1
|
Dokukin NV, Chudakova DA, Shkap MO, Kovalchuk AM, Kibirsky PD, Baklaushev VP. Direct Neural Reprogramming in situ: Existing Approaches and Their Optimization. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:214-230. [PMID: 40254400 DOI: 10.1134/s000629792460426x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 04/22/2025]
Abstract
Direct in situ neuronal reprogramming (transdifferentiation) of glial cells (astrocytes and microglia) has attracted a significant interest as a potential approach for the treatment of a wide range of neurodegenerative diseases and damages of the central nervous system (CNS). The nervous system of higher mammals has a very limited capacity for repair. Disruption of CNS functioning due to traumatic injuries or neurodegenerative processes can significantly affect the quality of patients' life, lead to motor and cognitive impairments, and result in disability and, in some cases, death. Restoration of lost neurons in situ via direct reprogramming of glial cells without the intermediate stage of pluripotency seems to be the most attractive approach from the viewpoint of translational biomedicine. The ability of astroglia to actively proliferate in response to the damage of neural tissue supports the idea that these neuron-like cells, which are already present at the lesion site, are good candidates for transdifferentiation into neurons, considering that the possibility of direct neuronal reprogramming of astrocytes both in vitro and in vivo have demonstrated in many independent studies. Overexpression of proneuronal transcription factors, e.g., neurogenic differentiation factors 1-4 (NeuroD1-4), Neurogenin 2 (NeuroG2), Ascl1 (Achaete-Scute homolog 1), and Dlx2 (distal-less homeobox 2), including pioneer transcription factors that recognize target sequences in the compacted chromatin and activate transcription of silent genes, has already been proven as a potential therapeutic strategy. Other strategies, such as microRNA-mediated suppression of activity of PTB and REST transcription factors and application of small molecules or various biomaterials, are also utilized in neuronal reprogramming. However, the efficiency of direct in situ reprogramming is limited by a number of factors, including cell specificity of transgene delivery systems and promoters, brain regions in which transdifferentiation occurs, factors affecting cell metabolism, microenvironment, etc. Reprogramming in situ, which takes place in the presence of a large number of different cell types, requires monitoring and precise phenotypic characterization of subpopulations of cells undergoing transdifferentiation in order to confirm the reprogramming of the astroglia into neurons and subsequent integration of these neurons into the CNS. Here, we discussed the most efficient strategies of neuronal reprogramming and technologies used to visualize the transdifferentiation process, with special focus on the obstacles to efficient neuronal conversion, as well as approaches to overcome them.
Collapse
Affiliation(s)
- Nikita V Dokukin
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Daria A Chudakova
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
- National Medical Research Center of Children's Health, Ministry of Health of the Russian Federation, Moscow, 119991, Russia
| | - Matvey O Shkap
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Anna M Kovalchuk
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Pavel D Kibirsky
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia
| | - Vladimir P Baklaushev
- Federal Center for Brain and Neurotechnology, Federal Medical and Biological Agency of Russia, Moscow, 117513, Russia.
- Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, Moscow, 115682, Russia
- Research Institute of Pulmonology, Federal Medical and Biological Agency of Russia, Moscow, 115682, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
2
|
Marzoog BA. Transcription Factors in Brain Regeneration: A Potential Novel Therapeutic Target. Curr Drug Targets 2024; 25:46-61. [PMID: 38444255 DOI: 10.2174/0113894501279977231210170231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 03/07/2024]
Abstract
Transcription factors play a crucial role in providing identity to each cell population. To maintain cell identity, it is essential to balance the expression of activator and inhibitor transcription factors. Cell plasticity and reprogramming offer great potential for future therapeutic applications, as they can regenerate damaged tissue. Specific niche factors can modify gene expression and differentiate or transdifferentiate the target cell to the required fate. Ongoing research is being carried out on the possibilities of transcription factors in regenerating neurons, with neural stem cells (NSCs) being considered the preferred cells for generating new neurons due to their epigenomic and transcriptome memory. NEUROD1/ASCL1, BRN2, MYTL1, and other transcription factors can induce direct reprogramming of somatic cells, such as fibroblasts, into neurons. However, the molecular biology of transcription factors in reprogramming and differentiation still needs to be fully understood.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center, Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
3
|
Leggio L, L'Episcopo F, Magrì A, Ulloa‐Navas MJ, Paternò G, Vivarelli S, Bastos CAP, Tirolo C, Testa N, Caniglia S, Risiglione P, Pappalardo F, Serra A, García‐Tárraga P, Faria N, Powell JJ, Peruzzotti‐Jametti L, Pluchino S, García‐Verdugo JM, Messina A, Marchetti B, Iraci N. Small Extracellular Vesicles Secreted by Nigrostriatal Astrocytes Rescue Cell Death and Preserve Mitochondrial Function in Parkinson's Disease. Adv Healthc Mater 2022; 11:e2201203. [PMID: 35856921 PMCID: PMC11468249 DOI: 10.1002/adhm.202201203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/05/2022] [Indexed: 01/28/2023]
Abstract
Extracellular vesicles (EVs) are emerging as powerful players in cell-to-cell communication both in healthy and diseased brain. In Parkinson's disease (PD)-characterized by selective dopaminergic neuron death in ventral midbrain (VMB) and degeneration of their terminals in striatum (STR)-astrocytes exert dual harmful/protective functions, with mechanisms not fully elucidated. Here, this study shows that astrocytes from the VMB-, STR-, and VMB/STR-depleted brains release a population of small EVs in a region-specific manner. Interestingly, VMB-astrocytes secreted the highest rate of EVs, which is further exclusively increased in response to CCL3, a chemokine that promotes robust dopaminergic neuroprotection in different PD models. The neuroprotective potential of nigrostriatal astrocyte-EVs is investigated in differentiated versus undifferentiated SH-SY5Y cells exposed to oxidative stress and mitochondrial toxicity. EVs from both VMB- and STR-astrocytes counteract H2 O2 -induced caspase-3 activation specifically in differentiated cells, with EVs from CCL3-treated astrocytes showing a higher protective effect. High resolution respirometry further reveals that nigrostriatal astrocyte-EVs rescue neuronal mitochondrial complex I function impaired by the neurotoxin MPP+ . Notably, only EVs from VMB-astrocyte fully restore ATP production, again specifically in differentiated SH-SY5Y. These results highlight a regional diversity in the nigrostriatal system for the secretion and activities of astrocyte-EVs, with neuroprotective implications for PD.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| | | | - Andrea Magrì
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCatania95125Italy
| | - María José Ulloa‐Navas
- Laboratory of Compared NeurobiologyUniversity of Valencia‐CIBERNEDPaterna46980Spain
- Department of NeuroscienceMayo ClinicJacksonvilleFL32257USA
| | - Greta Paternò
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| | | | | | | | | | - Pierpaolo Risiglione
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCatania95125Italy
| | - Fabrizio Pappalardo
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| | | | | | - Nuno Faria
- Department of Veterinary MedicineUniversity of CambridgeCambridgeCB3 0ESUK
| | - Jonathan J. Powell
- Department of Veterinary MedicineUniversity of CambridgeCambridgeCB3 0ESUK
| | | | - Stefano Pluchino
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| | | | - Angela Messina
- Department of Biological, Geological and Environmental SciencesUniversity of CataniaCatania95125Italy
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
- Oasi Research Institute‐IRCCSTroina94018Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological SciencesUniversity of CataniaCatania95123Italy
| |
Collapse
|
4
|
McComish SF, MacMahon Copas AN, Caldwell MA. Human Brain-Based Models Provide a Powerful Tool for the Advancement of Parkinson’s Disease Research and Therapeutic Development. Front Neurosci 2022; 16:851058. [PMID: 35651633 PMCID: PMC9149087 DOI: 10.3389/fnins.2022.851058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease and affects approximately 2–3% of the population over the age of 65. PD is characterised by the loss of dopaminergic neurons from the substantia nigra, leading to debilitating motor symptoms including bradykinesia, tremor, rigidity, and postural instability. PD also results in a host of non-motor symptoms such as cognitive decline, sleep disturbances and depression. Although existing therapies can successfully manage some motor symptoms for several years, there is still no means to halt progression of this severely debilitating disorder. Animal models used to replicate aspects of PD have contributed greatly to our current understanding but do not fully replicate pathological mechanisms as they occur in patients. Because of this, there is now great interest in the use of human brain-based models to help further our understanding of disease processes. Human brain-based models include those derived from embryonic stem cells, patient-derived induced neurons, induced pluripotent stem cells and brain organoids, as well as post-mortem tissue. These models facilitate in vitro analysis of disease mechanisms and it is hoped they will help bridge the existing gap between bench and bedside. This review will discuss the various human brain-based models utilised in PD research today and highlight some of the key breakthroughs they have facilitated. Furthermore, the potential caveats associated with the use of human brain-based models will be detailed.
Collapse
Affiliation(s)
- Sarah F. McComish
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Adina N. MacMahon Copas
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Maeve A. Caldwell
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Maeve A. Caldwell,
| |
Collapse
|
5
|
Abstract
Cellular identity is established through complex layers of genetic regulation, forged over a developmental lifetime. An expanding molecular toolbox is allowing us to manipulate these gene regulatory networks in specific cell types in vivo. In principle, if we found the right molecular tricks, we could rewrite cell identity and harness the rich repertoire of possible cellular functions and attributes. Recent work suggests that this rewriting of cell identity is not only possible, but that newly induced cells can mitigate disease phenotypes in animal models of major human diseases. So, is the sky the limit, or do we need to keep our feet on the ground? This Spotlight synthesises key concepts emerging from recent efforts to reprogramme cellular identity in vivo. We provide our perspectives on recent controversies in the field of glia-to-neuron reprogramming and identify important gaps in our understanding that present barriers to progress.
Collapse
Affiliation(s)
- Sydney Leaman
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Nicolás Marichal
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK
| | - Benedikt Berninger
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.,Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany.,The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|