1
|
Csányi MC, Sziklai D, Feller T, Hársfalvi J, Kellermayer M. Cryptic Extensibility in von Willebrand Factor Revealed by Molecular Nanodissection. Int J Mol Sci 2024; 25:7296. [PMID: 39000402 PMCID: PMC11242059 DOI: 10.3390/ijms25137296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Von Willebrand factor (VWF) is a multimer with a variable number of protomers, each of which is a head-to-head dimer of two multi-domain monomers. VWF responds to shear through the unfolding and extension of distinct domains, thereby mediating platelet adhesion and aggregation to the injured blood vessel wall. VWF's C1-6 segment uncoils and then the A2 domain unfolds and extends in a hierarchical and sequential manner. However, it is unclear whether there is any reservoir of further extensibility. Here, we explored the presence of cryptic extensibility in VWF by nanodissecting individual, pre-stretched multimers with atomic force microscopy (AFM). The AFM cantilever tip was pressed into the surface and moved in a direction perpendicular to the VWF axis. It was possible to pull out protein loops from VWF, which resulted in a mean contour length gain of 217 nm. In some cases, the loop became cleaved, and a gap was present along the contour. Frequently, small nodules appeared in the loops, indicating that parts of the nanodissected VWF segment remained folded. After analyzing the nodal structure, we conclude that the cryptic extensibility lies within the C1-6 and A1-3 regions. Cryptic extensibility may play a role in maintaining VWF's functionality in extreme shear conditions.
Collapse
Affiliation(s)
- Mária Csilla Csányi
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
| | - Dominik Sziklai
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
| | - Tímea Feller
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LS29JT, UK
| | - Jolán Hársfalvi
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
| | - Miklós Kellermayer
- Institute of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, H1094 Budapest, Hungary; (M.C.C.)
- HUNREN-SE Biophysical Virology Group, Tűzoltó Str. 37-47, H1094 Budapest, Hungary
| |
Collapse
|
2
|
Ha JH, Xu Y, Sekhon H, Zhao W, Wilkens S, Ren D, Loh SN. Mimicking kidney flow shear efficiently induces aggregation of LECT2, a protein involved in renal amyloidosis. J Biol Chem 2024; 300:107231. [PMID: 38537700 PMCID: PMC11040205 DOI: 10.1016/j.jbc.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Aggregation of leukocyte cell-derived chemotaxin 2 (LECT2) causes ALECT2, a systemic amyloidosis that affects the kidney and liver. Previous studies established that LECT2 fibrillogenesis is accelerated by the loss of its bound zinc ion and stirring/shaking. These forms of agitation create heterogeneous shear conditions, including air-liquid interfaces that denature proteins, that are not present in the body. Here, we determined the extent to which a more physiological form of mechanical stress-shear generated by fluid flow through a network of narrow channels-drives LECT2 fibrillogenesis. To mimic blood flow through the kidney, where LECT2 and other proteins form amyloid deposits, we developed a microfluidic device consisting of progressively branched channels narrowing from 5 mm to 20 μm in width. Shear was particularly pronounced at the branch points and in the smallest capillaries. Aggregation was induced within 24 h by shear levels that were in the physiological range and well below those required to unfold globular proteins such as LECT2. EM images suggested the resulting fibril ultrastructures were different when generated by laminar flow shear versus shaking/stirring. Importantly, results from the microfluidic device showed the first evidence that the I40V mutation accelerated fibril formation and increased both the size and the density of the aggregates. These findings suggest that kidney-like flow shear, in combination with zinc loss, acts in combination with the I40V mutation to trigger LECT2 amyloidogenesis. These microfluidic devices may be of general use for uncovering mechanisms by which blood flow induces misfolding and amyloidosis of circulating proteins.
Collapse
Affiliation(s)
- Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Yikang Xu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
| | - Harsimranjit Sekhon
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Wenhan Zhao
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York, USA; Department of Biology, Syracuse University, Syracuse, New York, USA.
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
3
|
Nguyen VT, Pham NH, Papavassiliou DV. Prediction of the aggregation rate of nanoparticles in porous media in the diffusion-controlled regime. Sci Rep 2024; 14:1916. [PMID: 38253573 PMCID: PMC10803321 DOI: 10.1038/s41598-023-50643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
The fate and aggregation of nanoparticles (NPs) in the subsurface are important due to potentially harmful impacts on the environment and human health. This study aims to investigate the effects of flow velocity, particle size, and particle concentration on the aggregation rate of NPs in a diffusion-limited regime and build an equation to predict the aggregation rate when NPs move in the pore space between randomly packed spheres (including mono-disperse, bi-disperse, and tri-disperse spheres). The flow of 0.2 M potassium chloride (KCl) through the random sphere packings was simulated by the lattice Boltzmann method (LBM). The movement and aggregation of cerium oxide (CeO2) particles were then examined by using a Lagrangian particle tracking method based on a force balance approach. This method relied on Newton's second law of motion and took the interaction forces among particles into account. The aggregation rate of NPs was found to depend linearly on time, and the slope of the line was a power function of the particle concentration, the Reynolds (Re) and Schmidt (Sc) numbers. The exponent for the Sc number was triple that of the Re number, which was evidence that the random movement of NPs has a much stronger effect on the rate of diffusion-controlled aggregation than the convection.
Collapse
Affiliation(s)
- Vi T Nguyen
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Ngoc H Pham
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Dimitrios V Papavassiliou
- School of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
4
|
Nguyen VT, Pham NH, Papavassiliou DV. Aggregation of nanoparticles and morphology of aggregates in porous media with computations. J Colloid Interface Sci 2023; 650:381-395. [PMID: 37418889 DOI: 10.1016/j.jcis.2023.06.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023]
Abstract
HYPOTHESIS The main hypothesis is that the aggregation process for nanoparticles (NPs) propagating in porous media is affected by the structure of the flow field as well as by the properties of the primary NPs. If this were true, then the aggregation could be predicted and controlled. However, to obtain reliable results from computations, one needs to account for the interactions between the NPs as well as the details of the fluid velocity, thus making advances over prior efforts that either ignored the aggregation of NPs, or used probabilistic methods to model aggregation. EXPERIMENTS Computational experiments were conducted using the lattice Boltzmann method in conjunction with Lagrangian particle tracking (LPT). The LPT accounted for the physicochemical interaction forces among NPs. Computationally obtained aggregation kinetics and fractal dimensions of Cerium oxide (CeO2) particles, suspended in potassium chloride (KCl) solutions with different concentration, were verified against experimental results. The model was then employed to investigate the effects of ionic strength, fluid velocity, and particle size on the aggregation kinetics and the aggregate morphology, as NPs propagated in the pore space between randomly packed spheres. FINDINGS The aim of this study was to develop a computational model to simulate the aggregation of NPs and obtain the morphology of aggregates in confined geometries, based on the physics of NP interactions and the flow field. The most important factor that impacted both the aggregation process and the aggregate structure was found to be the concentration of the electrolyte. The pore velocity influenced the aggregation kinetics and the NP fractal dimension, especially in diffusion-limited aggregation. The primary particle size affected the diffusion-limited aggregation kinetics and the fractal dimension of reaction-limited aggregates noticeably.
Collapse
Affiliation(s)
- Vi T Nguyen
- School of Chemical Biological and Materials Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Ngoc H Pham
- School of Chemical Biological and Materials Engineering, The University of Oklahoma, Norman, OK 73019, USA
| | - Dimitrios V Papavassiliou
- School of Chemical Biological and Materials Engineering, The University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
5
|
Ha JH, Xu Y, Sekhon H, Wilkens S, Ren D, Loh SN. Mimicking Kidney Flow Shear Efficiently Induces Aggregation of LECT2, a Protein Involved in Renal Amyloidosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548788. [PMID: 37503176 PMCID: PMC10369975 DOI: 10.1101/2023.07.13.548788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Aggregation of leukocyte cell-derived chemotaxin 2 (LECT2) causes ALECT2, a systemic amyloidosis that affects the kidney and liver. Homozygosity of the I40V LECT2 mutation is believed to be necessary but not sufficient for the disease. Previous studies established that LECT2 fibrillogenesis is greatly accelerated by loss of its single bound zinc ion and stirring or shaking. These forms of agitation are often used to facilitate protein aggregation, but they create heterogeneous shear conditions, including air-liquid interfaces that denature proteins, that are not present in the body. Here, we determined the extent to which a more physiological form of mechanical stress-shear generated by fluid flow through a network of artery and capillary-sized channels-drives LECT2 fibrillogenesis. To mimic blood flow through the human kidney, where LECT2 and other proteins form amyloid deposits, we developed a microfluidic device consisting of progressively branched channels narrowing from 5 mm to 20 μm in width. Flow shear was particularly pronounced at the branch points and in the smallest capillaries, and this induced LECT2 aggregation much more efficiently than conventional shaking methods. EM images suggested the resulting fibril structures were different in the two conditions. Importantly, results from the microfluidic device showed the first evidence that the I40V mutation accelerated fibril formation and increased both size and density of the aggregates. These findings suggest that kidney-like flow shear, in combination with zinc loss, acts in combination with the I40V mutation to trigger LECT2 amyloidogenesis. These microfluidic devices may be of general use for uncovering the mechanisms by which blood flow induces misfolding and amyloidosis of circulating proteins.
Collapse
Affiliation(s)
- Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Yikang Xu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244
| | - Harsimranjit Sekhon
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244
- Department of Biology, Syracuse University, Syracuse, NY 13244
| | - Stewart N. Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
6
|
Pham OL, Feher SE, Nguyen QT, Papavassiliou DV. Computations of the shear stresses distribution experienced by passive particles as they circulate in turbulent flow: A case study for vWF protein molecules. PLoS One 2022; 17:e0273312. [PMID: 36037218 PMCID: PMC9423662 DOI: 10.1371/journal.pone.0273312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/07/2022] [Indexed: 11/19/2022] Open
Abstract
The stress distribution along the trajectories of passive particles released in turbulent flow were computed with the use of Lagrangian methods and direct numerical simulations. The flow fields selected were transitional Poiseuille-Couette flow situations found in ventricular assist devices and turbulent flows at conditions found in blood pumps. The passive particle properties were selected to represent molecules of the von Willebrand factor (vWF) protein. Damage to the vWF molecule can cause disease, most often related to hemostasis. The hydrodynamic shear stresses along the trajectories of the particles were calculated and the changes in the distribution of stresses were determined for proteins released in different locations in the flow field and as a function of exposure time. The stress distributions indicated that even when the average applied stress was within a safe operating regime, the proteins spent part of their trajectories in flow areas of damaging stress. Further examination showed that the history of the distribution of stresses applied on the vWF molecules, rather than the average, should be used to evaluate hydrodynamically-induced damage.
Collapse
Affiliation(s)
- Oanh L. Pham
- School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma, United States of America
| | - Samuel E. Feher
- School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma, United States of America
| | - Quoc T. Nguyen
- School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma, United States of America
| | - Dimitrios V. Papavassiliou
- School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|