1
|
Dos Santos Andrade AT, Tavares CPDS, Ferreira FADS, de Oliveira AC, Lima SC, do Nascimento Neto JF, Pereira BGV, Rodrigues GO, da Silva JS, Pinheiro VCS, Roque RA. Effect of pyriproxyfen on biological parameters and morphometry of Aedes aegypti Linnaeus, 1762 (Diptera: Culicidae) in the city of Manaus, Amazonas. Acta Trop 2025; 265:107609. [PMID: 40185218 DOI: 10.1016/j.actatropica.2025.107609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
In Brazil, Aedes aegypti is the primary vector of arboviruses, and its control relies mainly on insecticide use. However, excessive application on these products has led to the selection of resistant populations. To address this challenge, products like Pyriproxyfen (PPF), an insect growth regulator, have been used as a viable alternative. In this context, the present study evaluated the susceptibility, resistance ratio, and biological changes of A. aegypti exposed to PPF. Samples were collected in eight neighborhoods using oviposition traps, and the Rockefeller strain was used as a susceptibility standard. Fecundity tests recorded a hatching rate of 72.4 % in the PPF groups, compared to 89.2 % in the control (p < 0.05), and fertility of 72.4 % for PPF compared to 89.2 % in the control (t = 204.5, df = 4, p < 0.05). Longevity was assessed in males, females, and couples (χ² = 20.35, df = 5, p > 0.05). Wing morphometric analyses were reinforced by Mahalanobis distance (1.7127; p < 0.001), Procrustes analysis (0.0064; p = 0.5027), and canonical variable analyses. The width of the cephalic capsules was greater in mosquitoes exposed to PPF (Mann-Whitney U = 369; p < 0.0099). The emergence inhibition rate ranged from 65.33 ± 4 to 100 ± 0 for the Rockefeller strain and from 59.33 ± 4 to 88.66 ± 2 for the field population, with a resistance ratio of 0.68. The study concludes that the A. aegypti population in Manaus, remains susceptible to PPF, and the observed alterations were not significant enough to compromise the vector's biology.
Collapse
Affiliation(s)
- Aylane Tamara Dos Santos Andrade
- Programa de Pós-Graduação, Rede de Biodiversidade e Biotecnologia da Amazônia Legal-BIONORTE, Manaus, Amazonas, Brasil; Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil.
| | - Cláudia Patrícia da Silva Tavares
- Programa de Pós-Graduação, Rede de Biodiversidade e Biotecnologia da Amazônia Legal-BIONORTE, Manaus, Amazonas, Brasil; Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| | | | - André Correa de Oliveira
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Manaus, Amazonas, Brasil
| | - Suelen Costa Lima
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Manaus, Amazonas, Brasil
| | - Joaquim Ferreira do Nascimento Neto
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| | - Bianca Geovana Viana Pereira
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Manaus, Amazonas, Brasil
| | - Genilson Oliveira Rodrigues
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil; Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Manaus, Amazonas, Brasil
| | | | | | - Rosemary Aparecida Roque
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Amazonas, Brasil
| |
Collapse
|
2
|
Alomar AA. Effects of Temperature and Bacillus velezensis on the Development, Longevity, and Reproduction of Culex quinquefasciatus. BIOLOGY 2025; 14:357. [PMID: 40282222 PMCID: PMC12024662 DOI: 10.3390/biology14040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Temperature is a key environmental factor that influences mosquito phenotypic traits and the effectiveness of vector control strategies. Bacillus velezensis (Bv) has shown promise as a microbial biocontrol agent due to its insecticidal properties; however, its effects on mosquitoes under different environmental conditions are still unexplored. This study investigated the effects of Bv (strain WHk23) exposure on the life history traits of Culex quinquefasciatus at two temperature conditions (20 °C and 30 °C), focusing on development, longevity, and reproductive fitness. Results showed that temperature significantly affected mosquito development and longevity, with faster development and shorter adult longevity observed at 30 °C compared to 20 °C. Exposure to Bv further accelerated larval development and reduced adult emergence, with the effects being more pronounced at 30 °C than at 20 °C. Exposure to Bv reduced adult longevity regardless of temperature. In addition, Bv-exposed females had larger body sizes but lower fecundity and fertility, suggesting that Bv exposure may cause physiological stress that disrupts reproductive processes. These findings highlight the importance of considering environmental factors in mosquito control programs while reinforcing the efficacy of Bv as a sustainable biocontrol agent under a variety of environmental conditions.
Collapse
Affiliation(s)
- Abdullah A Alomar
- Infectious Disease Vector Research Laboratory, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Li Y, Peng J, Li H, Zhang R, Chen J, Hou X, Yang G. Integrating pyriproxyfen into the incompatible insect technique enhances mosquito population suppression efficiency and eliminates the risk of population replacement. PEST MANAGEMENT SCIENCE 2024; 80:6117-6129. [PMID: 39072896 DOI: 10.1002/ps.8339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/28/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The incompatible insect technique (IIT) has been used for Aedes mosquito population suppression to curb the transmission of dengue. However, its wide application is limited owing to the low output of male mosquitoes and the risk of population replacement from the release of fertile Wolbachia-infected females. This study aims to improve IIT efficiency for broader adoption. RESULTS We assessed the impact of 10% pyriproxyfen (PPF) sticky powder exposure on Wolbachia (from Culex molestus)-transinfected Aedes albopictus Guangzhou line (GUA line) (GC) mosquitoes. We found that the exposure caused chronic toxicity in adult mosquitoes without affecting the cytoplasmic incompatibility (CI)-inducing capability of males. The PPF-contaminated GC females exhibited significant sterilization and the ability to disseminate lethal doses of PPF to breeding sites. Subsequently, we conducted a field trial combining PPF with IIT aiming to suppress the Ae. albopictus population. This combined approach, termed boosted IIT (BIIT), showed a notable enhancement in population suppression efficiency. The improved efficacy of BIIT was attributed to the dispersion of PPF particles in the field via the released PPF-contaminated male mosquitoes. During the BIIT field trial, no Wolbachia wPip-positive Ae. albopictus larvae were detected, indicating the effective elimination of the risk of Wolbachia-induced population replacement. Additionally, the field trial of BIIT against Ae. albopictus resulted in the suppression of the nontarget mosquito species Culex quinquefasciatus. CONCLUSION Our results highlight the remarkable efficiency and feasibility of combining IIT with PPF in suppressing mosquito populations, facilitating the widespread implementation of IIT-based management of mosquito-borne diseases. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongjun Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiameng Peng
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Haiying Li
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Ruiqi Zhang
- International School, Jinan University, Guangzhou, China
| | - Jiexia Chen
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuying Hou
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Guang Yang
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Moura L, Corbi JJ. Regionality in vector control: effect of fluctuating temperature in the susceptibility of Aedes aegypti (Diptera: Culicidae) larvae to Pyriproxyfen. Parasitol Res 2023; 123:23. [PMID: 38072863 DOI: 10.1007/s00436-023-08065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
Using Pyriproxyfen in controlling Aedes aegypti shows great potential considering its high competence in low dosages. As an endocrine disruptor, temperature can interfere with its efficiency, related to a decrease in larval emergence inhibition in hotter environments. However, previous studies have been performed at constant temperatures in the laboratory, which may not precisely reflect the environmental conditions in the field. The aim of this study was to assess the effect of the fluctuating temperatures in Pyriproxyfen efficiency on controlling Aedes aegypti larvae. We selected maximum and minimum temperatures from the Brazilian Meteorological Institute database from September to April for cities grouped by five regions. Five fluctuating temperatures (17-26; 20-28.5; 23-32.5; 23-30.5; 19.5-31 °C) were applied to bioassays assessing Pyriproxyfen efficiency in preventing adult emergence in Aedes aegypti larvae in five concentrations. In the lowest temperatures, the most diluted Pyriproxyfen treatment (0.0025 mg/L) was efficient in preventing the emergence of almost thrice the larvae than in the hottest temperatures (61% and 21%, respectively, p value = 0.00015). The concentration that inhibits the emergence of 50% of the population was lower than that preconized by the World Health Organization (0.01 mg/L) in all treatments, except for the hottest temperatures, for which we estimated 0.010 mg/L. We concluded that fluctuating temperatures in laboratory bioassays can provide a more realistic result to integrate the strategies in vector surveillance. For a country with continental proportions such as Brazil, considering regionalities is crucial to the rational use of insecticides.
Collapse
Affiliation(s)
- Lidia Moura
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil.
| | - Juliano José Corbi
- Aquatic Ecology Laboratory, Department of Hydraulic and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
5
|
da Costa RA, da Costa ADSS, da Rocha JAP, Lima MRDC, da Rocha ECM, Nascimento FCDA, Gomes AJB, do Rego JDAR, Brasil DDSB. Exploring Natural Alkaloids from Brazilian Biodiversity as Potential Inhibitors of the Aedes aegypti Juvenile Hormone Enzyme: A Computational Approach for Vector Mosquito Control. Molecules 2023; 28:6871. [PMID: 37836714 PMCID: PMC10574778 DOI: 10.3390/molecules28196871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 10/15/2023] Open
Abstract
This study explores the potential inhibitory activity of alkaloids, a class of natural compounds isolated from Brazilian biodiversity, against the mJHBP enzyme of the Aedes aegypti mosquito. This mosquito is a significant vector of diseases such as dengue, zika, and chikungunya. The interactions between the ligands and the enzyme at the molecular level were evaluated using computational techniques such as molecular docking, molecular dynamics (MD), and molecular mechanics with generalized Born surface area (MMGBSA) free energy calculation. The findings suggest that these compounds exhibit a high binding affinity with the enzyme, as confirmed by the binding free energies obtained in the simulation. Furthermore, the specific enzyme residues that contribute the most to the stability of the complex with the compounds were identified: specifically, Tyr33, Trp53, Tyr64, and Tyr129. Notably, Tyr129 residues were previously identified as crucial in the enzyme inhibition process. This observation underscores the significance of the research findings and the potential of the evaluated compounds as natural insecticides against Aedes aegypti mosquitoes. These results could stimulate the development of new vector control agents that are more efficient and environmentally friendly.
Collapse
Affiliation(s)
- Renato Araújo da Costa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Abaetetuba, Abaetetuba 68440-000, PA, Brazil; (M.R.d.C.L.); (A.J.B.G.)
| | - Andréia do Socorro Silva da Costa
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| | - João Augusto Pereira da Rocha
- Graduate Program in Chemistry, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (J.A.P.d.R.); (E.C.M.d.R.)
| | - Marlon Ramires da Costa Lima
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Abaetetuba, Abaetetuba 68440-000, PA, Brazil; (M.R.d.C.L.); (A.J.B.G.)
| | | | - Fabiana Cristina de Araújo Nascimento
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| | - Anderson José Baia Gomes
- Laboratory of Molecular Biology, Evolution and Microbiology, Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Abaetetuba, Abaetetuba 68440-000, PA, Brazil; (M.R.d.C.L.); (A.J.B.G.)
| | - José de Arimatéia Rodrigues do Rego
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| | - Davi do Socorro Barros Brasil
- Laboratory of Biosolutions and Bioplastics of the Amazon, Graduate Program in Science and Environment, Institute of Exact and Natural Sciences, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil; (A.d.S.S.d.C.); (F.C.d.A.N.); (J.d.A.R.d.R.); (D.d.S.B.B.)
| |
Collapse
|
6
|
Nik Abdull Halim NMH, Che Dom N, Dapari R, Salim H, Precha N. A systematic review and meta-analysis of the effects of temperature on the development and survival of the Aedes mosquito. Front Public Health 2022; 10:1074028. [PMID: 36600940 PMCID: PMC9806355 DOI: 10.3389/fpubh.2022.1074028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The Aedes mosquito species, which are the vectors for the transmission of the dengue virus (DENV) to humans, are becoming increasingly susceptible to the formidable effects of influential factors, especially temperature. However, there are still very few studies that have systematically reviewed the existing literature. Hence, in the present study, a systematic literature review and meta-analysis was conducted into the effects of temperature on dengue vectors. Method Several research methodologies were incorporated into the current study, and a review was carried out using PRISMA as a guide. The publications for this study were chosen from two prominent databases, Scopus and Web of Science. All of the studies were assessed, reviewed, and evaluated independently by two reviewers. The meta-analysis tool, Review Manager (RevMan Copenhagen Version 5.4.1), was used to record the extracted data for the meta-analysis. Moran's I 2 and a funnel plot were utilized to measure heterogeneity, and publication bias was investigated. A 95% confidence interval (CI) and overall risk difference (RD) were estimated using a random-effects model. Result and discussion As a consequence of the search efforts, a total of 46 articles were selected for inclusion in the systematic review and meta-analysis. This review was divided into five major themes, based on a thematic analysis: (i) hatching rate, (ii) development time, (iii) longevity, (iv) survival rate, and (v) wing morphology. In addition, the development time, survival rate, and wing morphology revealed significantly higher risk differences between the maximum and minimum temperatures (RD: 0.26, 95% CI: 0.16, 0.36; p = < 0.00001; RD: 0.10, 95% CI: 0.05, 0.14; p < 0.0001; and RD: 0.07, 95% CI: 0.02, 0.12; p = 0.006, respectively). This study makes several substantial contributions to the body of knowledge and to practical applications. Finally, a number of recommendations are made at the conclusion of this research for the future reference of researchers.
Collapse
Affiliation(s)
- Nik Muhammad Hanif Nik Abdull Halim
- Centre of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, Puncak Alam, Malaysia,Setiu District Health Office, Setiu, Malaysia
| | - Nazri Che Dom
- Centre of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, Puncak Alam, Malaysia,Integrated Mosquito Research Group (I-MeRGe), Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, Puncak Alam, Malaysia,Institute for Biodiversity and Sustainable Development (IBSD), Universiti Teknologi MARA, Shah Alam, Malaysia,*Correspondence: Nazri Che Dom
| | - Rahmat Dapari
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hasber Salim
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
7
|
Campos KB, Alomar AA, Eastmond BH, Obara MT, Alto BW. Brazilian Populations of Aedes aegypti Resistant to Pyriproxyfen Exhibit Lower Susceptibility to Infection with Zika Virus. Viruses 2022; 14:v14102198. [PMID: 36298753 PMCID: PMC9606930 DOI: 10.3390/v14102198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Zika virus (ZIKV) infection has caused devastating consequences in Brazil as infections were associated with neurological complications in neonates. Aedes aegypti is the primary vector of ZIKV, and the evolution of insecticide resistance (IR) in this species can compromise control efforts. Although relative levels of phenotypic IR in mosquitoes can change considerably over time, its influence on vector competence for arboviruses is unclear. Pyriproxyfen (PPF)-resistant populations of Ae. aegypti were collected from five municipalities located in Northeast of Brazil, which demonstrated different resistance levels; low (Serrinha, Brumado), moderate (Juazeiro do Norte, Itabuna), and high (Quixadá). Experimental per os infection using ZIKV were performed with individuals from these populations and with an insecticide susceptible strain (Rockefeller) to determine their relative vector competence for ZIKV. Although all populations were competent to transmit ZIKV, mosquitoes derived from populations with moderate to high levels of IR exhibited similar or lower susceptibility to ZIKV infection than those from populations with low IR or the susceptible strain. These observations suggest an association between IR and arbovirus infection, which may be attributable to genetic hitchhiking. The use of PPF to control Brazilian Ae. aegypti may be associated with an indirect benefit of reduced susceptibility to infection, but no changes in disseminated infection and transmission of ZIKV among PPF-resistant phenotypes.
Collapse
Affiliation(s)
- Kauara Brito Campos
- Entomology and Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th SE, Vero Beach, FL 32962, USA
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília 70910-900, Brazil
- Coordenação Geral de Vigilância de Aboviroses, Secretaria de Vigilância em Saúde, Ministério da Saúde, Edifício PO 700, SRTV 702, Via W 5 Norte, Brasília 70723-040, Brazil
| | - Abdullah A. Alomar
- Entomology and Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th SE, Vero Beach, FL 32962, USA
| | - Bradley H. Eastmond
- Entomology and Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th SE, Vero Beach, FL 32962, USA
| | - Marcos Takashi Obara
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília 70910-900, Brazil
| | - Barry W. Alto
- Entomology and Nematology Department, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th SE, Vero Beach, FL 32962, USA
- Correspondence:
| |
Collapse
|
8
|
Alomar AA, Eastmond BH, Rapti Z, Walker ED, Alto BW. Ingestion of spinosad-containing toxic sugar bait alters Aedes albopictus vector competence and vectorial capacity for dengue virus. Front Microbiol 2022; 13:933482. [PMID: 36090120 PMCID: PMC9459233 DOI: 10.3389/fmicb.2022.933482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022] Open
Abstract
Dengue virus (DENV) is a highly prevalent vector-borne virus that causes life-threatening illnesses to humans worldwide. The development of a tool to control vector populations has the potential to reduce the burden of DENV. Toxic sugar bait (TSB) provides a form of vector control that takes advantage of the sugar-feeding behavior of adult mosquitoes. However, studies on the effect of ingestion of toxins in TSB on vector competence and vectorial capacity for viruses are lacking. This study evaluated vector competence for DENV serotype-1 of Aedes albopictus at 7 and 14 days post-ingestion of TSB formulated with spinosad (of bacteria origin) as an oral toxin. Our results and others were modeled to estimate effects on Ae. albopictus vectorial capacity for DENV. Ingestion of TSB caused a reduction in survival of females, but increased mosquito susceptibility to DENV infection, disseminated infection, and transmission. However, this increase in vector competence was obviated by the reduction in survival, leading to a lower predicted vectorial capacity. The findings of this study highlight the importance of evaluating the net impact of TSB ingestion on epidemiological parameters of vectorial capacity in the context of vector control efforts to reduce the risk of transmission of vector-borne viruses.
Collapse
Affiliation(s)
- Abdullah A. Alomar
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, United States
- *Correspondence: Abdullah A. Alomar,
| | - Bradley H. Eastmond
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, United States
| | - Zoi Rapti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Edward D. Walker
- Department of Entomology, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Barry W. Alto
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, United States
| |
Collapse
|
9
|
Ramos LFC, Martins M, Murillo JR, Domont GB, de Oliveira DMP, Nogueira FCS, Maciel-de-Freitas R, Junqueira M. Interspecies Isobaric Labeling-Based Quantitative Proteomics Reveals Protein Changes in the Ovary of Aedes aegypti Coinfected With ZIKV and Wolbachia. Front Cell Infect Microbiol 2022; 12:900608. [PMID: 35873163 PMCID: PMC9302590 DOI: 10.3389/fcimb.2022.900608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Zika is a vector-borne disease caused by an arbovirus (ZIKV) and overwhelmingly transmitted by Ae. aegypti. This disease is linked to adverse fetal outcomes, mostly microcephaly in newborns, and other clinical aspects such as acute febrile illness and neurologic complications, for example, Guillain-Barré syndrome. One of the most promising strategies to mitigate arbovirus transmission involves releasing Ae. aegypti mosquitoes carrying the maternally inherited endosymbiont bacteria Wolbachia pipientis. The presence of Wolbachia is associated with a reduced susceptibility to arboviruses and a fitness cost in mosquito life-history traits such as fecundity and fertility. However, the mechanisms by which Wolbachia influences metabolic pathways leading to differences in egg production remains poorly known. To investigate the impact of coinfections on the reproductive tract of the mosquito, we applied an isobaric labeling-based quantitative proteomic strategy to investigate the influence of Wolbachia wMel and ZIKV infection in Ae. aegypti ovaries. To the best of our knowledge, this is the most complete proteome of Ae. aegypti ovaries reported so far, with a total of 3913 proteins identified, were also able to quantify 1044 Wolbachia proteins in complex sample tissue of Ae. aegypti ovary. Furthermore, from a total of 480 mosquito proteins modulated in our study, we discuss proteins and pathways altered in Ae. aegypti during ZIKV infections, Wolbachia infections, coinfection Wolbachia/ZIKV, and compared with no infection, focusing on immune and reproductive aspects of Ae. aegypti. The modified aspects mainly were related to the immune priming enhancement by Wolbachia presence and the modulation of the Juvenile Hormone pathway caused by both microorganism’s infection.
Collapse
Affiliation(s)
- Luís Felipe Costa Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michele Martins
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jimmy Rodriguez Murillo
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Gilberto Barbosa Domont
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fábio César Sousa Nogueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- *Correspondence: Magno Junqueira, ; Rafael Maciel-de-Freitas,
| | - Magno Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Magno Junqueira, ; Rafael Maciel-de-Freitas,
| |
Collapse
|
10
|
IN SILICO AND IN VIVO STUDY OF ADULTICIDAL ACTIVITY FROM Ayapana triplinervis ESSENTIAL OILS NANO-EMULSION AGAINST Aedes aegypti. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Temperature-Mediated Effects on Mayaro Virus Vector Competency of Florida Aedes aegypti Mosquito Vectors. Viruses 2022; 14:v14050880. [PMID: 35632622 PMCID: PMC9144726 DOI: 10.3390/v14050880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/09/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Mayaro virus (MAYV) is an emerging mosquito-borne arbovirus and public health concern. We evaluated the influence of temperature on Aedes aegypti responses to MAYV oral infection and transmission at two constant temperatures (20 °C and 30 °C). Infection of mosquito tissues (bodies and legs) and salivary secretions with MAYV was determined at 3, 9, 15, 21, and 27 days post ingestion. At both temperatures, we observed a trend of increase in progression of MAYV infection and replication kinetics over time, followed by a decline during later periods. Peaks of MAYV infection, titer, and dissemination from the midgut were detected at 15 and 21 days post ingestion at 30 °C and 20 °C, respectively. Mosquitoes were able to transmit MAYV as early as day 3 at 30 °C, but MAYV was not detectable in salivary secretions until day 15 at 20 °C. Low rates of MAYV in salivary secretions collected from infected mosquitoes provided evidence supporting the notion that a substantial salivary gland barrier(s) in Florida Ae. aegypti can limit the risk of MAYV transmission. Our results provide insights into the effects of temperature and time on the progression of infection and replication of MAYV in Ae. aegypti vectors.
Collapse
|
12
|
Alomar AA, Alto BW. Evaluation of Pyriproxyfen Effects on Aedes aegypti and Predatory Mosquito Toxorhynchites rutilus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:585-590. [PMID: 34865101 DOI: 10.1093/jme/tjab193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Control of mosquito vectors of pathogens remains heavily dependent on the application of conventional insecticides. Pyriproxyfen (PPF) is a novel insecticide that has been proposed for use in autodissemination techniques to control mosquito vectors. The use of PPF can inhibit adult emergence but does not inhibit larval development. This feature is favorable for controlling Aedes aegypti because PPF has the potential to work in combination with natural sources of mortality (competition, predation) during the immature stages, and other control methods, including biocontrol agents that further suppress recruitment of adult mosquitoes. However, the PPF effects on life-history traits of Ae. aegypti in comparison to predatory mosquito Toxorhynchites rutilus, a source of mortality, are not fully understood. Here, we show that larval exposure to PPF concentrations that inhibit 50-90% of adult emergence in Ae. aegypti had a negligible effect on adult emergence and lifespan of Tx. rutilus. Weights of adult Ae. aegypti and Tx. rutilus were not influenced by PPF. These findings suggest that the use of PPF to control mosquito vectors may have low effects on mosquito biocontrol agents. Our results extend and confirm earlier data showing that PPF has potential to implement with Tx. rutilus to suppress Ae. aegypti and provide an additional advantage of PPF use in autodissemination control strategies.
Collapse
Affiliation(s)
- Abdullah A Alomar
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, 32962, USA
| | - Barry W Alto
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, 32962, USA
| |
Collapse
|
13
|
Alomar AA, Alto BW, Walker ED. Spinosyns Delivered in Sugar Meals to Aedes aegypti and Aedes albopictus (Diptera: Culicidae): Acute Toxicity and Subacute Effects on Survival, Fecundity, and Fertility. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:623-630. [PMID: 34994376 DOI: 10.1093/jme/tjab220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 06/14/2023]
Abstract
Sugar is an essential source of nutrition for adult mosquitoes to acquire energy. Toxic sugar bait (TSB) provides a promising method for mosquito control by incorporating toxins into artificial sources of sugar (i.e., toxic baits) presented to wild populations. Spinosyns comprise a family of bacterial secondary metabolites with a unique mode of action against the insect nervous system, an appealing environmental safety profile, and potential for incorporation into sugar baits. This research evaluated acute and subacute effects of spinosad (spinosyns A and D) and spinetoram (spinosyns J and L) in sugar meals on survival, fecundity, and fertility of Aedes aegypti and Aedes albopictus. Acute toxicity of spinosyns doubled from 24 to 48 h of assessment, revealing a relatively slow and cumulative action of the formulated spinosyns. Median lethal concentrations at 48 h were lower for spinetoram than for spinosad, lower for Ae. albopictus than Ae. aegypti, and lower for males than females. When exposed to subacute LC50 concentrations of spinosad and spinetoram for 24 h, survival of males and females of both species was diminished compared with controls, fecundity of females was increased, but fertility as measured by hatch rate of eggs was decreased. The formulations may have increased the nutritive value of the sugar meals thereby boosting fecundity, while toxifying embryos, reducing fertility. The inclusion of subacute effects of spinosyns allows assessment of the broader consequences of TSB for adult mosquito control.
Collapse
Affiliation(s)
- Abdullah A Alomar
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Barry W Alto
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, USA
| | - Edward D Walker
- Department of Entomology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|