1
|
Du S, Sun R, Wang M, Fang Y, Wu Y, Yuan B, Jin Y. Synergistic effect of inulin hydrogels on multi-strain probiotics for prevention of ionizing radiation-induced injury. Int J Biol Macromol 2025; 287:138497. [PMID: 39647719 DOI: 10.1016/j.ijbiomac.2024.138497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Prebiotics and probiotics are applied against multiple diseases including ionizing radiation-induced injury but their functions are not revealed enough. Here, we used a prebiotic, inulin hydrogels (IGs) to load multi-strain probiotics (MSPs) for protecting them from the gastrointestinal environment and improving their colonization in the gut; more importantly, they showed the synergistic effect against ionizing radiation-induced injury. Probiotics were embedded in a great number of channels of the IGs and used IGs as food. The MSP was composed of Clostridium butyricum (Cb), Bifidobacterium adolescentis (Ba), and Akkermansia muciniphila (Akk), which separately mainly produced butyl acid, acetic acid and lactic acid, and stimulated mucin proteins. Although the MSP showed higher effect against mouse radiation enteritis than the single probiotics and the similar effect to IGs, the IG/MSP-based synbiotic had the highest protection and improved many factors close to the normal levels, including animal physical activity, enteric barrier function, occludin and ZO-1 expressions, injury extension, the levels of pro-inflammatory factors (IL-6, TNF-α), gut microbiota, and short-chained fatty acids. Moreover, the synbiotic had strong protection against whole-body irradiation with high blood cell numbers, hemopoietic system recovery, and high levels of IL-3 and IL-10. IGs greatly synergized probiotics against ionizing radiation-induced injury.
Collapse
Affiliation(s)
- Shumin Du
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Rui Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Minting Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yubao Fang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yanping Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bochuan Yuan
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yiguang Jin
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
2
|
Bolduc DL, Cary LH, Kiang JG, Kurada L, Kumar VP, Edma SA, Olson MG, Vergara VB, Bistline DD, Reese M, Kenchegowda D, Hood M, Korotcov A, Jaiswal S, Blakely WF. Natural-history Characterization of a Murine Partial-body Irradiation Model System: Establishment of a Multiple-Parameter Based GI-ARS Severity-Scoring System. Radiat Res 2024; 201:406-417. [PMID: 38319684 DOI: 10.1667/rade-23-00132.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/15/2023] [Indexed: 02/07/2024]
Abstract
The purpose of this investigation was to characterize the natural history of a murine total-abdominal-irradiation exposure model to measure gastrointestinal acute radiation injury. Male CD2F1 mice at 12 to 15 weeks old received total-abdominal irradiation using 4-MV linear accelerator X-rays doses of 0, 11, 13.5, 15, 15.75 and 16.5 Gy (2.75 Gy/min). Daily cage-side (i.e., in the animal housing room) observations of clinical signs and symptoms including body weights on all animals were measured up to 10 days after exposure. Jejunum tissues from cohorts of mice were collected at 1, 3, 7 and 10 days after exposure and radiation injury was assessed by histopathological analyses. Results showed time- and dose-dependent loss of body weight [for example at 7 days: 0.66 (±0.80) % loss for 0 Gy, 6.40 (±0.76) % loss at 11 Gy, 9.43 (±2.06) % loss at 13.5 Gy, 23.53 (± 1.91) % loss at 15 Gy, 29.97 (±1.16) % loss at 15.75 Gy, and 31.79 (±0.76) % loss at 16.5 Gy]. Negligible clinical signs and symptoms, except body weight changes, of radiation injury were observed up to 10 days after irradiation with doses of 11 to 15 Gy. Progressive increases in the severity of clinical signs and symptoms were found after irradiation with doses >15 Gy. Jejunum histology showed a progressive dose-dependent increase in injury. For example, at 7 days postirradiation, the percent of crypts, compared to controls, decreased to 82.3 (±9.5), 69.2 (±12.3), 45.4 (±11.9), 18.0 (±3.4), and 11.5 (± 1.8) with increases in doses from 11 to 16.5 Gy. A mucosal injury scoring system was used that mainly focused on changes in villus morphology damage (i.e., subepithelial spaces near the tips of the villi with capillary congestion, significant epithelial lifting along the length of the villi with a few denuded villus tips). Peak levels of total-abdominal irradiation induced effects on the mucosal injury score were seen 7 days after irradiation for doses ≥15 Gy, with a trend to show a decline after 7 days. A murine multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system was established based on clinical signs and symptoms that included measures of appearance (i.e., hunched and/or fluffed fur), respiratory rate, general (i.e., decreased mobility) and provoked behavior (i.e., subdued response to stimulation), weight loss, and feces/diarrhea score combined with jejunum mucosal-injury grade score. In summary, the natural-history radio-response for murine partial-body irradiation exposures is important for establishing a well-characterized radiation model system; here we established a multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system that provides a radiation injury gastrointestinal tissue-based assessment utility.
Collapse
Affiliation(s)
- David L Bolduc
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Lynnette H Cary
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Pharmacology and Molecular Therapeutics
| | - Juliann G Kiang
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Pharmacology and Molecular Therapeutics
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Lalitha Kurada
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Vidya P Kumar
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Sunshine A Edma
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Matthew G Olson
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Vernieda B Vergara
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Dalton D Bistline
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Mario Reese
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Doreswamy Kenchegowda
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Maureen Hood
- Biomedical Research Imaging Core at Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Alexandru Korotcov
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
- Biomedical Research Imaging Core at Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Shalini Jaiswal
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
- Biomedical Research Imaging Core at Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Preventive Medicine and Statistics, Uniformed Services of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
3
|
Tang TT, Zawaski JA, Sabek OM, Gaber MW. High variability in short and long-term recovery kinetic of blood cell count and blood chemistry in a partial body irradiation mouse model. Int J Radiat Biol 2024; 100:565-572. [PMID: 38306486 DOI: 10.1080/09553002.2024.2304833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/28/2023] [Indexed: 02/04/2024]
Abstract
PURPOSE In the aftermath of a nuclear disaster or accident, survivors will suffer from radiation-induced normal tissue damage. Recovery after radiation exposure is dictated by several factors, one of which is degree of shielding at time of exposure. This study aims to characterize the short and late term changes in kinetics and magnitude of pancytopenia and blood chemistry in a model of heterogeneous radiation exposure, or partial body irradiation (PBI), compared to whole body irradiation (WBI). MATERIALS AND METHODS Male C57BL/6 mice, 8-10 weeks of age, were WBI at 6 different doses (6, 6.1. 6.15, 6.2, 6.5, and 7.5 Gy) to establish the LD50. To determine the effect of shielding on blood cell counts and chemistry, animals were either WBI at 6 Gy (LD2230) or 6 Gy PBI with one leg shielding (LD030). Complete blood counts and chemistry were measured at 1, 5-, 10-, 20-, 30- and 120-days post-irradiation. RESULTS AND CONCLUSIONS Irradiated animals had significant depletion of white blood cells, red blood cells and platelets up to 10 days post-irradiation. Separation between PBI and WBI were observed at 10- and 20-days post-irradiation at which point PBI animals showed sign of recovery while overall cell count remains depleted in WBI animals up to 30 days post-irradiation. In addition, significant changes were found in parameters indicative of hematopoietic injury including hemoglobin count, hematocrit count and white blood cell population. Significant changes were observed in kidney function with changes to blood urea nitrogen and calcium concentration at 5-days post-irradiation. At 10-days post-irradiation. liver function changes differentiated WBI from PBI animals. Long-term, irradiated animal's chemistry values and many blood counts were not significantly different from Sham. In conclusion, partial shielding ensured complete survival and demonstrated a different recovery kinetics of blood and chemistry parameters after irradiation compared to survivors of whole body irradiation and no single hemopoietic parameter was able to consistently differentiate irradiated from Sham animals. This seems to indicate that there is no single robust hemopoietic parameter to differentiate those exposed from those who were not due to the inherent variability in individual responses. Furthermore, there were no significant long-term effects on these blood parameters between survivors of WBI and PBI except that shielding accelerated recovery.
Collapse
Affiliation(s)
- Tien T Tang
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Janice A Zawaski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Omaima M Sabek
- Department of Surgery, Methodist Hospital Research Institute, Houston, TX, USA
| | - M Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Kalonia A, Kumar Sharma A, Shaw P, Kumar A, Bhatt AN, Shukla A, Shukla SK. Ascorbate formulation improves healing efficacy in excisional wound mice model through interplay between pro and anti-inflammatory cytokines and angiogenic markers. Cytokine 2023; 164:156158. [PMID: 36827818 DOI: 10.1016/j.cyto.2023.156158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Biomedical research in regenerative medicine prompts researchers to formulate cost-effective therapeutics for wound healing. The present study was conducted to characterize the ascorbate based formulation vis-a-vis investigating the molecular dynamics of the formulation. MATERIALS AND METHODS To characterize the formulation, particle size, zeta potential, thermal stability, compatibility, anti-oxidant, and permeation prospective were measured using standard protocols. The in-vitro healing potential and safety formulae were evaluated using the L929 cell line. For molecular unravelling of the pharmacodynamics of formulation, an excision wound model was used, and 54 mice were randomly and equally divided into three groups, i.e., untreated, betadine-treated, and formulation-treated, to ascertain the interplay between cytokines and chemokines and their culminative role in the release of growth factors. RESULTS The ascorbate formulae were found to be amorphous, biocompatible, safe, and long-lasting, with particle sizes and zeta potentials of 389.7 ± 0.69 nm and -38.1 ± 0.65 mV, respectively, and anti-oxidative potential. An in-vitro study revealed that the formulation has a significant (p<0.05) migration potential and is non-toxic. Expression profiling of TGF-β, FGF-2, VEGF, and collagen III & I showed significant (p<0.05) up-regulation, whereas significant (p<0.05) down-regulation of pro-inflammatory genes like IL-1α, IL-1β, TNF-α, IL-6, and temporal change in CCR-5 was observed in formulae-treated animals as compared to other groups. CONCLUSION By up-regulating angiogenic and collagen-promoting growth factor gene expression while down-regulating pro-inflammatory gene expression, ascorbate formulation promotes wound healing via extracellular matrix and granulation tissue deposition with significant improvement in tensile strength.
Collapse
Affiliation(s)
- Aman Kalonia
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Ajay Kumar Sharma
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Priyanka Shaw
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Abhishek Kumar
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Anant Narayan Bhatt
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Amit Shukla
- Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, UP Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Sandeep Kumar Shukla
- Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India.
| |
Collapse
|