1
|
Castellini-Pérez O, Povedano E, Barturen G, Martínez-Bueno M, Iakovliev A, Kerick M, López-Domínguez R, Marañón C, Martín J, Ballestar E, Borghi MO, Qiu W, Zhu C, Shankara S, Spiliopoulou A, de Rinaldis E, Carnero-Montoro E, Alarcón-Riquelme ME. Molecular subtypes explain lupus epigenomic heterogeneity unveiling new regulatory genetic risk variants. NPJ Genom Med 2024; 9:38. [PMID: 39013887 PMCID: PMC11252280 DOI: 10.1038/s41525-024-00420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/17/2024] [Indexed: 07/18/2024] Open
Abstract
The heterogeneity of systemic lupus erythematosus (SLE) can be explained by epigenetic alterations that disrupt transcriptional programs mediating environmental and genetic risk. This study evaluated the epigenetic contribution to SLE heterogeneity considering molecular and serological subtypes, genetics and transcriptional status, followed by drug target discovery. We performed a stratified epigenome-wide association studies of whole blood DNA methylation from 213 SLE patients and 221 controls. Methylation quantitative trait loci analyses, cytokine and transcription factor activity - epigenetic associations and methylation-expression correlations were conducted. New drug targets were searched for based on differentially methylated genes. In a stratified approach, a total of 974 differential methylation CpG sites with dependency on molecular subtypes and autoantibody profiles were found. Mediation analyses suggested that SLE-associated SNPs in the HLA region exert their risk through DNA methylation changes. Novel genetic variants regulating DNAm in disease or in specific molecular contexts were identified. The epigenetic landscapes showed strong association with transcription factor activity and cytokine levels, conditioned by the molecular context. Epigenetic signals were enriched in known and novel drug targets for SLE. This study reveals possible genetic drivers and consequences of epigenetic variability on SLE heterogeneity and disentangles the DNAm mediation role on SLE genetic risk and novel disease-specific meQTLs. Finally, novel targets for drug development were discovered.
Collapse
Affiliation(s)
- Olivia Castellini-Pérez
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
- University of Granada, Granada, Spain
| | - Elena Povedano
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
- Spanish National Research Council (CSIC), Institute of Economy, Geography and Demography, Madrid (IEGD), Madrid, Spain
- Autonomous University of Madrid, Madrid, Spain
| | - Guillermo Barturen
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
- Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Manuel Martínez-Bueno
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Andrii Iakovliev
- Usher Institute of Population Health Sciences and Informatics. University of Edinburgh Medical School, EH8 9YL, Edinburgh, UK
| | - Martin Kerick
- IBPLN-CSIC, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, 18016, Spain
| | - Raúl López-Domínguez
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Concepción Marañón
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Javier Martín
- IBPLN-CSIC, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, 18016, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | | | - Weiliang Qiu
- Sanofi, Early Development and Research, Cambridge, MA, USA
| | - Cheng Zhu
- Sanofi, Precision Medicine & Computational Biology (PMCB), R&D, Cambridge, MA, USA
| | - Srinivas Shankara
- Sanofi, Precision Medicine & Computational Biology (PMCB), R&D, Cambridge, MA, USA
| | - Athina Spiliopoulou
- Usher Institute of Population Health Sciences and Informatics. University of Edinburgh Medical School, EH8 9YL, Edinburgh, UK
| | - Emanuele de Rinaldis
- Sanofi, Precision Medicine & Computational Biology (PMCB), R&D, Cambridge, MA, USA
| | - Elena Carnero-Montoro
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain.
- University of Granada, Granada, Spain.
| | - Marta E Alarcón-Riquelme
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain.
- Institute for Environmental Medicine, Karolinska Institutet, 171 67, Solna, Sweden.
| |
Collapse
|
2
|
Qi W, Tian J, Wang G, Yan Y, Wang T, Wei Y, Wang Z, Zhang G, Zhang Y, Wang J. Advances in cellular and molecular pathways of salivary gland damage in Sjögren's syndrome. Front Immunol 2024; 15:1405126. [PMID: 39050857 PMCID: PMC11266040 DOI: 10.3389/fimmu.2024.1405126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Sjögren's Syndrome (SS) is an autoimmune disorder characterized by dysfunction of exocrine glands. Primarily affected are the salivary glands, which exhibit the most frequent pathological changes. The pathogenesis involves susceptibility genes, non-genetic factors such as infections, immune cells-including T and B cells, macrophage, dendritic cells, and salivary gland epithelial cells. Inflammatory mediators such as autoantibodies, cytokines, and chemokines also play a critical role. Key signaling pathways activated include IFN, TLR, BAFF/BAFF-R, PI3K/Akt/mTOR, among others. Comprehensive understanding of these mechanisms is crucial for developing targeted therapeutic interventions. Thus, this study explores the cellular and molecular mechanisms underlying SS-related salivary gland damage, aiming to propose novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Wenxia Qi
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Jiexiang Tian
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Gang Wang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Yanfeng Yan
- Fourth Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Respiratory and Critical Care Medicine, Lanzhou, China
| | - Tao Wang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Yong Wei
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Zhandong Wang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Guohua Zhang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Yuanyuan Zhang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Jia Wang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| |
Collapse
|
3
|
Roongta R, Dey S, Mondal S, Ghosh A. Two Concomitant Rare Extraglandular Manifestations of Primary Sjögren's Syndrome: IgA Nephropathy and Autoimmune Hepatitis. Mediterr J Rheumatol 2024; 35:305-308. [PMID: 39211028 PMCID: PMC11350420 DOI: 10.31138/mjr.260123.ina] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/08/2023] [Accepted: 10/16/2023] [Indexed: 09/04/2024] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease and can rarely present with multiple extraglandular manifestations. Here we report a case of pSS with concomitant IgA nephropathy and autoimmune hepatitis as the initial manifestations. She presented with polyarthralgia, sicca symptoms and persistent fatigue but was asymptomatic for renal and liver involvement. Autoimmune diseases can have overlapping clinical features and occasionally, manifest nonspecific symptoms leading to delay in diagnosis. It is therefore imperative to thoroughly evaluate any patient of pSS for early recognition of the diverse extraglandular features and initiate prompt treatment to improve outcome.
Collapse
Affiliation(s)
- Rashmi Roongta
- Department of Clinical Immunology and Rheumatology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Sonali Dey
- Department of Clinical Immunology and Rheumatology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Sumantro Mondal
- Department of Clinical Immunology and Rheumatology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Alakendu Ghosh
- Department of Clinical Immunology and Rheumatology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Wang Y, Riaz F, Wang W, Pu J, Liang Y, Wu Z, Pan S, Song J, Yang L, Zhang Y, Wu H, Han F, Tang J, Wang X. Functional significance of DNA methylation: epigenetic insights into Sjögren's syndrome. Front Immunol 2024; 15:1289492. [PMID: 38510251 PMCID: PMC10950951 DOI: 10.3389/fimmu.2024.1289492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Sjögren's syndrome (SjS) is a systemic, highly diverse, and chronic autoimmune disease with a significant global prevalence. It is a complex condition that requires careful management and monitoring. Recent research indicates that epigenetic mechanisms contribute to the pathophysiology of SjS by modulating gene expression and genome stability. DNA methylation, a form of epigenetic modification, is the fundamental mechanism that modifies the expression of various genes by modifying the transcriptional availability of regulatory regions within the genome. In general, adding a methyl group to DNA is linked with the inhibition of genes because it changes the chromatin structure. DNA methylation changes the fate of multiple immune cells, such as it leads to the transition of naïve lymphocytes to effector lymphocytes. A lack of central epigenetic enzymes frequently results in abnormal immune activation. Alterations in epigenetic modifications within immune cells or salivary gland epithelial cells are frequently detected during the pathogenesis of SjS, representing a robust association with autoimmune responses. The analysis of genome methylation is a beneficial tool for establishing connections between epigenetic changes within different cell types and their association with SjS. In various studies related to SjS, most differentially methylated regions are in the human leukocyte antigen (HLA) locus. Notably, the demethylation of various sites in the genome is often observed in SjS patients. The most strongly linked differentially methylated regions in SjS patients are found within genes regulated by type I interferon. This demethylation process is partly related to B-cell infiltration and disease progression. In addition, DNA demethylation of the runt-related transcription factor (RUNX1) gene, lymphotoxin-α (LTA), and myxovirus resistance protein A (MxA) is associated with SjS. It may assist the early diagnosis of SjS by serving as a potential biomarker. Therefore, this review offers a detailed insight into the function of DNA methylation in SjS and helps researchers to identify potential biomarkers in diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Farooq Riaz
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Wei Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Youwei Zhang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihong Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Qiu X, Wang B, Gong H, Bu S, Li P, Zhao R, Li M, Zhu L, Huo X. Integrative analysis of transcriptome and proteome in primary Sjögren syndrome. Genomics 2024; 116:110767. [PMID: 38128705 DOI: 10.1016/j.ygeno.2023.110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Primary Sjögren's syndrome (pSS) is a intricate autoimmune disease mainly characterized of immune-mediated destruction of exocrine tissues, such as salivary and lacrimal glands, occurring dry mouth and eyes. Although some breakthroughs in understanding pSS have been uncovered, many questions remain about its pathogenesis, especially the internal relations between exocrine glands and secretions. METHOD Transcriptomic and proteomic analyses were conducted on salivary tissues and saliva in experimental Sjögren syndrome (ESS). The ESS model was established by immunization with salivary gland protein. The expression of mRNAs and proteins in salivary tissues and saliva were determined by high-throughput sequencing transcriptomic analysis and LC-MS/MS-based proteome, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to recognize dysregulated genes and proteins. The association between RNA and protein abundance was investigated to provides a comprehensive understanding of RNA-protein correlations in the pathogenesis of pSS. RESULTS As a result, we successfully established the ESS model. We recognized 3221 differentially expressed genes (DEGs) and 253 differentially expressed proteins (DEPs). The sample analysis showed that 61 proteins overlapped through the integrative analysis of transcriptomics and proteomics data. The enrichment pathway analysis of DEGs and DEPs in samples showed alterations in renin-angiotensin-system (RAS), lysosome, and apoptosis. Notably, we found that some genes, such as AGT, FN1, Klk1b26, Klk1, Klk1b5, Klk1b3 had a consistent trend in the regulation at the RNA and protein levels and might be potential diagnostic biomarkers of pSS. CONCLUSION Herein, we found critical processes and potential biomakers that may contribute to pSS pathogenesis by analyzing dysregulated genes and pathways. Additionally, the integrative multi-omics datasets provided additional insight into understanding complicated disease mechanisms.
Collapse
Affiliation(s)
- Xiaoting Qiu
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China; Department of Otolaryngology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Beijia Wang
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Hongxiao Gong
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Su Bu
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Pingping Li
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Runzhi Zhao
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Mingde Li
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ling Zhu
- Department of Otolaryngology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Xingxing Huo
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
6
|
Nascimento Da Conceicao V, Sun Y, Chai X, Ambrus JL, Mishra BB, Singh BB. Metformin-induced activation of Ca 2+ signaling prevents immune infiltration/pathology in Sjogren's syndrome-prone mouse models. J Transl Autoimmun 2023; 7:100210. [PMID: 37711153 PMCID: PMC10497794 DOI: 10.1016/j.jtauto.2023.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
Immune cell infiltration and glandular dysfunction are the hallmarks of autoimmune diseases such as primary Sjogren's syndrome (pSS), however, the mechanism(s) is unknown. Our data show that metformin-treatment induces Ca2+ signaling that restores saliva secretion and prevents immune cell infiltration in the salivary glands of IL14α-transgenic mice (IL14α), which is a model for pSS. Mechanistically, we show that loss of Ca2+ signaling is a major contributing factor, which is restored by metformin treatment, in IL14α mice. Furthermore, the loss of Ca2+ signaling leads to ER stress in salivary glands. Finally, restoration of metformin-induced Ca2+ signaling inhibited the release of alarmins and prevented the activation of ER stress that was essential for immune cell infiltration. These results suggest that loss of metformin-mediated activation of Ca2+ signaling prevents ER stress, which inhibited the release of alarmins that induces immune cell infiltration leading to salivary gland dysfunction observed in pSS.
Collapse
Affiliation(s)
- Viviane Nascimento Da Conceicao
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Xiufang Chai
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Julian L. Ambrus
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14203, USA
| | - Bibhuti B. Mishra
- Department of Developmental Dentistry, School of Dentistry, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Brij B. Singh
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
Chau K, Raksadawan Y, Allison K, Ice JA, Scofield RH, Chepelev I, Harley ITW. Pervasive Sharing of Causal Genetic Risk Factors Contributes to Clinical and Molecular Overlap between Sjögren's Disease and Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:14449. [PMID: 37833897 PMCID: PMC10572278 DOI: 10.3390/ijms241914449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/15/2023] Open
Abstract
SjD (Sjögren's Disease) and SLE (Systemic Lupus Erythematosus) are similar diseases. There is extensive overlap between the two in terms of both clinical features and pathobiologic mechanisms. Shared genetic risk is a potential explanation of this overlap. In this study, we evaluated whether these diseases share causal genetic risk factors. We compared the causal genetic risk for SLE and SjD using three complementary approaches. First, we examined the published GWAS results for these two diseases by analyzing the predicted causal gene protein-protein interaction networks of both diseases. Since this method does not account for overlapping risk intervals, we examined whether such intervals also overlap. Third, we used two-sample Mendelian randomization (two sample MR) using GWAS summary statistics to determine whether risk variants for SLE are causal for SjD and vice versa. We found that both the putative causal genes and the genomic risk intervals for SLE and SjD overlap 28- and 130-times more than expected by chance (p < 1.1 × 10-24 and p < 1.1 × 10-41, respectively). Further, two sample MR analysis confirmed that alone or in aggregate, SLE is likely causal for SjD and vice versa. [SjD variants predicting SLE: OR = 2.56; 95% CI (1.98-3.30); p < 1.4 × 10-13, inverse-variance weighted; SLE variants predicting SjD: OR = 1.36; 95% CI (1.26-1.47); p < 1.6 × 10-11, inverse-variance weighted]. Notably, some variants have disparate impact in terms of effect size across disease states. Overlapping causal genetic risk factors were found for both diseases using complementary approaches. These observations support the hypothesis that shared genetic factors drive the clinical and pathobiologic overlap between these diseases. Our study has implications for both differential diagnosis and future genetic studies of these two conditions.
Collapse
Affiliation(s)
- Karen Chau
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yanint Raksadawan
- Internal Medicine Residency Program, Louis A. Weiss Memorial Hospital, Chicago, IL 60640, USA
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - John A. Ice
- Research Service, Oklahoma City US Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Robert Hal Scofield
- Research Service, Oklahoma City US Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Medicine Service, Oklahoma City US Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Iouri Chepelev
- Research Service, Cincinnati US Department of Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| | - Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Rheumatology Section, Medicine Service, Eastern Colorado Healthcare System, US Department of Veterans Affairs Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Affiliation(s)
- Elena Carnero-Montoro
- GENYO (Center for Genomics and Oncological Research), Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
| | - Marta E Alarcón-Riquelme
- GENYO (Center for Genomics and Oncological Research), Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain.
| |
Collapse
|
9
|
Mihai A, Caruntu C, Jurcut C, Blajut FC, Casian M, Opris-Belinski D, Ionescu R, Caruntu A. The Spectrum of Extraglandular Manifestations in Primary Sjögren's Syndrome. J Pers Med 2023; 13:961. [PMID: 37373950 DOI: 10.3390/jpm13060961] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Extraglandular manifestations (EGMs) in primary Sjogren's syndrome (pSS) represent the clinical expression of the systemic involvement in this disease. EGMs are characterized by a wide heterogeneity; virtually any organ or system can be affected, with various degrees of dysfunction. The existing gaps of knowledge in this complex domain of extraglandular extension in pSS need to be overcome in order to increase the diagnostic accuracy of EGMs in pSS. The timely identification of EGMs, as early as from subclinical stages, can be facilitated using highly specific biomarkers, thus preventing decompensated disease and severe complications. To date, there is no general consensus on the diagnostic criteria for the wide range of extraglandular involvement in pSS, which associates important underdiagnosing of EGMs, subsequent undertreatment and progression to severe organ dysfunction in these patients. This review article presents the most recent basic and clinical science research conducted to investigate pathogenic mechanisms leading to EGMs in pSS patients. In addition, it presents the current diagnostic and treatment recommendations and the trends for future therapeutic strategies based on personalized treatment, as well as the latest research in the field of diagnostic and prognostic biomarkers for extraglandular involvement in pSS.
Collapse
Affiliation(s)
- Ancuta Mihai
- Department of Internal Medicine, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Rheumatology, Faculty of General Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Ciprian Jurcut
- Department of Internal Medicine, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Florin Cristian Blajut
- Department of General Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Medical-Surgical Specialties, "Titu Maiorescu" University of Bucharest, 040441 Bucharest, Romania
| | - Mihnea Casian
- Emergency Institute for Cardiovascular Diseases Prof. Dr. C.C. Iliescu, 022328 Bucharest, Romania
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Opris-Belinski
- Internal Medicine and Rheumatology Department, Sfanta Maria Clinical Hospital, 011172 Bucharest, Romania
- Internal Medicine and Rheumatology Department, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ruxandra Ionescu
- Internal Medicine and Rheumatology Department, Sfanta Maria Clinical Hospital, 011172 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| |
Collapse
|
10
|
Thorlacius GE, Björk A, Wahren-Herlenius M. Genetics and epigenetics of primary Sjögren syndrome: implications for future therapies. Nat Rev Rheumatol 2023; 19:288-306. [PMID: 36914790 PMCID: PMC10010657 DOI: 10.1038/s41584-023-00932-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
In primary Sjögren syndrome (pSS), chronic inflammation of exocrine glands results in tissue destruction and sicca symptoms, primarily of the mouth and eyes. Fatigue, arthralgia and myalgia are also common symptoms, whereas extraglandular manifestations that involve the respiratory, nervous and vascular systems occur in a subset of patients. The disease predominantly affects women, with an estimated female to male ratio of 14 to 1. The aetiology of pSS, however, remains incompletely understood, and effective treatment is lacking. Large-scale genetic and epigenetic investigations have revealed associations between pSS and genes in both innate and adaptive immune pathways. The genetic variants mediate context-dependent effects, and both sex and environmental factors can influence the outcome. As such, genetic and epigenetic studies can provide insight into the dysregulated molecular mechanisms, which in turn might reveal new therapeutic possibilities. This Review discusses the genetic and epigenetic features that have been robustly connected with pSS, putting them into the context of cellular function, carrier sex and environmental challenges. In all, the observations point to several novel opportunities for early detection, treatment development and the pathway towards personalized medicine.
Collapse
Affiliation(s)
- Gudny Ella Thorlacius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Albin Björk
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
11
|
Garau J, Charras A, Varesio C, Orcesi S, Dragoni F, Galli J, Fazzi E, Gagliardi S, Pansarasa O, Cereda C, Hedrich CM. Altered DNA methylation and gene expression predict disease severity in patients with Aicardi-Goutières syndrome. Clin Immunol 2023; 249:109299. [PMID: 36963449 DOI: 10.1016/j.clim.2023.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
Aicardi-Goutières Syndrome (AGS) is a rare neuro-inflammatory disease characterized by increased expression of interferon-stimulated genes (ISGs). Disease-causing mutations are present in genes associated with innate antiviral responses. Disease presentation and severity vary, even between patients with identical mutations from the same family. This study investigated DNA methylation signatures in PBMCs to understand phenotypic heterogeneity in AGS patients with mutations in RNASEH2B. AGS patients presented hypomethylation of ISGs and differential methylation patterns (DMPs) in genes involved in "neutrophil and platelet activation". Patients with "mild" phenotypes exhibited DMPs in genes involved in "DNA damage and repair", whereas patients with "severe" phenotypes had DMPs in "cell fate commitment" and "organ development" associated genes. DMPs in two ISGs (IFI44L, RSAD2) associated with increased gene expression in patients with "severe" when compared to "mild" phenotypes. In conclusion, altered DNA methylation and ISG expression as biomarkers and potential future treatment targets in AGS.
Collapse
Affiliation(s)
- Jessica Garau
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Amandine Charras
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Costanza Varesio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Dragoni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy; Molecular Biology and Transcriptomics, IRCCS Mondino Foundation, Pavia, Italy
| | - Jessica Galli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Model and Neuroepigenetics, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom.
| |
Collapse
|
12
|
Paraschou V, Partalidou S, Siolos P, Papadopoulou Z, Chaitidis N. Prevalence of hearing loss in patients with Sjögren syndrome: a systematic review and meta-analysis. Rheumatol Int 2023; 43:233-244. [PMID: 36305918 DOI: 10.1007/s00296-022-05235-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/10/2022] [Indexed: 02/07/2023]
Abstract
Sjögren syndrome (SS) is a multisystem autoimmune disease, primarily targeting salivary and lacrimal glands; skin, nasal and vaginal dryness, along with musculoskeletal pain and fatigue are the most commonly reported symptoms. Hearing loss is hypothesized to be frequent as well. The purpose of this systematic review was to estimate the prevalence of Hearing loss and its different subtypes in patients with Sjögren syndrome. PRISMA guidelines were followed to ensure highest quality for our systematic review. A random effects model meta-analysis and meta-regression was conducted using I2 as heterogeneity indicator. Eleven observational studies were included in this systematic review. Ten of them were cross-sectional, while one study was case-control. Studies were assessed for risk of bias: all were rated to a moderate level, except for two rated to a low level. Pooled prevalence of any type of hearing loss was 52.2%. After excluding studies rated to moderate bias, the pooled prevalence of hearing loss was 36.7%. We also conducted a subgroup analysis depending on type of hearing loss. Pooled prevalence of sensorineural hearing loss was 42.6%., while pooled prevalence of conductive hearing loss and mixed hearing loss were 5% and 2.3%, respectively. Meta-regression was conducted in an effort to identify possible variables capable to explain high heterogeneity between studies. Sample size and year of study were separately found to account for a portion of heterogeneity between studies of sensorineural hearing loss. Year of study was also found to account for a portion of heterogeneity between studies of conductive hearing loss. In conclusion, sensorineural hearing loss, is highly prevalent in patients with Sjögren syndrome. On this basis, early screening and follow-up of patients with Sjögren syndrome by pure tone audiometry is important.
Collapse
Affiliation(s)
- Vasileios Paraschou
- Hellenic Police Medical Center, Thessaloniki, Greece.
- 2nd Pulmonary Department, 'Attikon' University Hospital, National and Kapodistrian University of Athens, Haidari, Athens, Greece.
| | - Styliani Partalidou
- Medical Department of Educational Central of Army Aviation, Greek Military Corps, Imathia, Greece
- Internal Medicine Department, Euromedica, Thessaloniki, Greece
| | - Pavlos Siolos
- Hellenic Police Medical Center, Thessaloniki, Greece
- 1st Department of Pediatrics, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Zoi Papadopoulou
- 3rd Department of Pediatrics, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Chaitidis
- 2nd Internal Medicine Department, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Foulquier N, Le Dantec C, Bettacchioli E, Jamin C, Alarcón‐Riquelme ME, Pers J. Machine Learning for the Identification of a Common Signature for Anti-SSA/Ro 60 Antibody Expression Across Autoimmune Diseases. Arthritis Rheumatol 2022; 74:1706-1719. [PMID: 35635731 PMCID: PMC9804576 DOI: 10.1002/art.42243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/14/2022] [Accepted: 05/17/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Anti-Ro autoantibodies are among the most frequently detected extractable nuclear antigen autoantibodies, mainly associated with primary Sjögren's syndrome (SS), systemic lupus erythematosus (SLE), and undifferentiated connective tissue disease (UCTD). This study was undertaken to determine if there is a common signature for all patients expressing anti-Ro 60 autoantibodies regardless of their disease phenotype. METHODS Using high-throughput multiomics data collected from the cross-sectional cohort in the PRECISE Systemic Autoimmune Diseases (PRECISESADS) study Innovative Medicines Initiative (IMI) project (genetic, epigenomic, and transcriptomic data, combined with flow cytometry data, multiplexed cytokines, classic serology, and clinical data), we used machine learning to assess the integrated molecular profiling of 520 anti-Ro 60+ patients compared to 511 anti-Ro 60- patients with primary SS, patients with SLE, and patients with UCTD, and 279 healthy controls. RESULTS The selected clinical features for RNA-Seq, DNA methylation, and genome-wide association study data allowed for a clear distinction between anti-Ro 60+ and anti-Ro 60- patients. The different features selected using machine learning from the anti-Ro 60+ patients constituted specific signatures when compared to anti-Ro 60- patients and healthy controls. Remarkably, the transcript Z score of 3 genes (ATP10A, MX1, and PARP14), presenting with overexpression associated with hypomethylation and genetic variation and independently identified using the Boruta algorithm, was clearly higher in anti-Ro 60+ patients compared to anti-Ro 60- patients regardless of disease type. Our findings demonstrated that these signatures, enriched in interferon-stimulated genes, were also found in anti-Ro 60+ patients with rheumatoid arthritis and those with systemic sclerosis and remained stable over time and were not affected by treatment. CONCLUSION Anti-Ro 60+ patients present with a specific inflammatory signature regardless of their disease type, suggesting that a dual therapeutic approach targeting both Ro-associated RNAs and anti-Ro 60 autoantibodies should be considered.
Collapse
Affiliation(s)
- Nathan Foulquier
- B Lymphocytes, Autoimmunity and Immunotherapies laboratory, UMR 1227Université de Brest, INSERMBrestFrance
| | - Christelle Le Dantec
- B Lymphocytes, Autoimmunity and Immunotherapies laboratory, UMR 1227Université de Brest, INSERMBrestFrance
| | - Eleonore Bettacchioli
- B Lymphocytes, Autoimmunity and Immunotherapies laboratory, UMR 1227Université de Brest, INSERMBrestFrance
| | - Christophe Jamin
- B Lymphocytes, Autoimmunity and Immunotherapies laboratory, UMR 1227Université de Brest, INSERM, and University Hospital of BrestBrestFrance
| | | | - Jacques‐Olivier Pers
- B Lymphocytes, Autoimmunity and Immunotherapies laboratory, UMR 1227Université de Brest, INSERM, and University Hospital of BrestBrestFrance
| |
Collapse
|
14
|
de la Calle-Fabregat C, Rodríguez-Ubreva J, Cañete JD, Ballestar E. Designing Studies for Epigenetic Biomarker Development in Autoimmune Rheumatic Diseases. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:103-110. [PMID: 36788968 PMCID: PMC9895872 DOI: 10.2478/rir-2022-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/13/2022] [Indexed: 02/16/2023]
Abstract
In just a few years, the number of epigenetic studies in autoimmune rheumatic and inflammatory diseases has greatly increased. This is in part due to the need of identifying additional determinants to genetics to explain the pathogenesis and development of these disorders. In this regard, epigenetics provides potential mechanisms that determine gene function, are linked to environmental factors, and could explain a wide range of phenotypic variability among patients with these diseases. Despite the high interest and number of studies describing epigenetic alterations under these conditions and exploring their relationship to various clinical aspects, few of the proposed biomarkers have yet reached clinical practice. The potential of epigenetic markers is high, as these alterations link measurable features with a number of biological traits. In the present article, we present published studies in the field, discuss some frequent limitations in the existing research, and propose a number of considerations that should be taken into account by those starting new projects in the field, with an aim to generate biomarkers that could make it into the clinics.
Collapse
Affiliation(s)
- Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916Badalona, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916Badalona, Barcelona, Spain
| | - Juan D. Cañete
- Rheumatology Department, Arthritis Unit, Hospital Clinic and IDIBAPS, 08036Barcelona, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916Badalona, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai200241, China
| |
Collapse
|
15
|
Liotti A, Ferrara AL, Loffredo S, Galdiero MR, Varricchi G, Di Rella F, Maniscalco GT, Belardo M, Vastano R, Prencipe R, Pignata L, Romano R, Spadaro G, de Candia P, Pezone A, De Rosa V. Epigenetics: an Opportunity to Shape Innate and Adaptive Immune Responses. Immunol Suppl 2022; 167:451-470. [PMID: 36043705 DOI: 10.1111/imm.13571] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Epigenetics connects genetic and environmental factors: it includes DNA methylation, histone post-translational modifications and the regulation of chromatin accessibility by non-coding RNAs, all of which control constitutive or inducible gene transcription. This plays a key role in harnessing the transcriptional programs of both innate and adaptive immune cells due to its plasticity and environmental-driven nature, piloting myeloid and lymphoid cell fate decision with no change in their genomic sequence. In particular, epigenetic marks at the site of lineage specific transcription factors and maintenance of cell type-specific epigenetic modifications, referred to as "epigenetic memory", dictate cell differentiation, cytokine production and functional capacity following repeated antigenic exposure in memory T cells. Moreover, metabolic and epigenetic reprogramming occurring during a primary innate immune response leads to enhanced responses to secondary challenges, a phenomenon known as "trained immunity". Here we discuss how stable and dynamic epigenetic states control immune cell identity and plasticity in physiological and pathological conditions. Dissecting the regulatory circuits of cell fate determination and maintenance is of paramount importance for understanding the delicate balance between immune cell activation and tolerance, in healthy conditions and in autoimmune diseases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Antonietta Liotti
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Anne Lise Ferrara
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Stefania Loffredo
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Maria Rosaria Galdiero
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Gilda Varricchi
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy.,Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Francesca Di Rella
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Giorgia Teresa Maniscalco
- Neurological Clinic and Stroke Unit and Multiple Sclerosis Center "A. Cardarelli" Hospital, Naples, Italy
| | - Martina Belardo
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Roberta Vastano
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Rosaria Prencipe
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Laura Pignata
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberta Romano
- Department of Translational Medical Sciences, Pediatric Section, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI) and World Allergy Organization (WAO) Center of Excellence, University of Naples "Federico II", Naples, Italy
| | - Paola de Candia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Veronica De Rosa
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
16
|
Martin-Gutierrez L, Wilson R, Castelino M, Jury EC, Ciurtin C. Multi-Omic Biomarkers for Patient Stratification in Sjogren's Syndrome-A Review of the Literature. Biomedicines 2022; 10:1773. [PMID: 35892673 PMCID: PMC9332255 DOI: 10.3390/biomedicines10081773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Sjögren's syndrome (SS) is a heterogeneous autoimmune rheumatic disease (ARD) characterised by dryness due to the chronic lymphocytic infiltration of the exocrine glands. Patients can also present other extra glandular manifestations, such as arthritis, anaemia and fatigue or various types of organ involvement. Due to its heterogenicity, along with the lack of effective treatments, the diagnosis and management of this disease is challenging. The objective of this review is to summarize recent multi-omic publications aiming to identify biomarkers in tears, saliva and peripheral blood from SS patients that could be relevant for their better stratification aiming at improved treatment selection and hopefully better outcomes. We highlight the relevance of pro-inflammatory cytokines and interferon (IFN) as biomarkers identified in higher concentrations in serum, saliva and tears. Transcriptomic studies confirmed the upregulation of IFN and interleukin signalling in patients with SS, whereas immunophenotyping studies have shown dysregulation in the immune cell population frequencies, specifically CD4+and C8+T activated cells, and their correlations with clinical parameters, such as disease activity scores. Lastly, we discussed emerging findings derived from different omic technologies which can provide integrated knowledge about SS pathogenesis and facilitate personalised medicine approaches leading to better patient outcomes in the future.
Collapse
Affiliation(s)
- Lucia Martin-Gutierrez
- Centre for Rheumatology Research, Division of Medicine, University College London, London WC1E 6JF, UK; (L.M.-G.); (E.C.J.)
| | - Robert Wilson
- Department of Rheumatology, University College London Hospitals NHS Trust, London NW1 2PG, UK; (R.W.); (M.C.)
| | - Madhura Castelino
- Department of Rheumatology, University College London Hospitals NHS Trust, London NW1 2PG, UK; (R.W.); (M.C.)
| | - Elizabeth C. Jury
- Centre for Rheumatology Research, Division of Medicine, University College London, London WC1E 6JF, UK; (L.M.-G.); (E.C.J.)
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London WC1E 6JF, UK
| |
Collapse
|