patients’ body schema.
Collapse
|
11
|
Ishikawa R, Ayabe-Kanamura S, Izawa J. The role of motor memory dynamics in structuring bodily self-consciousness. iScience 2021; 24:103511. [PMID: 34934929 PMCID: PMC8661550 DOI: 10.1016/j.isci.2021.103511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Bodily self-consciousness has been considered a sensorimotor root of self-consciousness. If this is the case, how does sensorimotor memory, which is important for the prediction of sensory consequences of volitional actions, influence awareness of bodily self-consciousness? This question is essential for understanding the effective acquisition and recovery of self-consciousness following its impairment, but it has remained unexamined. Here, we investigated how body ownership and agency recovered following body schema distortion in a virtual reality environment along with two kinds of motor memories: memories that were rapidly updated and memories that were gradually updated. We found that, although agency and body ownership recovered in parallel, the recovery of body ownership was predicted by fast memories and that of agency was predicted by slow memories. Thus, the bodily self was represented in multiple motor memories with different dynamics. This finding demystifies the controversy about the causal relationship between body ownership and agency.
Collapse
Affiliation(s)
- Ryota Ishikawa
- Ph.D. Program in Humanics, University of Tsukuba, Ibaraki 305-8573, Japan
| | | | - Jun Izawa
- Faculty of Engineering, Information, and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
12
|
Saito H, Horie A, Maekawa A, Matsubara S, Wakisaka S, Kashino Z, Kasahara S, Inami M. Transparency in Human-Machine Mutual Action. JOURNAL OF ROBOTICS AND MECHATRONICS 2021. [DOI: 10.20965/jrm.2021.p0987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in human-computer integration (HInt) have focused on the development of human-machine systems, where both human and machine autonomously act upon each other. However, a key challenge in designing such systems is augmenting the user’s physical abilities while maintaining their sense of self-attribution. This challenge is particularly prevalent when both human and machine are capable of acting upon each other, thereby creating a human-machine mutual action (HMMA) system. To address this challenge, we present a design framework that is based on the concept of transparency. We define transparency in HInt as the degree to which users can self-attribute an experience when machines intervene in the users’ action. Using this framework, we form a set of design guidelines and an approach for designing HMMA systems. By using transparency as our focus, we aim to provide a design approach for not only achieving human-machine fusion into a single agent, but also controlling the degrees of fusion at will. This study also highlights the effectiveness of our design approach through an analysis of existing studies that developed HMMA systems. Further development of our design approach is discussed, and future prospects for HInt and HMMA system designs are presented.
Collapse
|
13
|
Kaiser J, Buciuman M, Gigl S, Gentsch A, Schütz-Bosbach S. The Interplay Between Affective Processing and Sense of Agency During Action Regulation: A Review. Front Psychol 2021; 12:716220. [PMID: 34603140 PMCID: PMC8481378 DOI: 10.3389/fpsyg.2021.716220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/20/2021] [Indexed: 01/10/2023] Open
Abstract
Sense of agency is the feeling of being in control of one's actions and their perceivable effects. Most previous research identified cognitive or sensory determinants of agency experience. However, it has been proposed that sense of agency is also bound to the processing of affective information. For example, during goal-directed actions or instrumental learning we often rely on positive feedback (e.g., rewards) or negative feedback (e.g., error messages) to determine our level of control over the current task. Nevertheless, we still lack a scientific model which adequately explains the relation between affective processing and sense of agency. In this article, we review current empirical findings on how affective information modulates agency experience, and, conversely, how sense of agency changes the processing of affective action outcomes. Furthermore, we discuss in how far agency-related changes in affective processing might influence the ability to enact cognitive control and action regulation during goal-directed behavior. A preliminary model is presented for describing the interplay between sense of agency, affective processing, and action regulation. We propose that affective processing could play a role in mediating the influence between subjective sense of agency and the objective ability to regulate one's behavior. Thus, determining the interrelation between affective processing and sense of agency will help us to understand the potential mechanistic basis of agency experience, as well as its functional significance for goal-directed behavior.
Collapse
Affiliation(s)
- Jakob Kaiser
- LMU Munich, Department of Psychology, General and Experimental Psychology, Munich, Germany
| | | | | | | | | |
Collapse
|
14
|
Reader AT, Trifonova VS, Ehrsson HH. Little evidence for an effect of the rubber hand illusion on basic movement. Eur J Neurosci 2021; 54:6463-6486. [PMID: 34486767 DOI: 10.1111/ejn.15444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/12/2021] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
Body ownership refers to the distinct sensation that our observed body belongs to us, which is believed to stem from multisensory integration. This is commonly shown through the rubber hand illusion (RHI), which induces a sense of ownership over a false limb. Whilst the RHI may interfere with object-directed action and alter motor cortical activity, it is not yet clear whether a sense of ownership over an artificial hand has functional consequences for movement production per se. As such, we performed two motion-tracking experiments (n = 117) to examine the effects of the RHI on the reaction time, acceleration, and velocity of rapid index finger abduction. We observed little convincing evidence that the induction of the RHI altered these kinematic variables. Moreover, the subjective sensations of rubber hand ownership, referral of touch, and agency did not convincingly correlate with kinematic variables, and nor did proprioceptive drift, suggesting that changes in body representation elicited by the RHI may not influence basic movement. Whilst experiment 1 suggested that individuals reporting a greater sensation of the real hand disappearing performed movements with smaller acceleration and velocity following illusion induction, we did not replicate this effect in a second experiment, suggesting that these effects may be small or not particularly robust. Overall, these results indicate that manipulating the conscious experience of body ownership has little impact on basic motor control, at least in the RHI with healthy participants.
Collapse
Affiliation(s)
- Arran T Reader
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, UK.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Ezaki S, Kadone H, Kubota S, Abe T, Shimizu Y, Tan CK, Miura K, Hada Y, Sankai Y, Koda M, Suzuki K, Yamazaki M. Analysis of Gait Motion Changes by Intervention Using Robot Suit Hybrid Assistive Limb (HAL) in Myelopathy Patients After Decompression Surgery for Ossification of Posterior Longitudinal Ligament. Front Neurorobot 2021; 15:650118. [PMID: 33867965 PMCID: PMC8044802 DOI: 10.3389/fnbot.2021.650118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a hyperostonic condition in which the posterior longitudinal ligament becomes thick and loses its flexibility, resulting in ectopic ossification and severe neurologic deficit (Matsunaga and Sakou, 2012). It commonly presents with myelopathy and radiculopathy and with myelopathy progression motor disorders and balance disorders can appear. Even after appropriate surgical decompression, some motor impairments often remain. The Hybrid Assistive Limb (HAL) is a wearable powered suit designed to assist and support the user's voluntary control of hip and knee joint motion by detecting bioelectric signals from the skin surface and force/pressure sensors in the shoes during movement. In the current study, the HAL intervention was applied to 15 patients diagnosed with OPLL who presented with myelopathy after decompression surgery (6 acute and 9 chronic stage). Following the HAL intervention, there were significant improvements in gait speed, cadence, stride length, in both acute and chronic groups. Joint angle analysis of the lower limbs showed that range of motion (ROM) of hip and knee joints in acute group, and also ROM of hip joint and toe-lift during swing in chronic group increased significantly. ROM of knee joint became closer to healthy gait in both groups. Electromyography analysis showed that hamstrings activity in the late swing phase increased significantly for acute patients. Immidiate effect from HAL session was also observed. EMG of vastus medialis were decreased except chronic 7th session and EMG of gastrocnemius were decreased except acute 7th session, which suggests the patients were learning to walk with lesser knee-hypertension during the sessions. After all, double knee action appeared in both acute and chronic groups after the HAL intervention, rather than knee hyper-extension which is a common gait impairment in OPLL. We consider that these improvements lead to a smoother and healthier gait motion.
Collapse
Affiliation(s)
- Seioh Ezaki
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Hideki Kadone
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Shigeki Kubota
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Tetsuya Abe
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yukiyo Shimizu
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan.,Department of Rehabilitation Medicine, University of Tsukuba, Tsukuba, Japan
| | - Chun Kwang Tan
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan
| | - Kousei Miura
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yasushi Hada
- Department of Rehabilitation Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshiyuki Sankai
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan.,Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan
| | - Masao Koda
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba, Japan.,Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Kenji Suzuki
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan.,Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|