1
|
Iuffrida L, Franzellitti S. Transcriptional responses of Mediterranean mussels (Mytilus galloprovincialis) under the 2022 Marine Heatwave: a trade-off of physiological regulation between metabolism, stress response, and shell biomineralization in a mixed exposure scenario. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126328. [PMID: 40306402 DOI: 10.1016/j.envpol.2025.126328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
There has been a notable increase in occurrence and intensity of marine heatwaves (MHWs) over the past decades, with a consequent remarkable risk to vulnerable species as marine bivalves. This study examines the responses of farmed Mytilus galloprovincialis to the 2022 MHW that impacted the Northwestern (NW) Adriatic Sea. Expression of key transcripts involved in functions of digestive glands and mantles were investigated to explore the putative acclimatory processes contributing to mussel fitness. The 2022 MHW was characterized by persistent sea temperature anomalies, elevated salinity, and dramatically low chlorophyll-a levels. Despite the temporal trends of pH and the extreme seawater temperatures reached in July and August, the carbonate system never reached the undersaturation state, being favourable for bivalve biomineralization. Transcriptional profiles in digestive glands and mantles displayed a two-step temporal response. In digestive glands, metabolism and lysosomal response functional categories showed an initial decrease (late May), and a recovery in late August. Antioxidant and cytoprotective related gene products showed a February to August increased expression, with strong up-regulations in August. In mantles, transcripts involved in shell biomineralization were prompted in the initial stage of the MHW, likely to withstand the abrupt changes of seawater parameters and to maintain bivalve growth. At high MHW intensities, energy was diverted towards the strong stress response activation in digestive glands, with a relative decrease of mRNA levels for shell biomineralization transcripts. Results showed that a trade-off between core physiological processes may contribute to the acclimatory response of mussels to cope with the adverse conditions of the 2022 MHW in the NW Adriatic Sea.
Collapse
Affiliation(s)
- Letizia Iuffrida
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy; Inter-Departmental Research Centre for Environmental Science (CIRSA), University of Bologna, Ravenna, Italy.
| |
Collapse
|
2
|
Wu L, Liu C, Yao T, Shi Y, Shen J, Gao X, Qin K. Structural and Compositional Changes in Two Marine Shell Traditional Chinese Medicines: A Comparative Analysis Pre- and Post-Calcination. J AOAC Int 2024; 107:704-713. [PMID: 38492563 DOI: 10.1093/jaoacint/qsae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Arcae concha and Meretricis concha cyclinae concha are two marine shellfish herbs with similar composition and efficacy, which are usually calcined and used clinically. OBJECTIVE This study investigated variations in the inorganic and organic components of Arcae concha and Meretricis concha cyclinae concha from different production regions, both Arcae concha and Meretricis concha cyclinae concha. The aim was to enhance the understanding of these two types of marine shell traditional Chinese medicine (msTCM) and provide a foundation for their future development and application. METHOD Spectroscopic techniques, including infrared spectroscopy, X-ray spectroscopy, and X-ray fluorescence spectroscopy, were used to analyze the calcium carbonate (CaCO3) crystal and trace elements. Thermogravimetric analysis was used to investigate the decomposition process during heating. The proteins were quantified using the BCA protein assay kit. Principal component analysis (PCA) was used to classify inorganic elements in the two marine shellfish traditional Chinese medicines. RESULTS No significant differences were found among the various production regions. The crystal structure of CaCO3 in the raw products was aragonite, but it transformed into calcite after calcination. The contents of Ca, Na, Sr, and other inorganic elements were highest. The protein content was significantly reduced after calcination. Therefore, these factors cannot accurately reflect the internal quality of TCM, rendering qualitative identification challenging. CaCO3 dissolution in the decoction of Arcae concha and Meretricis concha cyclinae concha increased after calcination, aligning with the clinical application of calcined shell TCM. PCA revealed the inorganic elements in them, indicating that the variation in trace element composition among different drugs leads to differences in their therapeutic focus, which should be considered during usage. CONCLUSIONS This study clarifies the composition and structure changes of corrugated and clam shell before and after calcining, and it lays the foundation for the comprehensive utilization of marine traditional Chinese medicine. HIGHLIGHTS These technical representations reveal the differences between raw materials and processed products, which will provide support for the quality control of other shellfish TCM.
Collapse
Affiliation(s)
- Lizhu Wu
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Chenlu Liu
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Tao Yao
- Qinghai Xinda Biological Technology Co, Ltd, Xining 810100, PR China
| | - Yun Shi
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Jinyang Shen
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Xun Gao
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| | - Kunming Qin
- Jiangsu Ocean University, School of Pharmacy, Lianyungang 222005, PR China
| |
Collapse
|
3
|
Titelboim D, Rothwell NJ, Lord OT, Harniman RL, Melbourne LA, Schmidt DN. Unexpected increase in structural integrity caused by thermally induced dwarfism in large benthic foraminifera. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231280. [PMID: 38601028 PMCID: PMC11004679 DOI: 10.1098/rsos.231280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/02/2024] [Accepted: 02/21/2024] [Indexed: 04/12/2024]
Abstract
Climate change is predicted to negatively impact calcification and change the structural integrity of biogenic carbonates, influencing their protective function. We assess the impacts of warming on the morphology and crystallography of Amphistegina lobifera, an abundant benthic foraminifera species in shallow environments. Specimens from a thermally disturbed field area, mimicking future warming, are about 50% smaller compared with a control location. Differences in the position of the ν1 Raman mode of shells between the sites, which serves as a proxy for Mg content and calcification temperature, indicate that calcification is negatively impacted when temperatures are below the thermal range facilitating calcification. To test the impact of thermal stress on the Young's modulus of calcite which contributes to structural integrity, we quantify elasticity changes in large benthic foraminifera by applying atomic force microscopy to a different genus, Operculina ammonoides, cultured under optimal and high temperatures. Building on these observations of size and the sensitivity analysis for temperature-induced change in elasticity, we used finite element analysis to show that structural integrity is increased with reduced size and is largely insensitive to calcite elasticity. Our results indicate that warming-induced dwarfism creates shells that are more resistant to fracture because they are smaller.
Collapse
Affiliation(s)
- Danna Titelboim
- School of Earth Sciences, University of Bristol, Bristol, UK
| | | | - Oliver T. Lord
- School of Earth Sciences, University of Bristol, Bristol, UK
| | | | - Leanne A. Melbourne
- School of Earth Sciences, University of Bristol, Bristol, UK
- Earth and Planetary Sciences Department, American Museum of Natural History, New York, NY, USA
| | | |
Collapse
|
4
|
Cheng M, Hu L, Pan P, Liu Q, Zhang Z, Wang C, Liu M, Chen J. Abalone shell-based magnetic macroporous hydroxyapatite microspheres with good reusability for efficient dye adsorption. Colloids Surf B Biointerfaces 2023; 231:113561. [PMID: 37738869 DOI: 10.1016/j.colsurfb.2023.113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Azo dye methyl orange (MO) and shell rotting cause great environmental pollution. Most of the common dye adsorbents are difficult to produce, not environmentally friendly and it is always difficult to utilize the shell resources effectively. In this study, shell-based economical and environmentally friendly magnetic hydroxyapatite microsphere adsorbents (Fe3O4 @SiO2/HAP) were developed for the removal of MO from simulated wastewater by sol-gel and hydrothermal synthesis methods. The effects of solution pH, initial concentration, adsorption time and system temperature on the adsorption effect were investigated, and the repeat recovery performance was explored. The equilibrium adsorption data follow the Freundlich isotherm and pseudo-second-order kinetic curves, and the analysis indicates that the adsorption process is spontaneously exothermic. The adsorption capacities of MO were up to 94.48% and 88.94%, under the acidic environment of pH = 4, respectively, and had good recycling performance. The results provide a high-value utilization pathway for waste shell resources and focus on the removal of azo dyes. This is expected to provide new development ideas for the environmental hazards caused by acid dye wastewater discharged into rivers and oceans, as well as the problems of soil pollution and resource waste caused by weathering and corrosion of shells.
Collapse
Affiliation(s)
- Meiqi Cheng
- Marine College, Shandong University, Weihai 264209, China
| | - Le Hu
- Marine College, Shandong University, Weihai 264209, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China; Weihai Changqing Ocean Science Technology Co., Ltd., Rongcheng 264300, China.
| | - Qing Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Ziyue Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Man Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
5
|
García-Huidobro MR, Aldana M, Varela P, García-Herrera C, Monteiro JN, Leitão F, Teodósio MA, Quijón PA, Varas O, Fernandéz M, Duarte C, Pulgar J. The influence of upwelling on key bivalves from the Humboldt and Iberian current systems. MARINE ENVIRONMENTAL RESEARCH 2023; 189:106031. [PMID: 37271060 DOI: 10.1016/j.marenvres.2023.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Eastern Boundary Upwelling Systems (EBUS) deliver cold, nutrient-rich waters, influencing coastal biota from the molecular to the ecosystem level. Although local upwelling (U) and downwelling (DU) conditions are often known, their influence on body attributes of relevant species has not been systematically compared within and between EBUS (i.e., below and above regional scales). Hence, we compared the physical-chemical characteristics of U and DU sites in the Humboldt Current system (Chile) and the Iberian Current system (Portugal). We then assessed the influence of U and DU upon eight body attributes in purple mussels (Perumytilus purpuratus) and Mediterranean mussels (Mytilus galloprovincialis), from the Humboldt and Iberian systems, respectively. We hypothesized that bivalves from U sites display better fitness, as measured by body attributes, regardless of their origin (EBUS). As expected, waters from U sites in both systems showed lower temperatures and pH, and higher nitrite concentrations. We also found that mussels from U sites showed better fitness than those in DU sites in 12 out of 16 direct U vs DU comparisons. Shell length, shell volume, organic content of soft-tissues, and mechanical properties of the shell averaged consistently higher in mussels from U sites in both Current systems. In addition, total weight, soft-tissue weight, shell weight and shell thickness were all higher in the U site at the Humboldt system but had less consistent differences at the Iberian system. Altogether, most results supported our working hypothesis and indicate that U conditions support better fitted mussels. The few attributes that did not exhibit the expected U vs DU differences in the Iberian system suggest that local and species-specific differences also play a role on the attributes of these species. These results may also serve as a reference point for further studies addressing the influence of upwelling in these productive, critically important systems.
Collapse
Affiliation(s)
- M Roberto García-Huidobro
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile
| | - Marcela Aldana
- Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Ejército 146, Santiago, Chile.
| | - Pablo Varela
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | | | - João N Monteiro
- CCMAR, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Francisco Leitão
- CCMAR, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Maria Alexandra Teodósio
- CCMAR, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Pedro A Quijón
- Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3, Canada
| | - Oscar Varas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - Melissa Fernandéz
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile; Centro de Investigaciones Marinas de Quintay, CIMARQ, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 440, Santiago, Chile; Centro de Investigaciones Marinas de Quintay, CIMARQ, Chile.
| |
Collapse
|
6
|
Ulian G, Valdrè G. The effect of long-range interactions on the infrared and Raman spectra of aragonite (CaCO 3, Pmcn) up to 25 GPa. Sci Rep 2023; 13:2725. [PMID: 36792773 PMCID: PMC9932076 DOI: 10.1038/s41598-023-29783-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Long-range interactions are relevant in the physical description of materials, even for those where other stronger bonds give the leading contributions. In this work, we demonstrate this assertion by simulating the infrared and Raman spectra of aragonite, an important calcium carbonate polymorph (space group Pmcn) in geological, biological and materials science fields. To this aim, we used Density Functional Theory methods and two corrections to include long-range interactions (DFT-D2 and DFT-D3). The results were correlated to IR spectroscopy and confocal Raman spectrometry data, finding a very good agreement between theory and experiments. Furthermore, the evolution of the IR/Raman modes up to 25 GPa was described in terms of mode-Grüneisen's parameters, which are useful for geological and materials science applications of aragonite. Our findings clearly show that weak interactions are of utmost importance when modelling minerals and materials, even when they are not the predominant forces.
Collapse
Affiliation(s)
- Gianfranco Ulian
- grid.6292.f0000 0004 1757 1758Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Centro di Ricerche Interdisciplinari di Biomineralogia, Cristallografia e Biomateriali, Università di Bologna “Alma Mater Studiorum” Piazza di Porta, San Donato 1, 40126 Bologna, Italy
| | - Giovanni Valdrè
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Centro di Ricerche Interdisciplinari di Biomineralogia, Cristallografia e Biomateriali, Università di Bologna "Alma Mater Studiorum" Piazza di Porta, San Donato 1, 40126, Bologna, Italy.
| |
Collapse
|