1
|
Shaban M, Merkert N, van Duin ACT, van Duin D, Weber AP. Advancing DBD Plasma Chemistry: Insights into Reactive Nitrogen Species such as NO 2, N 2O 5, and N 2O Optimization and Species Reactivity through Experiments and MD Simulations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16087-16099. [PMID: 39205652 PMCID: PMC11394011 DOI: 10.1021/acs.est.4c04894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study aims to fine-tune the plasma composition with a particular emphasis on reactive nitrogen species (RNS) including nitrogen dioxide (NO2), dinitrogen pentoxide (N2O5), and nitrous oxide (N2O), produced by a self-constructed cylindrical dielectric barrier discharge (CDBD). We demonstrated the effective manipulation of the plasma chemical profile by optimizing electrical properties, including the applied voltage and frequency, and by adjusting the nitrogen and oxygen ratios in the gas mixture. Additionally, quantification of these active species was achieved using Fourier transform infrared spectroscopy. The study further extends to exploring the aerosol polymerization of acrylamide (AM) into polyacrylamide (PAM), serving as a model reaction to evaluate the reactivity of different plasma-generated species, highlighting the significant role of NO2 in achieving high polymerization yields. Complementing our experimental data, molecular dynamics (MD) simulations, based on the ReaxFF reactive force field potential, explored the interactions between reactive oxygen species, specifically hydroxyl radicals (OH) and hydrogen peroxide (H2O2), with water molecules. Understanding these interactions, combined with the optimization of plasma chemistry, is crucial for enhancing the effectiveness of DBD plasma in environmental applications like air purification and water treatment.
Collapse
Affiliation(s)
- Masoom Shaban
- Institute of Particle Technology, Clausthal University of Technology, 38640 Clausthal-Zellerfeld, Germany
- Institute of Applied Mechanics, Clausthal University of Technology, 38640 Clausthal-Zellerfeld, Germany
| | - Nina Merkert
- Institute of Applied Mechanics, Clausthal University of Technology, 38640 Clausthal-Zellerfeld, Germany
| | - Adri C T van Duin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- RxFF Consulting LLC, 1524 West College Avenue, Suite 202, State College, Pennsylvania 16801, United States
| | - Diana van Duin
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- RxFF Consulting LLC, 1524 West College Avenue, Suite 202, State College, Pennsylvania 16801, United States
| | - Alfred P Weber
- Institute of Particle Technology, Clausthal University of Technology, 38640 Clausthal-Zellerfeld, Germany
| |
Collapse
|
2
|
Xu Y, Liu N, Lin Y, Mao X, Zhong H, Chang Z, Shneider MN, Ju Y. Enhancements of electric field and afterglow of non-equilibrium plasma by Pb(Zr xTi 1-x)O 3 ferroelectric electrode. Nat Commun 2024; 15:3092. [PMID: 38600079 PMCID: PMC11006859 DOI: 10.1038/s41467-024-47230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Manipulating surface charge, electric field, and plasma afterglow in a non-equilibrium plasma is critical to control plasma-surface interaction for plasma catalysis and manufacturing. Here, we show enhancements of surface charge, electric field during breakdown, and afterglow by ferroelectric barrier discharge. The results show that the ferroelectrics manifest spontaneous electric polarization to increase the surface charge by two orders of magnitude compared to discharge with an alumina barrier. Time-resolved in-situ electric field measurements reveal that the fast polarization of ferroelectrics enhances the electric field during the breakdown in streamer discharge and doubles the electric field compared to the dielectric barrier discharge. Moreover, due to the existence of surface charge, the ferroelectric electrode extends the afterglow time and makes discharge sustained longer when alternating the external electric field polarity. The present results show that ferroelectric barrier discharge offers a promising technique to tune plasma properties for efficient plasma catalysis and electrified manufacturing.
Collapse
Affiliation(s)
- Yijie Xu
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08540, USA
| | - Ning Liu
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08540, USA.
| | - Ying Lin
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08540, USA
| | - Xingqian Mao
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08540, USA
| | - Hongtao Zhong
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08540, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ziqiao Chang
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08540, USA
| | - Mikhail N Shneider
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08540, USA
| | - Yiguang Ju
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08540, USA
- Princeton Plasma Physics Laboratory, Princeton, NJ, 08540, USA
| |
Collapse
|
3
|
Li Y, Wei L, Lin J, Xie Z, Lu L, Pan X, Xu J, Cai R. Nonthermal plasma air disinfection for the inactivation of airborne microorganisms in an experimental chamber and indoor air. J Appl Microbiol 2024; 135:lxae078. [PMID: 38520159 DOI: 10.1093/jambio/lxae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024]
Abstract
AIMS Airborne transmission of diseases presents a serious threat to human health, so effective air disinfection technology to eliminate microorganisms in indoor air is very important. This study evaluated the effectiveness of a non-thermal plasma (NTP) air disinfector in both laboratory experiments and real environments. METHODS AND RESULTS An experimental chamber was artificially polluted with a bioaerosol containing bacteria or viruses. Additionally, classroom environments with and without people present were used in field tests. Airborne microbial and particle concentrations were quantified. A 3.0 log10 reduction in the initial load was achieved when a virus-containing aerosol was disinfected for 60 min and a bacteria-containing aerosol was disinfected for 90 min. In the field test, when no people were present in the room, NTP disinfection decreased the airborne microbial and particle concentrations (P < 0.05). When people were present in the room, their constant activity continuously contaminated the indoor air, but all airborne indicators decreased (P < 0.05) except for planktonic bacteria (P = 0.094). CONCLUSIONS NTP effectively inactivated microorganisms and particles in indoor air.
Collapse
Affiliation(s)
- Ye Li
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Lanfen Wei
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Junming Lin
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zhongyi Xie
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Longxi Lu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xieshang Pan
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Ji Xu
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Ran Cai
- Department of Environmental Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| |
Collapse
|
4
|
Mallick AB, Prakash GV, Kar S, Narayanan R. Development of a pulse modulated sub-radio frequency power supply for atmospheric pressure plasma devices. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:123508. [PMID: 38117199 DOI: 10.1063/5.0173873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
The effect of pulse-modulated sub-RF range (100 kHz-1 MHz) excitation on atmospheric pressure argon plasma jet characteristics is studied. For this, a suitable power supply is developed, offering a sub-µs rise time with control of different parameters, such as voltage amplitude, pulse modulation frequency in the range of 1-30 kHz, and an oscillation frequency of ∼520 kHz, which can affect the plasma behavior. Plasma characteristics, such as reactive species generation, ionic composition, plasma plume length, and gas temperature, are evaluated qualitatively and quantitatively by employing diagnostics such as optical emission spectroscopy, molecular beam mass spectrometry, and optical imaging. Experimental observations indicate that the gas temperature of the plasma jet and plume length increase with the applied voltage for all pulse modulation frequencies, with a maximum value of ∼(325 ± 2 K) and a maximum length of ∼(23 ± 3 mm), respectively, at 30 kHz and 9 kVpp. The emission intensities of OH• and O• lines show an incremental behavior with the applied voltage across all pulse modulation frequencies. The relative yield of different positive (OH+, O+, etc.) and negative (OH-, O-, etc.) ions also increases with the applied voltage for all pulse modulation frequencies with maximum values of ∼(7.6%, 9.9%) and (3.9%, 9.4%), respectively; these are relatively close to RF excited ionic concentrations reported previously. Attaining a high plasma length and species yield signify the features of both kHz and RF atmospheric plasmas. This study offers significant insights and flexibility into exploring the impact of different RF frequency regimes on plasma characteristics.
Collapse
Affiliation(s)
- Aishik Basu Mallick
- Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - G Veda Prakash
- Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Satyananda Kar
- Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ramesh Narayanan
- Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
5
|
Tamar AN, Karbasi M, Khani MR, Hamzehlouyan T, Shokri B. Response surface methodology (RSM) for optimizing ozone-assisted process parameters for formaldehyde removal. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:475-484. [PMID: 37869603 PMCID: PMC10584765 DOI: 10.1007/s40201-023-00873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/09/2023] [Indexed: 10/24/2023]
Abstract
Formaldehyde, a volatile organic compound (VOC), is one of the main gaseous pollutants from commercial cooking. The present study evaluated the effectiveness of a laboratory-scale ozone-assisted indirect plasma method for formaldehyde removal using response surface methodology (RSM). A dielectric barrier discharge (DBD) reactor was used for ozone generation. Inlet HCHO concentration, ozone concentration, and residence time were considered the design parameters, and formaldehyde removal efficiency (response 1) and energy yield (response 2) were considered response parameters. The optimized models showed a positive correlation between the predicted and experimental outcomes. Inlet ozone concentration, the most significant parameter in the removal efficiency model, represented a positive correlation with this response in most parts of the operating region. The optimal point with the highest desirability (i.e., D1 point) was obtained at the inlet HCHO concentration of 120 ppm, inlet ozone concentration of 40 ppm, and reaction time of 11.35 s within the parameter ranges studied, resulting in 64% removal efficiency and 2.64 g/kWh energy yield. At the point with the second highest desirability (D2), 100% removal efficiency along with 0.7 g/kWh energy yield was achieved indicating the very good performance of the process. The indirect plasma approach used in this study presented a successful performance in terms of removal efficiency along with acceptable energy yield compared to other plasma-assisted processes reported in the literature. The results suggested that ozone-assisted indirect plasma treatment can be utilized as an efficient alternative method for formaldehyde removal in commercial kitchens, while efficiency or energy yield should be prioritized for optimizing operating conditions.
Collapse
Affiliation(s)
- Amin Nemati Tamar
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, 145888-9694 Iran
| | - Mohadeseh Karbasi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113 Iran
| | - Mohammad Reza Khani
- Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113 Iran
| | - Tayebeh Hamzehlouyan
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, 145888-9694 Iran
| | - Babak Shokri
- Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113 Iran
- Department of Physics, Shahid Beheshti University, G. C., Evin, Tehran, 1983963113 Iran
| |
Collapse
|
6
|
Abuyazid NH, Üner NB, Peyres SM, Mohan Sankaran R. Charge decay in the spatial afterglow of plasmas and its impact on diffusion regimes. Nat Commun 2023; 14:6776. [PMID: 37919301 PMCID: PMC10622414 DOI: 10.1038/s41467-023-42442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023] Open
Abstract
The spatial afterglow is a region at the boundary of a non-equilibrium plasma where charged species relax into ambient equilibrium. In many applications, the spatial afterglow is the part of the plasma that interacts with surfaces, such as suspended particles or a material substrate. However, compared to the bulk plasma, there has been little effort devoted to studying the properties of the spatial afterglow, and a fundamental analysis has not yet been developed. Here, we apply double Langmuir probe measurements and develop an advection-diffusion-recombination model to provide a detailed description of charged species in the spatial afterglow over a wide range of pressures, temperatures, plasma dimensions, and flow rates. We find that the density of charged species in the spatial afterglow decays by orders of magnitude, which leads to a transition from ambipolar to free diffusion. These insights can be used to explain or predict experimental observations of phenomena, such as the charging of dust grains and the dose of charged species to a biomaterial.
Collapse
Affiliation(s)
- Nabiel H Abuyazid
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Necip B Üner
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Chemical Engineering Department, Middle East Technical University, Ankara, Turkey
| | - Sean M Peyres
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - R Mohan Sankaran
- Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| |
Collapse
|
7
|
Yang Y, Wang Y, Wei S, Wang X, Zhang J. Effects and Mechanisms of Non-Thermal Plasma-Mediated ROS and Its Applications in Animal Husbandry and Biomedicine. Int J Mol Sci 2023; 24:15889. [PMID: 37958872 PMCID: PMC10648079 DOI: 10.3390/ijms242115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Non-thermal plasma (NTP) is an ionized gas composed of neutral and charged reactive species, electric fields, and ultraviolet radiation. NTP presents a relatively low discharge temperature because it is characterized by the fact that the temperature values of ions and neutral particles are much lower than that of electrons. Reactive species (atoms, radicals, ions, electrons) are produced in NTP and delivered to biological objects induce a set of biochemical processes in cells or tissues. NTP can mediate reactive oxygen species (ROS) levels in an intensity- and time-dependent manner. ROS homeostasis plays an important role in animal health. Relatively low or physiological levels of ROS mediated by NTP promote cell proliferation and differentiation, while high or excessive levels of ROS mediated by NTP cause oxidative stress damage and even cell death. NTP treatment under appropriate conditions not only produces moderate levels of exogenous ROS directly and stimulates intracellular ROS generation, but also can regulate intracellular ROS levels indirectly, which affect the redox state in different cells and tissues of animals. However, the treatment condition of NTP need to be optimized and the potential mechanism of NTP-mediated ROS in different biological targets is still unclear. Over the past ten decades, interest in the application of NTP technology in biology and medical sciences has been rapidly growing. There is significant optimism that NTP can be developed for a wide range of applications such as wound healing, oral treatment, cancer therapy, and biomedical materials because of its safety, non-toxicity, and high efficiency. Moreover, the combined application of NTP with other methods is currently a hot research topic because of more effective effects on sterilization and anti-cancer abilities. Interestingly, NTP technology has presented great application potential in the animal husbandry field in recent years. However, the wide applications of NTP are related to different and complicated mechanisms, and whether NTP-mediated ROS play a critical role in its application need to be clarified. Therefore, this review mainly summarizes the effects of ROS on animal health, the mechanisms of NTP-mediated ROS levels through antioxidant clearance and ROS generation, and the potential applications of NTP-mediated ROS in animal growth and breeding, animal health, animal-derived food safety, and biomedical fields including would healing, oral treatment, cancer therapy, and biomaterials. This will provide a theoretical basis for promoting the healthy development of animal husbandry and the prevention and treatment of diseases in both animals and human beings.
Collapse
Affiliation(s)
| | | | | | | | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (Y.Y.); (Y.W.); (S.W.); (X.W.)
| |
Collapse
|
8
|
Jangra R, Ahlawat K, Dixit A, Prakash R. Efficient deactivation of aerosolized pathogens using a dielectric barrier discharge based cold-plasma detergent in environment device for good indoor air quality. Sci Rep 2023; 13:10295. [PMID: 37357240 DOI: 10.1038/s41598-023-37014-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023] Open
Abstract
Air pollution is one of the top 5 risks causing chronic diseases according to WHO and airborne transmitted pathogens infection is a huge challenge in the current era. Long living pathogens and small size aerosols are not effectively dealt with by the available indoor air purifiers. In this work, a dielectric barrier discharge (DBD) based portable cold-plasma detergent in environment device is reported and its disinfection efficiency has been analyzed in the indoor environment of sizes up to 3 × 2.4 × 2.4 m3. The deactivation efficiency of total microbial counts (TMCs) and total fungal counts (TFCs) is found to be more than 99% in 90 min of continuous operation of the device at the optimized parameters. The complete inactivation of MS2 phage and Escherichia coli bacteria with more than 5 log reduction (99.999%) has also been achieved in 30 min and 90 min of operation of the device in an enclosed environment. The device is able to produce negative ions predominantly dominated by natural plasma detergent along with positive ions in the environment similar to mother nature. The device comprises a coaxial DBD geometry plasma source with a specially designed wire mesh electrode of mild steel with a thickness of 1 mm. The need for feed gas, pellets and/or differential pressure has been eliminated from the DBD discharge source for efficient air purification. The existence of negative ions for more than 25 s on average is the key advantage, which can also deactivate long living pathogens and small size aerosols.
Collapse
Affiliation(s)
- Ramavtar Jangra
- Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Kiran Ahlawat
- Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Ambesh Dixit
- Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India
| | - Ram Prakash
- Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
9
|
Kim MR, Jeon W, Kim S. 1Non-thermal plasma coupled with a wet scrubber for removing odorous VOC. CHEMOSPHERE 2023; 332:138870. [PMID: 37156289 DOI: 10.1016/j.chemosphere.2023.138870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Odorous volatile organic compounds (VOCs) deteriorate the quality of life and affect human health. In this study, a process was developed to remove an odorous VOC using a combined non-thermal plasma (NTP) and wet scrubber (WS) system. The low removal efficiency of WSs and the large amount of ozone generated by NTP were resolved. Compared to the decomposition effects when using a WS and NTP separately, the NTP + WS system improved the removal efficiency of ethyl acrylate (EA) and significantly reduced ozone emissions. The maximum EA removal efficiency was 99.9%. Additionally, an EA removal efficiency of over 53.4% and a 100% ozone removal efficiency were achieved even at discharge voltages lower than 4.5 kV. Ozone catalysis was confirmed to occur in the NTP + WS system. Furthermore, we verified the removal of by-products such as residual ozone and formaldehyde, which is a representative organic intermediate of EA. This study demonstrates that the NTP + WS system is a green technology for removing odorous VOCs.
Collapse
Affiliation(s)
- Min-Ryeong Kim
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, 55 Jongga-ro, Jung-gu, Ulsan, 44413, South Korea; Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Woojin Jeon
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, 55 Jongga-ro, Jung-gu, Ulsan, 44413, South Korea
| | - Suhan Kim
- Green Materials & Processes R&D Group, Korea Institute of Industrial Technology, 55 Jongga-ro, Jung-gu, Ulsan, 44413, South Korea.
| |
Collapse
|
10
|
Carroll GT, Kirschman DL. Formaldehyde Reduction in an Operating Room Setting: Comparison of a Catalytic Surgical Vacuum Device With a Traditional Smoke Evacuator. Cureus 2023; 15:e38831. [PMID: 37303407 PMCID: PMC10253242 DOI: 10.7759/cureus.38831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Electrosurgery exposes healthcare workers to volatile organic compounds (VOCs) including formaldehyde. Adopting electrosurgical devices that catalytically transform formaldehyde to benign substances has the potential to improve safety in surgical settings. Materials and methods We compared the efficiency of formaldehyde removal of two medical devices. The first was a novel surgical vacuum (SV) device containing ultra-low particulate air (ULPA) filtration, activated carbon and catalytic transition metal oxide. The second was a commonly utilized handpiece evacuator (HE) that contained only mechanical filtration and activated carbon granules. Both devices were exposed to formalin vapor. Results The time weighted average (TWA), median and peak concentrations of detected formaldehyde at the outflow of the SV unit were 90% lower than the corresponding values detected at the outflow of the HE device (p = 0.0034). When catalytic material was added to the HE device, the detected formaldehyde concentration at the outflow was reduced by 55% (p = 2.9 x 10-15). Conclusions The catalytic SV device has the potential to considerably reduce formaldehyde levels in operating room (OR) environments.
Collapse
|
11
|
Qiao S, Song L, Li S, Liu L, Cai H, Si L, Guo C. Overexpression of CcFALDH from spider plant (Chlorophytum comosum) enhances the formaldehyde removing capacity of transgenic gloxinia (Sinningia speciosa) 1. ENVIRONMENTAL RESEARCH 2023; 223:115466. [PMID: 36773637 DOI: 10.1016/j.envres.2023.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Formaldehyde can cause leukemia and nasopharyngeal cancer in humans, and is a major indoor air pollutant. In this study, to improve the ability of flowering plants to purify formaldehyde, we cloned the CcFALDH gene encoding formaldehyde dehydrogenase (FALDH) from the spider plant (Chlorophytum comosum), which encodes 379 amino acids with the alcohol dehydrogenase (ADH) structural domain, and used it to transform the flowering plant gloxinia (Sinningia speciosa). The FALDH activity of transgenic gloxinia was 1.8-2.7 times that of wild-type (WT) with a considerable increase in formaldehyde stress tolerance. The activities of the antioxidant enzymes SOD, POD, and CAT of transgenic gloxinia were 1.5-2.0 times those of the WT under formaldehyde stress; H2O2, O2-, and MDA contents were markedly lower than those in WT. Liquid formaldehyde and gaseous formaldehyde were metabolized at 2.1-2.8 and 2.1-2.7 times higher rates in transgenic gloxinia than in WT. Our findings indicate that overexpression of CcFALDH can enhance the capacity of flowering plants to metabolize formaldehyde, which provides a new strategy to tackle the indoor formaldehyde pollution problem.
Collapse
Affiliation(s)
- Sheng Qiao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - Lili Song
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China; Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Supervision and Test Center for Ecological Environment Safety of Crops of MOA, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai, 201106, China.
| | - Siyu Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - Lei Liu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - Hongsheng Cai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - Liang Si
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
12
|
Acid-Modified Sepiolite-Supported Pt (Noble Metal) Catalysts for HCHO Oxidation at Ambient Temperature. Catalysts 2022. [DOI: 10.3390/catal12111299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The critical need to enhance the quality of indoor air leads to the improvement of catalyst activity for the removal of formaldehyde. Sepiolite can be utilized in catalytic reactions for its unique structure, composition and high surface area. The adhesion between sepiolite fibers and the blocked microporous channel (by impurities) demands the activation of natural sepiolite through acid treatment. This treatment successfully produces acid-modified sepiolite Pt-supported samples. The impacts of different acid concentrations, Pt loading content and calcination temperature on catalytic activity for formaldehyde (HCHO) oxidation are studied. The catalytic activity of HCHO is characterized and evaluated by techniques including specific surface area, X-ray diffraction, Fourier transform infrared spectrum, X-ray photoelectron spectroscopy and transmission electron microscopy. The results show the maximum specific area of sepiolite at the optimized 0.06 M acid concentration. Among all the prepared samples, the 0.02Pt/Sep catalyst calcined at 500 °C exhibits the highest catalytic activity for the oxidation of HCHO.
Collapse
|
13
|
Fan H, Frank ES, Tobias DJ, Grassian VH. Interactions of limonene and carvone on titanium dioxide surfaces. Phys Chem Chem Phys 2022; 24:23870-23883. [PMID: 36165087 DOI: 10.1039/d2cp03021g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Limonene, a monoterpene, found in cleaning products and air fresheners can interact with a variety of surfaces in indoor environments. An oxidation product of limonene, carvone, has been reported to cause contact allergens. In this study, we have investigated the interactions of limonene and carvone with TiO2, a component of paint and self-cleaning surfaces, at 297 ± 1 K with FTIR spectroscopy and force field-based molecular dynamics and ab initio simulations. The IR absorption spectra and computational methods show that limonene forms π-hydrogen bonds with the surface O-H groups on the TiO2 surface and that carvone adsorbs on the TiO2 surface through a variety of molecular interactions including through carbonyl oxygen atoms with Ti4+ surface atoms, O-H hydrogen bonding (carbonyl O⋯HO) and π-hydrogen bonds with surface O-H groups. Furthermore, we investigated the effects of relative humidity (RH) on the adsorption of limonene and carvone on the TiO2 surface. The spectroscopic results show that the adsorbed limonene can be completely displaced by water at a relative humidity of ca. 50% RH (∼2 MLs of water) and that 25% of carvone is displaced at ca. 67% RH, which agrees with the calculated free energies of adsorption which show carvone more strongly adsorbs on the surface relative to limonene and thus would be harder to displace from the surface. Overall, this study shows how a monoterpene and its oxidation product interact with TiO2 and the impact of relative humidity on these interactions.
Collapse
Affiliation(s)
- Hanyu Fan
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| | - Elianna S Frank
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California 92697, USA.
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.
| |
Collapse
|