1
|
Lei M, Zhang Y, Yu Y, Wang G, Hu N, Xie J. ITGB2 and ICAM3 predict increased survival of sepsis with decreased intercellular communication in cytotoxic CD8+ T cells. Sci Rep 2025; 15:12635. [PMID: 40221459 PMCID: PMC11993633 DOI: 10.1038/s41598-025-93685-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/10/2025] [Indexed: 04/14/2025] Open
Abstract
Sepsis is closely linked to immunity. Our research aimed to identify key genes associated with sepsis immunity utilizing single-cell RNA sequencing (scRNA-seq) data. This study obtained the GSE167363 and GSE54514 datasets from the Gene Expression Omnibus (GEO). The GSE167363 dataset was subjected to cluster analysis, cell proportion analysis, cell interaction analysis, and gene set enrichment analysis (GSEA). The differentially expressed genes (DEGs) of CD8+ T cells were intersected with the DEGs in the GSE54514 dataset, and key genes related to immunity in sepsis patients were identified through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, we validated the gene expression levels in a mouse model of sepsis caused by cecum ligation and puncture (CLP). Findings indicated that intercellular communication of Cytotoxic CD8+ T cells was reduced in the sepsis survivors compared to non-survivors. The expression of 3 down-regulated key DEGs (ITGB2, SELL and ICAM3) was negatively correlated with the abundance of CD8+ T cells. Moreover, Cytotoxic CD8+ T cells with low expression of ITGB2, SELL and ICAM3 were more adverse to the survival of sepsis as compared to those with high expression of the above genes. These genes may predict increased survival in sepsis by regulating intercellular communication in cytotoxic CD8+ T cells, suggesting that they are potential therapeutic targets for improving sepsis prognosis.
Collapse
Affiliation(s)
- Min Lei
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 East Qing Chun Road, Hangzhou, 310016, Zhejiang, China
| | - Yaping Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 East Qing Chun Road, Hangzhou, 310016, Zhejiang, China
| | - Yijin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 East Qing Chun Road, Hangzhou, 310016, Zhejiang, China
| | - Gaojian Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 East Qing Chun Road, Hangzhou, 310016, Zhejiang, China
| | - Nianqiang Hu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 East Qing Chun Road, Hangzhou, 310016, Zhejiang, China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No. 3 East Qing Chun Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
2
|
Jiang H, Lu Q, Huang X, Zhang H, Zeng J, Wang M, Xu J, Yuan Z, Wei Q, Xiao E, Wang P, Huang G, Xu A. Sinomenine-glycyrrhizic acid self-assembly enhanced the anti-inflammatory effect of sinomenine in the treatment of rheumatoid arthritis. J Control Release 2025:113718. [PMID: 40220871 DOI: 10.1016/j.jconrel.2025.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/23/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease that causes cartilage and bone damage in multiple joints, ultimately leading to disability. There is an urgent need to develop multidimensional strategies to treat RA. Sinomenine (SIN) has the distinctive pharmacological activity in treating RA, but its broader clinical application is limited by its exceedingly short half-life and adverse digestive tract effects. To overcome this obstacle, a self-assembled nanohydrogel (S-G hydrogel) was designed and produced with sinomenine (SIN) and glycyrrhizic acid (GA) without carriers or catalysts through noncovalent bonding. The S-G hydrogel could promote the absorption of SIN probably by protecting SIN from releasing and degrading in the acid circumstances. Oral intake of the S-G hydrogel significantly suppressed the overactivation of neutrophil via the NF-κB and MAPK pathways in mice with RA. Furthermore, the S-G hydrogel regulated neutrophil activity by reversing apoptosis delay and decreasing autophagy-dependent NET formation. In summary, this study presents a self-assembled hydrogel with promising potential for clinical application, and offers a novel strategy to develop new drugs from the existing patent medicine composed of compounds from traditional Chinese medicine, as well as a special insight to elucidate the herb-matching mechanism in decoction prescriptions.
Collapse
Affiliation(s)
- Haixu Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Honglin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Zeng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mengdan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Enfan Xiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; Hong Kong Institute of Advanced Studies, Sun Yat-sen University, Hong Kong, China.
| |
Collapse
|
3
|
Huo R, Wei C, Yang Y, Lin J, Huang X. Hydroxychloroquine: A double‑edged sword (Review). Mol Med Rep 2025; 31:102. [PMID: 39981928 PMCID: PMC11868775 DOI: 10.3892/mmr.2025.13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
Hydroxychloroquine (HCQ) is an antimalarial drug that has historically been used to treat and prevent malaria. However, its mechanism of action has not yet been fully elucidated. HCQ affects various cellular and molecular pathways through different mechanisms. HCQ has also been shown to be a disease‑improving agent for the treatment of rheumatic diseases, including systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis and primary Sjögren's syndrome. Although generally considered safe, adverse reactions have been reported with the use of HCQ and clinicians should carefully monitor patients with rheumatism when prescribing these drugs. The purpose of the present review is to strengthen the clinical use of HCQ for autoimmune diseases while highlighting the adverse effects that may occur during treatment.
Collapse
Affiliation(s)
- Rongxiu Huo
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Chengcheng Wei
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Yanting Yang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Jinying Lin
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| | - Xinxiang Huang
- Department of Rheumatology and Immunology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region 530016, P.R. China
| |
Collapse
|
4
|
Zhou E, Li Y, Wu Z, Chen Y, Wu H, Ye Y, Li T, Wang J, Yang Z. Neutrophil extracellular traps formation and autophagy in bongkrekic acid exposed human neutrophils. Toxicol In Vitro 2025; 104:106003. [PMID: 39730015 DOI: 10.1016/j.tiv.2024.106003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 12/22/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Bongkrekic acid (BKA), a less well-known foodborne toxin, has been implicated in numerous poisoning incidents. Recent studies suggest that BKA exerts an impact on the immune system, particularly on innate immunity. The release of neutrophil extracellular traps (NETs) is relatively a newly-discovered mechanism involving innate immunity. This study was designed to characterize and evaluate the effects of BKA on human NET formation. The co-localization of DNA, histones, and myeloperoxidase (MPO) was determined via immunostaining to confirm BKA-triggered NET formation in human neutrophils. NET quantification showed that NET formation induced by BKA was both time- and dose-dependent, and was associated with p38, ERK, PAD4 and P2X1 receptor. Moreover, immunostaining analysis observed that BKA triggered both NET formation and autophagy. Additionally, pharmacological experiments revealed that autophagy mediated BKA-triggered NET formation. Collectively, these insights offer a novel perspective on the effects of BKA exposure on host's innate immune response, and may shed new light on BKA poisoning. We call for further work to be conducted in this field to unravel the intricate mechanisms governing NET formation and autophagy in the context of BKA poisoning.
Collapse
Affiliation(s)
- Ershun Zhou
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yifei Li
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhikai Wu
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yichun Chen
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Hanpeng Wu
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yingrong Ye
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Tianyu Li
- Guangxi University, Nanning 530004, Guangxi Province, PR China
| | - Jingjing Wang
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, PR China.
| | - Zhengtao Yang
- School of Animal Science and Technology, Foshan University, Foshan 528225, Guangdong Province, PR China.
| |
Collapse
|
5
|
Huang X, Yan H, Xu Z, Yang B, Luo P, He Q. The inducible role of autophagy in cell death: emerging evidence and future perspectives. Cell Commun Signal 2025; 23:151. [PMID: 40140912 PMCID: PMC11948861 DOI: 10.1186/s12964-025-02135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Autophagy is a lysosome-dependent degradation pathway for recycling intracellular materials and removing damaged organelles, and it is usually considered a prosurvival process in response to stress stimuli. However, increasing evidence suggests that autophagy can also drive cell death in a context-dependent manner. The bulk degradation of cell contents and the accumulation of autophagosomes are recognized as the mechanisms of cell death induced by autophagy alone. However, autophagy can also drive other forms of regulated cell death (RCD) whose mechanisms are not related to excessive autophagic vacuolization. Notably, few reviews address studies on the transformation from autophagy to RCD, and the underlying molecular mechanisms are still vague. AIM OF REVIEW This review aims to summarize the existing studies on autophagy-mediated RCD, to elucidate the mechanism by which autophagy initiates RCD, and to comprehensively understand the role of autophagy in determining cell fate. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the prodeath effect of autophagy, which is distinct from the generally perceived cytoprotective role, and its mechanisms are mainly associated with the selective degradation of proteins or organelles essential for cell survival and the direct involvement of the autophagy machinery in cell death. Additionally, this review highlights the need for better manipulation of autophagy activation or inhibition in different pathological contexts, depending on clinical purpose.
Collapse
Affiliation(s)
- Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
HAO X, FENG Y, LU A, SUN Y, XIA J, MEI X, FENG L, JIANG M, WANG B, YANG H. [Research Progress of Neutrophil Extracellular Traps in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2025; 28:201-212. [PMID: 40210480 PMCID: PMC11986667 DOI: 10.3779/j.issn.1009-3419.2025.106.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Indexed: 04/12/2025]
Abstract
Neutrophil extracellular traps (NETs), intricate reticular structures released by activated neutrophils, play a pivotal regulatory role in the pathogenesis of malignant tumors. Lung cancer is one of the most prevalent malignancies globally, with persistently high incidence and mortality rates. Recent studies have revealed that NETs dynamically modulate the tumor microenvironment through unique pathological mechanisms, exhibiting complex immunoregulatory characteristics during the progression of lung cancer, and this discovery has increasingly become a focal point in tumor immunology research. This paper provides a comprehensive review of the latest advancements in NETs research related to lung cancer, offering an in-depth analysis of their impact on lung cancer progression, their potential diagnostic value, and the current state of research on targeting NETs for lung cancer prevention and treatment. The aim is to propose novel strategies to enhance therapeutic outcomes and improve the prognosis for lung cancer patients.
.
Collapse
|
7
|
Tang W, Zhang Y, Lu S, Xue C. Association between ATG16L1 rs2241880(T300A) and rs4663421 and ANCA‑associated vasculitis in the Guangxi population of China: Propensity score matching analysis. Biomed Rep 2025; 22:3. [PMID: 39483332 PMCID: PMC11522951 DOI: 10.3892/br.2024.1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
Antineutrophil cytoplasmic antibody-associated vasculitis (AAV) is a rare autoimmune disease with an unclear pathogenesis. The present study investigated the associations between autophagy-related protein 16-like 1 (ATG16L1) rs2241880(T300A) and rs4663421 and AAV. A total of 177 patients with AAV and 216 healthy controls were included. Propensity score matching was used to match the two groups of subjects in terms of sex, age and ethnicity. Analyses of the relationships between these genetic polymorphisms and AAV susceptibility, including comparisons of allele and genotype frequency distribution, linkage disequilibrium analysis and analysis of single nucleotide polymorphism (SNP) interactions between two loci were performed. The association between the loci and laboratory test results and renal pathology were also analysed. A total of 154 pairs of patients with AAV and healthy controls was successfully matched. Neither polymorphism was associated with AAV susceptibility. However, SNP interaction in the model constructed with the two loci was statistically significant (P=0.018), and the combination of the AA genotype of rs2241880(T300A) and GG genotype of rs4663421 was associated the highest disease risk. The differences in the Birmingham Vasculitis Activity Score (BVAS), C-reactive protein (CRP) levels and 24-h urine protein level between patients with the rs2241880(T300A) AA + AG genotypes and the GG genotype were statistically significant (P<0.05). Furthermore, significant differences in the severity of glomerulosclerosis and global sclerosis were detected between individuals with the AA + AG genotype and those with the GG genotype at the rs2241880(T300A) locus (P<0.05). Similarly, there were statistically significant differences in degree of segmental sclerosis between individuals with CC + CG genotypes and those with GG genotypes at the rs2243421 locus (P<0.05). In summary, the single gene polymorphisms of these loci were not associated with genetic susceptibility to AAV. However, SNP interactions may serve a role in the risk of AAV. The rs2241880(T300A) polymorphism may be associated with BVAS, CRP levels and 24-h urine protein level in AAV. These SNPs may be associated with glomerulosclerosis and segmental sclerosis.
Collapse
Affiliation(s)
- Wenlv Tang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Yurong Zhang
- Department of Electrocardiographic Diagnosis, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530000, P.R. China
| | - Shurong Lu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, P.R. China
| |
Collapse
|
8
|
Wang Y, Guo J, Zhang D, Shi C, Zhang X, Gong Z. IDH1/MDH1 deacetylation promotes NETosis by regulating OPA1 and autophagy. Int Immunopharmacol 2024; 143:113270. [PMID: 39353390 DOI: 10.1016/j.intimp.2024.113270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND As a heterogeneous and life-threatening disease, the pathogenesis of acute liver failure (ALF) is complex. Our previous study has shown that IDH1/MDH1 deacetylation promotes ALF by regulating NETosis (a novel mode of cell death). In this article, we explore the manners of IDH1/MDH1 deacetylation regulates NETosis. METHODS In vitro experiments, the formation of NETs was detected by immunofluorescence staining and Western blotting. LC3 fluorescence staining was used to detect autophagosome formation. To observe mitochondrial morphology, cells were stained by Mito-Tracker Red. Western blotting was used to detect the levels of autophagy protein and mitochondrial dynamin. In vivo experiments, the ALF model in mouse was established with LPS/D-gal, and the formation of NETs was detected by immunofluorescence staining and Western blotting. The autophagy levels were detected by Western blotting in liver samples. RESULTS In dHL-60 cells, Western blotting results showed that the expression of OPA1 was higher in the IDH1/MDH1 deacetylated group compared with the IDH1/MDH1 WT group. And histone deacetylase inhibitor 6 (HDAC6i, ACY1215) decreased the expression level of OPA1 in IDH1/MDH1 deacetylated group. IDH1/MDH1 deacetylation increased the expression levels of both LC3B-II and Beclin 1, while decreasing the expression level of P62. It was reversed by ACY1215. Combined with our previous experiments, IDH1/MDH1 deacetylation upregulated autophagy concomitant with the increased expression of the markers of NETs formation. In a mouse model of ALF, ACY1215 further decreased the expression levels of LC3B-II and Beclin 1, while increasing the expression level of P62 in IDH1/MDH1 deacetylated mice. CONCLUSIONS IDH1/MDH1 deacetylation promoted NETosis by regulating autophagy and OPA1 in vitro. The regulation of neutrophil autophagy on NETosis during IDH1/MDH1 deacetylation might be masked in mice. ACY1215 might attenuate NETosis by regulating neutrophil autophagy, which alleviated ALF aggravated by IDH1/MDH1 deacetylation.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Xiaoya Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China.
| |
Collapse
|
9
|
Xu X, Lu Y, Shen R, Fang L. Phillyrin inhibits oxidative stress and neutrophil extracellular trap formation through the KEAP1/NRF2 pathway in gouty arthritis. Immunol Res 2024; 72:1489-1501. [PMID: 39436625 DOI: 10.1007/s12026-024-09548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024]
Abstract
Gouty arthritis (GA) is an inflammatory disorder characterized by deposition of monosodium urate (MSU) crystal in joints. Phillyrin, a natural compound with anti-inflammatory properties, shows promise in mitigating inflammatory responses. This study investigates the therapeutic potential of phillyrin in GA and explores its mechanisms of action. GA was induced in mice via intraarticular MSU injection, and joint inflammation, inflammatory cell infiltration, and their level in serum/tissue were assessed. Key proteins in the NF-κB and NLRP3 pathways were examined using western blot analysis. The impact of phillyrin on oxidative stress, neutrophil extracellular trap (NET) formation, and neutrophil accumulation was evaluated by measuring CD11b + Ly6G + cells, MPO, CitH3, extracellular DNA ratio, and oxidative stress markers. In vitro studies assessed the effects of phillyrin on oxidative stress, cell viability, cytokine production, and NET formation in MSU-treated neutrophils. The KEAP1/NRF2 pathway's role was analyzed using ML385, an NRF2 inhibitor. Phillyrin significantly reversed MSU-induced ankle swelling and inflammatory cell infiltration in joint tissues. It suppressed pro-inflammatory cytokines and proteins in the NF-κB and NLRP3 pathways. Phillyrin reduced neutrophil infiltration, evidenced by lower MPO activity and NET formation, marked by reduced CitH3 expression. In vitro, phillyrin inhibited inflammatory marker expression and NET formation without affecting cell viability. It also restored antioxidant enzyme levels and reduced ROS production, regulating the KEAP1/NRF2 pathway, enhancing NRF2 expression and stability. These effects were reversed by NRF2 inhibition with ML385. Phillyrin alleviates GA by reducing joint inflammation, inhibiting NET formation, and suppressing oxidative stress through NRF2 modulation.
Collapse
Affiliation(s)
- Xiangfeng Xu
- Department of Rheumatology and Immunology, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road Lincheng New District, Zhoushan, 316021, Zhejiang, China
| | - Yao Lu
- Department of Rheumatology and Immunology, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road Lincheng New District, Zhoushan, 316021, Zhejiang, China
| | - Rong Shen
- Department of Geriatrics, Yueyang Hospital of Integrated Traditional Chinese and Wesstern Medicine, Shanghai University of Traditional Chinese Medicine, Hongkou District, No. 110 Ganhe Road, Shanghai, 200437, China.
| | - Li Fang
- Department of Rheumatology and Immunology, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road Lincheng New District, Zhoushan, 316021, Zhejiang, China.
| |
Collapse
|
10
|
Azzouz D, Palaniyar N. How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules 2024; 14:1307. [PMID: 39456240 PMCID: PMC11505619 DOI: 10.3390/biom14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, DNA-based, web-like structures adorned with cytotoxic proteins. They play a crucial role in antimicrobial defense but are also implicated in autoimmune diseases and tissue injury. The process of NET formation, known as NETosis, is a regulated cell death mechanism that involves the release of these structures and is unique to neutrophils. NETosis is heavily dependent on the production of reactive oxygen species (ROS), which can be generated either through NADPH oxidase (NOX) or mitochondrial pathways, leading to NOX-dependent or NOX-independent NETosis, respectively. Recent research has revealed an intricate interplay between ROS production, DNA repair, and NET formation in different contexts. UV radiation can trigger a combined process of NETosis and apoptosis, known as apoNETosis, driven by mitochondrial ROS and DNA repair. Similarly, in calcium ionophore-induced NETosis, both ROS and DNA repair are key components, but only play a partial role. In the case of bacterial infections, the early stages of DNA repair are pivotal. Interestingly, in serum-free conditions, spontaneous NETosis occurs through NOX-derived ROS, with early-stage DNA repair inhibition halting the process, while late-stage inhibition increases it. The intricate balance between DNA repair processes and ROS production appears to be a critical factor in regulating NET formation, with different pathways being activated depending on the nature of the stimulus. These findings not only deepen our understanding of the mechanisms behind NETosis but also suggest potential therapeutic targets for conditions where NETs contribute to disease pathology.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
11
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
12
|
Gu W, Huang C, Chen G, Kong W, Zhao L, Jie H, Zhen G. The role of extracellular traps released by neutrophils, eosinophils, and macrophages in asthma. Respir Res 2024; 25:290. [PMID: 39080638 PMCID: PMC11290210 DOI: 10.1186/s12931-024-02923-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Extracellular traps (ETs) are a specialized form of innate immune defense in which leukocytes release ETs composed of chromatin and active proteins to eliminate pathogenic microorganisms. In addition to the anti-infection effect of ETs, researchers have also discovered their involvement in the pathogenesis of inflammatory disease, tumors, autoimmune disease, and allergic disease. Asthma is a chronic airway inflammatory disease involving multiple immune cells. The increased level of ETs in asthma patients suggests that ETs play an important role in the pathogenesis of asthma. Here we review the research work on the formation mechanism, roles, and therapeutic strategies of ETs released by neutrophils, eosinophils, and macrophages in asthma.
Collapse
Affiliation(s)
- Wei Gu
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Chunli Huang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Gongqi Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Weiqiang Kong
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Lu Zhao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Huiru Jie
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China
| | - Guohua Zhen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Respiratory Diseases, National Health Commission of People's Republic of China, Wuhan, China.
| |
Collapse
|
13
|
Ibrahim N, Eilenberg W, Neumayer C, Brostjan C. Neutrophil Extracellular Traps in Cardiovascular and Aortic Disease: A Narrative Review on Molecular Mechanisms and Therapeutic Targeting. Int J Mol Sci 2024; 25:3983. [PMID: 38612791 PMCID: PMC11012109 DOI: 10.3390/ijms25073983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Neutrophil extracellular traps (NETs), composed of DNA, histones, and antimicrobial proteins, are released by neutrophils in response to pathogens but are also recognized for their involvement in a range of pathological processes, including autoimmune diseases, cancer, and cardiovascular diseases. This review explores the intricate roles of NETs in different cardiovascular conditions such as thrombosis, atherosclerosis, myocardial infarction, COVID-19, and particularly in the pathogenesis of abdominal aortic aneurysms. We elucidate the mechanisms underlying NET formation and function, provide a foundational understanding of their biological significance, and highlight the contribution of NETs to inflammation, thrombosis, and tissue remodeling in vascular disease. Therapeutic strategies for preventing NET release are compared with approaches targeting components of formed NETs in cardiovascular disease. Current limitations and potential avenues for clinical translation of anti-NET treatments are discussed.
Collapse
Affiliation(s)
| | | | | | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, University Hospital Vienna, 1090 Vienna, Austria; (N.I.); (W.E.); (C.N.)
| |
Collapse
|
14
|
Li C, Wu C, Li F, Xu W, Zhang X, Huang Y, Xia D. Targeting Neutrophil Extracellular Traps in Gouty Arthritis: Insights into Pathogenesis and Therapeutic Potential. J Inflamm Res 2024; 17:1735-1763. [PMID: 38523684 PMCID: PMC10960513 DOI: 10.2147/jir.s460333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Gouty arthritis (GA) is an immune-mediated disorder characterized by severe inflammation due to the deposition of monosodium urate (MSU) crystals in the joints. The pathophysiological mechanisms of GA are not yet fully understood, and therefore, the identification of effective therapeutic targets is of paramount importance. Neutrophil extracellular traps (NETs), an intricate structure of DNA scaffold, encompassing myeloperoxidase, histones, and elastases - have gained significant attention as a prospective therapeutic target for gouty arthritis, due to their innate antimicrobial and immunomodulatory properties. Hence, exploring the therapeutic potential of NETs in gouty arthritis remains an enticing avenue for further investigation. During the process of gouty arthritis, the formation of NETs triggers the release of inflammatory cytokines, thereby contributing to the inflammatory response, while MSU crystals and cytokines are sequestered and degraded by the aggregation of NETs. Here, we provide a concise summary of the inflammatory processes underlying the initiation and resolution of gouty arthritis mediated by NETs. Furthermore, this review presents an overview of the current pharmacological approaches for treating gouty arthritis and summarizes the potential of natural and synthetic product-based inhibitors that target NET formation as novel therapeutic options, alongside elucidating the intrinsic challenges of these inhibitors in NETs research. Lastly, the limitations of HL-60 cell as a suitable substitute of neutrophils in NETs research are summarized and discussed. Series of recommendations are provided, strategically oriented towards guiding future investigations to effectively address these concerns. These findings will contribute to an enhanced comprehension of the interplay between NETs and GA, facilitating the proposition of innovative therapeutic strategies and novel approaches for the management of GA.
Collapse
Affiliation(s)
- Cantao Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenjing Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiaoxi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
15
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
16
|
Shao BZ, Jiang JJ, Zhao YC, Zheng XR, Xi N, Zhao GR, Huang XW, Wang SL. Neutrophil extracellular traps in central nervous system (CNS) diseases. PeerJ 2024; 12:e16465. [PMID: 38188146 PMCID: PMC10771765 DOI: 10.7717/peerj.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 01/09/2024] Open
Abstract
Excessive induction of inflammatory and immune responses is widely considered as one of vital factors contributing to the pathogenesis and progression of central nervous system (CNS) diseases. Neutrophils are well-studied members of inflammatory and immune cell family, contributing to the innate and adaptive immunity. Neutrophil-released neutrophil extracellular traps (NETs) play an important role in the regulation of various kinds of diseases, including CNS diseases. In this review, current knowledge on the biological features of NETs will be introduced. In addition, the role of NETs in several popular and well-studied CNS diseases including cerebral stroke, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis (ALS), and neurological cancers will be described and discussed through the reviewing of previous related studies.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | | | - Yi-Cheng Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Rui Zheng
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Na Xi
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Guan-Ren Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Wu Huang
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
17
|
Nunez JH, Juan C, Sun Y, Hong J, Bancroft AC, Hwang C, Medrano JM, Huber AK, Tower RJ, Levi B. Neutrophil and NETosis Modulation in Traumatic Heterotopic Ossification. Ann Surg 2023; 278:e1289-e1298. [PMID: 37325925 PMCID: PMC10724380 DOI: 10.1097/sla.0000000000005940] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To characterize the role of neutrophil extracellular traps (NETs) in heterotopic ossification (HO) formation and progression and to use mechanical and pharmacological methods to decrease NETosis and mitigate HO formation. BACKGROUND Traumatic HO is the aberrant osteochondral differentiation of mesenchymal progenitor cells after traumatic injury, burns, or surgery. While the innate immune response has been shown to be necessary for HO formation, the specific immune cell phenotype and function remain unknown. Neutrophils, one of the earliest immune cells to respond after HO-inducing injuries, can extrude DNA, forming highly inflammatory NETs. We hypothesized that neutrophils and NETs would be diagnostic biomarkers and therapeutic targets for the detection and mitigation of HO. METHODS C57BL6J mice underwent burn/tenotomy (a well-established mouse model of HO) or a non-HO-forming sham injury. These mice were either (1) ambulated ad libitum, (2) ambulated ad libitum with daily intraperitoneal hydroxychloroquine, ODN-2088 (both known to affect NETosis pathways), or control injections, or (3) had the injured hind limb immobilized. Single-cell analysis was performed to analyze neutrophils, NETosis, and downstream signaling after the HO-forming injury. Immunofluorescence microscopy was used to visualize NETosis at the HO site and neutrophils were identified using flow cytometry. Serum and cell lysates from HO sites were analyzed using enzyme-linked immunosorbent assay for myeloperoxidase-DNA and ELA2-DNA complexes to identify NETosis. Micro-computerized tomography was performed on all groups to analyze the HO volume. RESULTS Molecular and transcriptional analyses revealed the presence of NETs within the HO injury site, which peaked in the early phases after injury. These NETs were highly restricted to the HO site, with gene signatures derived from both in vitro NET induction and clinical neutrophil characterizations showing a high degree of NET "priming" at the site of injury, but not in neutrophils in the blood or bone marrow. Cell-cell communication analyses revealed that this localized NET formation coincided with high levels of toll-like receptor signaling specific to neutrophils at the injury site. Reducing the overall neutrophil abundance within the injury site, either pharmacologically through treatment with hydroxychloroquine, the toll-like receptor 9 inhibitor OPN-2088, or mechanical treatment with limb offloading, results in the mitigation of HO formation. CONCLUSIONS These data provide a further understanding of the ability of neutrophils to form NETs at the injury site, clarify the role of neutrophils in HO, and identify potential diagnostic and therapeutic targets for HO mitigation.
Collapse
Affiliation(s)
- Johanna H Nunez
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| | - Conan Juan
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| | - Yuxiao Sun
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| | - Jonathan Hong
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| | - Alec C Bancroft
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| | - Charles Hwang
- Department of Plastic Surgery, Harvard University, Cambridge, MA
| | - Jessica Marie Medrano
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| | - Amanda K Huber
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Robert J Tower
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas, Southwestern, Dallas, TX
| |
Collapse
|
18
|
Criado M, Pérez V, Arteche-Villasol N, Elguezabal N, Molina E, Benavides J, Gutiérrez-Expósito D. Evaluation of the innate immune response of caprine neutrophils against Mycobacterium avium subspecies paratuberculosis in vitro. Vet Res 2023; 54:61. [PMID: 37464437 DOI: 10.1186/s13567-023-01193-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/22/2023] [Indexed: 07/20/2023] Open
Abstract
Neutrophils constitute an essential component of the innate immune response, readily killing most bacteria through phagocytosis, degranulation, and the release of neutrophil extracellular traps (NETs) among other mechanisms. These cells play an unclear role in mycobacterial infections such as Mycobacterium avium subspecies paratuberculosis (Map), the etiological agent of paratuberculosis, and its response is particularly understudied in ruminants. Herein, a wide set of techniques were adapted, or newly developed, to study the in vitro response of caprine neutrophils after Map infection. Immunofluorescence was used to demonstrate, simultaneously, chemotaxis, phagocytosis, degranulation, and NETs. The quantification of neutrophil phagocytic activity against Map at a 1:10 multiplicity of infection (MOI), through flow cytometry, showed values that varied from 4.54 to 5.63% of phagocyting neutrophils. By immunofluorescence, a 73.3 ± 14.5% of the fields showed NETs, and the mean release of DNA, attributable to NETosis, calculated through a fluorometric method, was 16.2 ± 3.5%. In addition, the RNA expression of TGF-β, TNF and IL-1β cytokines, measured through reverse transcription qPCR, was significantly higher in the two latter. Overall, neutrophil response was proportional to the number of bacteria. This work confirms that the simultaneous study of several neutrophil mechanisms, and the combination of different methodologies, are essential to reach a comprehensive understanding of neutrophil response against pathogens, demonstrates that, in vitro, caprine neutrophils display a strong innate response against Map, using their entire repertoire of effector functions, and sets the basis for further in vitro and in vivo studies on the role of neutrophils in paratuberculosis.
Collapse
Affiliation(s)
- Miguel Criado
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Grulleros, León, Spain.
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain.
| | - Valentín Pérez
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Grulleros, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Noive Arteche-Villasol
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Grulleros, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | - Natalia Elguezabal
- Departamento de Sanidad Animal, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, 48160, Derio, Vizcaya, Spain
| | - Elena Molina
- Departamento de Sanidad Animal, NEIKER-BRTA, Instituto Vasco de Investigación y Desarrollo Agrario, 48160, Derio, Vizcaya, Spain
| | - Julio Benavides
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Grulleros, León, Spain
| | - Daniel Gutiérrez-Expósito
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (IGM) CSIC-ULE, Grulleros, León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| |
Collapse
|
19
|
Yin K, Wang D, Zhang Y, Lu H, Hou L, Guo T, Zhao H, Xing M. Polystyrene microplastics promote liver inflammation by inducing the formation of macrophages extracellular traps. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131236. [PMID: 36958159 DOI: 10.1016/j.jhazmat.2023.131236] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), a new and increasing environmental pollutant, can cause ongoing damage to organisms. Although recent studies have revealed mechanisms of action for some of the hepatotoxicity caused by MPs, the role-played by cellular interactions, particularly immune cells, in the process of liver injury has not been elucidated. In the present study, 5-μm polystyrene microplastics (PS-MPs) induced liver inflammation as well as the formation of Macrophage extracellular traps (METs). Macrophage and LMH cell co-culture systems confirmed that PS-MPs-induced METs promote inflammation in hepatocytes. Mechanistically, macrophages actively phagocytose particles after 4 h of exposure to PS-MPs. Subsequently PS-MPs elevated ROS levels and disrupt mitochondrial kinetic homeostasis. Further activation of mitochondrial autophagy and lysosomes. After phagocytosis of PS-MPs by macrophages for 12 h, continued autophagy and lysosome activation eventually lead to lysosome rupture and release of calcium ions to induce the formation of METs. Blocking ROS (NAC) and autophagy (3MA) partially alleviated mitochondrial and lysosomal damage and thus inhibited the formation of METs induced by PS-MPs. NAC also delayed the onset of respiratory burst to alleviate METs formation. In conclusion, our study reveals the mechanism of METs formation in liver inflammation induced by PS-MPs exposure and suggests that lysosomal damage may be one of the key players in the formation of METs induced by PS-MPs.
Collapse
Affiliation(s)
- Kai Yin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yue Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongmin Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Lulu Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Tiantian Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
20
|
Chen F, Chu C, Wang X, Yang C, Deng Y, Duan Z, Wang K, Liu B, Ji W, Ding W. Hesperetin attenuates sepsis-induced intestinal barrier injury by regulating neutrophil extracellular trap formation via the ROS/autophagy signaling pathway. Food Funct 2023; 14:4213-4227. [PMID: 37067254 DOI: 10.1039/d2fo02707k] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background: Hesperetin (HES), one of the major flavonoids that has various biological activities, such as anti-inflammatory and antioxidant activities, may preserve the intestinal barrier during sepsis. However, the detailed mechanism remains unclear. Our previous studies confirmed that neutrophil extracellular traps (NETs) may jeopardize the intestinal barrier via a reactive oxygen species (ROS)-dependent pathway during sepsis. Therefore, we hypothesized that HES may inhibit NET formation and protect the intestinal barrier function during sepsis. Methods: Mice were pretreated with HES (50 mg kg-1) intraperitoneally for one week, and sepsis models were then induced using lipopolysaccharides (LPS) (10 mg kg-1). The mice were randomly divided into three groups: (1) sham group; (2) LPS group; and (3) HES + LPS group. Twenty-four hours after LPS injection, the serum and terminal ileum specimens were collected for subsequent studies. To detect ROS production and NET formation in vitro, human neutrophils were collected and incubated with phorbol-12-myristate-13-acetate (PMA) and various concentrations of HES. The level of autophagy was measured by an immunofluorescence assay and western blot analysis. TUNEL staining was utilized to analyze cell apoptosis. Results: The outcomes demonstrated that HES decreased inflammatory cytokine and myeloperoxidase (MPO) levels in serum and attenuated distant organ dysfunction in LPS-induced septic mice. Meanwhile, HES treatment reversed intestinal histopathological damage in septic mice, improving intestinal permeability and enhancing tight junction expression. Moreover, we found that neutrophil infiltration and NET formation in the intestine were suppressed during sepsis after HES pretreatment. In vitro, HES treatment reduced PMA-induced ROS production and NET formation, which were reversed by hydrogen peroxide (H2O2) administration. Notably, HES also inhibited NET formation by reducing the microtubule-associated protein light chain 3 (LC3)-II/LC3-I ratio (an indicator of autophagy) in PMA-induced neutrophils, which was reversed by rapamycin. Moreover, when autophagy was suppressed by chloroquine or induced by rapamycin, apoptosis in cells will be switched with autophagy. Conclusion: Taken together, these findings suggest that HES may inhibit NET formation in a ROS/autophagy-dependent manner and switch neutrophil death from NETosis to apoptosis, which reduced NETs-related intestinal barrier damage, providing a novel protective role in intestinal barrier dysfunction during sepsis.
Collapse
Affiliation(s)
- Fang Chen
- Jinling Hospital, School of Medicine, Southeast University, and State Key Laboratory of Trauma, Burn and Combined Injury, P. R. China
| | - Chengnan Chu
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, P. R. China
| | - Xinyu Wang
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, P. R. China
| | - Chao Yang
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, P. R. China
| | - Yunxuan Deng
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, P. R. China
| | - Zehua Duan
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, P. R. China
| | - Kai Wang
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, P. R. China
| | - Baochen Liu
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, P. R. China
| | - Wu Ji
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, P. R. China
| | - Weiwei Ding
- Jinling Hospital, School of Medicine, Southeast University, and State Key Laboratory of Trauma, Burn and Combined Injury, P. R. China
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, P. R. China
| |
Collapse
|
21
|
Dong H, Yang W, Li W, Zhu S, Zhu L, Gao P, Hao Y. New insights into autophagy in inflammatory subtypes of asthma. Front Immunol 2023; 14:1156086. [PMID: 37090692 PMCID: PMC10117973 DOI: 10.3389/fimmu.2023.1156086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Asthma is a heterogeneous airway disease characterized by airway inflammation and hyperresponsiveness. Autophagy is a self-degrading process that helps maintain cellular homeostasis. Dysregulation of autophagy is involved in the pathogenesis of many diseases. In the context of asthma, autophagy has been shown to be associated with inflammation, airway remodeling, and responsiveness to drug therapy. In-depth characterization of the role of autophagy in asthma can enhance the understanding of the pathogenesis, and provide a theoretical basis for the development of new biomarkers and targeted therapy for asthma. In this article, we focus on the relationship of autophagy and asthma, and discuss its implications for asthma pathogenesis and treatment.
Collapse
Affiliation(s)
- Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Simin Zhu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ling Zhu
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Peng Gao, ; Yuqiu Hao,
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Peng Gao, ; Yuqiu Hao,
| |
Collapse
|
22
|
Farhan A, Hassan G, Ali SHL, Yousaf Z, Shafique K, Faisal A, Younis BB, Mirza S. Spontaneous NETosis in diabetes: A role of hyperglycemia mediated ROS and autophagy. Front Med (Lausanne) 2023; 10:1076690. [PMID: 36895726 PMCID: PMC9988915 DOI: 10.3389/fmed.2023.1076690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/23/2023] [Indexed: 02/23/2023] Open
Abstract
Type 2-diabetes, particularly poorly controlled diabetes, is a risk factor for several infections such as lower respiratory tract and skin infections. Hyperglycemia, a characteristic downstream effect of poorly controlled diabetes, has been shown to impair the function of immune cells, in particular neutrophils. Several studies have demonstrated that hyperglycemia-mediated priming of NADPH oxidase results in subsequent elevated levels of reactive oxygen species (ROS). In healthy neutrophils, ROS plays an important role in pathogen killing by phagocytosis and by induction of Neutrophil Extracellular Traps (NETs). Given the key role of ROS in autophagy, phagocytosis and NETosis, the relationship between these pathways and the role of diabetes in the modulation of these pathways has not been explored previously. Therefore, our study aimed to understand the relationship between autophagy, phagocytosis and NETosis in diabetes. We hypothesized that hyperglycemia-associated oxidative stress alters the balance between phagocytosis and NETosis by modulating autophagy. Using whole blood samples from individuals with and without type 2-diabetes (in the presence and absence of hyperglycemia), we demonstrated that (i) hyperglycemia results in elevated levels of ROS in neutrophils from those with diabetes, (ii) elevated levels of ROS increase LCIII (a marker for autophagy) and downstream NETosis. (iii) Diabetes was also found to be associated with low levels of phagocytosis and phagocytic killing of S. pneumoniae. (iv) Blocking either NADPH oxidase or cellular pathways upstream of autophagy led to a significant reduction in NETosis. This study is the first to demonstrate the role of ROS in altering NETosis and phagocytosis by modulating autophagy in type 2-diabetes. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Anam Farhan
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ghulam Hassan
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Sheikha Hina Liaqat Ali
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zainab Yousaf
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Kandeel Shafique
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Amir Faisal
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Bilal Bin Younis
- Sakina Institute of Diabetes and Endocrinology Research (SiDER), Shalamar Hospital, Lahore, Pakistan
| | - Shaper Mirza
- Department of Life Sciences, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
23
|
Tanshinone IIA Improves Acute Gouty Arthritis in Rats through Regulating Neutrophil Activation and the NLRP3 Inflammasome. DISEASE MARKERS 2022; 2022:5851412. [PMID: 36578443 PMCID: PMC9792249 DOI: 10.1155/2022/5851412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/13/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Objectives To investigate the prevention and treatment effect of tanshinone IIA (TIIA) on acute gouty arthritis (AGA) and its mechanism. Methods The anti-AGA effect of TIIA was observed in vivo and in vitro. Neutrophils were isolated from the abdominal cavity of mice, and the anti-AGA effect of TIIA was investigated in a rat model of MSU-induced AGA. The pathological changes of the ankle joint tissues were assessed by H&E. Cytokine and chemokine expression were determined by ELISA and RT-qPCR. The NLRP3 inflammasome pathway protein levels in the ankle joint tissues were evaluated via western blotting. Neutrophil migration was evaluated in air pouch and transwell assays. Immunohistochemistry and immunofluorescence analysis evaluate the release of myeloperoxidase (MPO), neutrophil elastase (NE), and citrullination of histone H3 (CitH3). Beclin-1 and LC3B expressions were determined using western blotting and immunofluorescence. Key Findings. Treatment with TIIA alleviated synovial hyperplasia and neutrophil infiltration, regulated cytokine and chemokine expressions, and inhibited NLRP3 activation in AGA rats, neutrophil migration, MPO, NE, and CitH3 expression, and LC3B and Beclin-1 protein expression. Conclusions These results demonstrate that TIIA can effectively enhance AGA by focusing on the neutrophils and NLRP3 inflammasome, demonstrating that TIIA may act as a potential helpful agent for AGA.
Collapse
|
24
|
Lu Q, Xu J, Jiang H, Wei Q, Huang R, Huang G. The bone-protective mechanisms of active components from TCM drugs in rheumatoid arthritis treatment. Front Pharmacol 2022; 13:1000865. [PMID: 36386147 PMCID: PMC9641143 DOI: 10.3389/fphar.2022.1000865] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease whose hallmarks are synovial inflammation and irreversible bone destruction. Bone resorption resulting from osteoclasts involves the whole immune and bone systems. Breakdown of bone remodeling is attributed to overactive immune cells that produce large quantities of cytokines, upregulated differentiation of osteoclasts with enhanced resorptive activities, suppressed differentiation of osteoblasts, invading fibroblasts and microbiota dysbiosis. Despite the mitigation of inflammation, the existing treatment in Western medicine fails to prevent bone loss during disease progression. Traditional Chinese medicine (TCM) has been used for thousands of years in RA treatment, showing great efficacy in bone preservation. The complex components from the decoctions and prescriptions exhibit various pharmacological activities. This review summarizes the research progress that has been made in terms of the bone-protective effect of some representative compounds from TCM drugs and proposes the substantial mechanisms involved in bone metabolism to provide some clues for future studies. These active components systemically suppress bone destruction via inhibiting joint inflammation, osteoclast differentiation, and fibroblast proliferation. Neutrophil, gut microenvironment and microRNA has been proposed as future focus.
Collapse
Affiliation(s)
- Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haixu Jiang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| |
Collapse
|
25
|
Feng X, Song Y, Sun Z, Loor JJ, Jiang Q, Gao C, Liu S, Yang Y, Du X, Wang Z, Liu G, Li X. Palmitic acid hinders extracellular traps of neutrophil from postpartum dairy cow in vitro. J Dairy Sci 2022; 105:8286-8297. [PMID: 35965126 DOI: 10.3168/jds.2021-21405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/12/2022] [Indexed: 11/19/2022]
Abstract
Peripartum dairy cows experience negative energy balance, characterized by high concentrations of blood free fatty acids (FFA) and immune dysfunction. Palmitic acid (PA), the most abundant saturated fatty acid in cow blood, is not only an energy precursor, but causes cellular dysfunction when in excess. Neutrophil extracellular traps (NET) are one of the arsenals of weapons neutrophils use to fight invading pathogens. However, given the marked increase in circulating PA during the peripartum period, it remains to be determined what effect (if any) PA has on NET release. Thus, the objective of this study was to evaluate the effect of PA on NET release and the underlying mechanism in vitro. Phorbol-12-myristate-13-acetate (PMA; 100 ng/mL, 3 h) was used to induce the release of NET in vitro. We isolated neutrophils from the peripheral blood of 5 healthy postpartum dairy cows with similar parity (median = 3, range = 2-4), milk yield (median = 27.84 kg/d per cow, range = 25.79-31.43 kg/d per cow), days in milk (median = 7 d, range = 4-10 d), and serum FFA <0.25 mM, β-hydroxybutyric acid <0.6 mM, and glucose >3.5 mM. Inhibition of double-stranded DNA (dsDNA) level, a marker of NET release, in response to PA was used to determine an optimal incubation time and concentration for in vitro experiments. Cells were maintained in RPMI-1640 basic medium without phenol red, treated with 600 μM PA for different times (4, 5, 6, and 7 h) in the presence or absence of PMA. There was a decrease for dsDNA level in the supernatant due to increased duration of PA treatment, with a peak response at 6 h. Thus, 6 h was selected as the challenge time. Then, cells were treated with different concentrations of PA (100, 200, 400, and 600 μM) for 6 h in the presence or absence of PMA. There was a decrease for dsDNA level in the supernatant due to increased dose of PA, with a peak response at 400 μM. Finally, 400 μM PA for 6 h was selected as the treatment for subsequent experiments. Protein abundance of citrullinated histone in the presence or absence of PMA was markedly lower in response to incubation with PA. Morphological observations by laser confocal microscopy and scanning electron microscopy showed that the ratio of NET-releasing cells decreased in response to incubation with PA. Autophagy is a potential key intermediate process in the regulation of NET by PA. To investigate the effect of PA on autophagy, we used chloroquine to block lysosomal degradation. Exogenous PA led to accumulation of sequestosome-1 and microtubule-associated protein 1 light chain 3-II, and no further accumulation in the presence of chloroquine, all of which suggested an impairment of autophagic flux. To verify the role of autophagy in NET, we used rapamycin to promote autophagic flux; 100 nM rapamycin attenuated the suppressive effect of PA on NET release indicated by greater dsDNA levels, accumulation of citrullinated histone, and ratio of NET-releasing neutrophils. Overall, these data demonstrate PA inhibits NET release by suppressing autophagic flux, which provides information for understanding the immune dysfunction in postpartum cows.
Collapse
Affiliation(s)
- Xiancheng Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Yuxiang Song
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhen'ai Sun
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Chen Gao
- Experiment Management Center, Dezhou University, Dezhou, Shandong Province, 253000, China
| | - Siyuan Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Yuchen Yang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Xiliang Du
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Zhe Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China
| | - Guowen Liu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China.
| | - Xinwei Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
26
|
Caza T, Wijewardena C, Al-Rabadi L, Perl A. Cell type-specific mechanistic target of rapamycin-dependent distortion of autophagy pathways in lupus nephritis. Transl Res 2022; 245:55-81. [PMID: 35288362 PMCID: PMC9240418 DOI: 10.1016/j.trsl.2022.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023]
Abstract
Pro-inflammatory immune system development, metabolomic defects, and deregulation of autophagy play interconnected roles in driving the pathogenesis of systemic lupus erythematosus (SLE). Lupus nephritis (LN) is a leading cause of morbidity and mortality in SLE. While the causes of SLE have not been clearly delineated, skewing of T and B cell differentiation, activation of antigen-presenting cells, production of antinuclear autoantibodies and pro-inflammatory cytokines are known to contribute to disease development. Underlying this process are defects in autophagy and mitophagy that cause the accumulation of oxidative stress-generating mitochondria which promote necrotic cell death. Autophagy is generally inhibited by the activation of the mammalian target of rapamycin (mTOR), a large protein kinase that underlies abnormal immune cell lineage specification in SLE. Importantly, several autophagy-regulating genes, including ATG5 and ATG7, as well as mitophagy-regulating HRES-1/Rab4A have been linked to lupus susceptibility and molecular pathogenesis. Moreover, genetically-driven mTOR activation has been associated with fulminant lupus nephritis. mTOR activation and diminished autophagy promote the expansion of pro-inflammatory Th17, Tfh and CD3+CD4-CD8- double-negative (DN) T cells at the expense of CD8+ effector memory T cells and CD4+ regulatory T cells (Tregs). mTOR activation and aberrant autophagy also involve renal podocytes, mesangial cells, endothelial cells, and tubular epithelial cells that may compromise end-organ resistance in LN. Activation of mTOR complexes 1 (mTORC1) and 2 (mTORC2) has been identified as biomarkers of disease activation and predictors of disease flares and prognosis in SLE patients with and without LN. This review highlights recent advances in molecular pathogenesis of LN with a focus on immuno-metabolic checkpoints of autophagy and their roles in pathogenesis, prognosis and selection of targets for treatment in SLE.
Collapse
Affiliation(s)
| | - Chathura Wijewardena
- Departments of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York
| | - Laith Al-Rabadi
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York; Biochemistry and Molecular Biology, Neuroscience and Physiology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York; Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York.
| |
Collapse
|
27
|
Yang F, Kong J, Zong Y, Li Z, Lyu M, Li W, Li W, Zhu H, Chen S, Zhao X, Wang J. Autophagy-Related Genes Are Involved in the Progression and Prognosis of Asthma and Regulate the Immune Microenvironment. Front Immunol 2022; 13:897835. [PMID: 35619697 PMCID: PMC9127139 DOI: 10.3389/fimmu.2022.897835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Autophagy has been proven to play an important role in the pathogenesis of asthma and the regulation of the airway epithelial immune microenvironment. However, a systematic analysis of the clinical importance of autophagy-related genes (ARGs) regulating the immune microenvironment in patients with asthma remains lacking. Methods Clustering based on the k-means unsupervised clustering method was performed to identify autophagy-related subtypes in asthma. ARG-related diagnostic markers in low-autophagy subtypes were screened, the infiltration of immune cells in the airway epithelium was evaluated by the CIBERSORT, and the correlation between diagnostic markers and infiltrating immune cells was analyzed. On the basis of the expression of ARGs and combined with asthma control, a risk prediction model was established and verified by experiments. Results A total of 66 differentially expressed ARGs and 2 subtypes were identified between mild to moderate and severe asthma. Significant differences were observed in asthma control and FEV1 reversibility between the two subtypes, and the low-autophagy subtype was closely associated with severe asthma, energy metabolism, and hormone metabolism. The autophagy gene SERPINB10 was identified as a diagnostic marker and was related to the infiltration of immune cells, such as activated mast cells and neutrophils. Combined with asthma control, a risk prediction model was constructed, the expression of five risk genes was supported by animal experiments, was established for ARGs related to the prediction model. Conclusion Autophagy plays a crucial role in the diversity and complexity of the asthma immune microenvironment and has clinical value in treatment response and prognosis.
Collapse
Affiliation(s)
- Fan Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Kong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhan Zong
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuqing Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingsheng Lyu
- Center of Respiratory, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing, China.,Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wanyang Li
- Department of Clinical Nutrition, Chinese Academy of Medical Sciences - Peking Union Medical College, Peking Union Medical College Hospital, Beijing, China
| | - Wenle Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Haoyue Zhu
- Beijing Hospital of Traditional Chinese Medicine (TCM), Capital Medical University, Beijing, China
| | - Shunqi Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoshan Zhao
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ji Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|