1
|
Ding X, Chen Y, Guo C, Fu Y, Qin C, Zhu Q, Wang J, Zhang R, Tian H, Feng R, Liu H, Liang D, Wang G, Teng J, Li J, Tang B, Wang X. Mutations in ARHGEF15 cause autosomal dominant hereditary cerebral small vessel disease and osteoporotic fracture. Acta Neuropathol 2023; 145:681-705. [PMID: 36929019 DOI: 10.1007/s00401-023-02560-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Cerebral small vessel disease (CSVD) is a prominent cause of ischemic and hemorrhagic stroke and a leading cause of vascular dementia, affecting small penetrating vessels of the brain. Despite current advances in genetic susceptibility studies, challenges remain in defining the causative genes and the underlying pathophysiological mechanisms. Here, we reported that the ARHGEF15 gene was a causal gene linked to autosomal dominant inherited CSVD. We identified one heterozygous nonsynonymous mutation of the ARHGEF15 gene that cosegregated completely in two families with CSVD, and a heterozygous nonsynonymous mutation and a stop-gain mutation in two individuals with sporadic CSVD, respectively. Intriguingly, clinical imaging and pathological findings displayed severe osteoporosis and even osteoporotic fractures in all the ARHGEF15 mutation carriers. In vitro experiments indicated that ARHGEF15 mutations resulted in RhoA/ROCK2 inactivation-induced F-actin cytoskeleton disorganization in vascular smooth muscle cells and endothelial cells and osteoblast dysfunction by inhibiting the Wnt/β-catenin signaling pathway in osteoblast cells. Furthermore, Arhgef15-e(V368M)1 transgenic mice developed CSVD-like pathological and behavioral phenotypes, accompanied by severe osteoporosis. Taken together, our findings provide strong evidence that loss-of-function mutations of the ARHGEF15 gene cause CSVD accompanied by osteoporotic fracture.
Collapse
Affiliation(s)
- Xuebing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yongkang Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Cancan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Yu Fu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Chi Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Qingyong Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Jiuqi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Haiyan Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Renyi Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Han Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Dongxiao Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases &, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China
| | - Jinchen Li
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.
| | - Beisha Tang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, Hengyang, China.
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Institute of Parkinson and Movement Disorder, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Turton N, Cufflin N, Dewsbury M, Fitzpatrick O, Islam R, Watler LL, McPartland C, Whitelaw S, Connor C, Morris C, Fang J, Gartland O, Holt L, Hargreaves IP. The Biochemical Assessment of Mitochondrial Respiratory Chain Disorders. Int J Mol Sci 2022; 23:ijms23137487. [PMID: 35806492 PMCID: PMC9267223 DOI: 10.3390/ijms23137487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondrial respiratory chain (MRC) disorders are a complex group of diseases whose diagnosis requires a multidisciplinary approach in which the biochemical investigations play an important role. Initial investigations include metabolite analysis in both blood and urine and the measurement of lactate, pyruvate and amino acid levels, as well as urine organic acids. Recently, hormone-like cytokines, such as fibroblast growth factor-21 (FGF-21), have also been used as a means of assessing evidence of MRC dysfunction, although work is still required to confirm their diagnostic utility and reliability. The assessment of evidence of oxidative stress may also be an important parameter to consider in the diagnosis of MRC function in view of its association with mitochondrial dysfunction. At present, due to the lack of reliable biomarkers available for assessing evidence of MRC dysfunction, the spectrophotometric determination of MRC enzyme activities in skeletal muscle or tissue from the disease-presenting organ is considered the ‘Gold Standard’ biochemical method to provide evidence of MRC dysfunction. The purpose of this review is to outline a number of biochemical methods that may provide diagnostic evidence of MRC dysfunction in patients.
Collapse
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Neve Cufflin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Mollie Dewsbury
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Olivia Fitzpatrick
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Rahida Islam
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Lowidka Linares Watler
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Cara McPartland
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Sophie Whitelaw
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Caitlin Connor
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Charlotte Morris
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Jason Fang
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Ollie Gartland
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Liv Holt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Converging evidence suggest axonal damage is implicated in depression and cognitive function. Neurofilament light protein, measured within serum and cerebrospinal fluid, may be a biomarker of axonal damage. This article examines the emerging evidence implicating neurofilament light protein in depression and cognitive function. RECENT FINDINGS Preliminary cross-sectional and case-control studies in cohorts with depression have yielded inconsistent results regarding the association between neurofilament light protein and symptomatology. However, these studies had methodological limitations, requiring further investigation. Importantly, neurofilament light protein concentrations may be a marker of progression of cognitive decline and may be associated with cognitive performance within cognitively intact cohorts. SUMMARY Axonal damage is implicated in the neuropathology of depression and cognitive dysfunction. Consequently, neurofilament light protein is an emerging biomarker with potential in depression and cognitive function. Results are more consistent for cognition, requiring more research to assess neurofilament light protein in depression as well as other psychiatric disorders. Future longitudinal studies are necessary to determine whether neurofilament light protein can predict the onset and progression of depression and measure the effectiveness of potential psychiatric interventions and medications.
Collapse
|
4
|
Saak A, Benkert P, Akgün K, Willemse E, Kuhle J, Ziemssen T, Jackson S, Schaefer J. Serum Neurofilament Light Chain: A Marker of Nervous System Damage in Myopathies. Front Neurosci 2021; 15:791670. [PMID: 34975387 PMCID: PMC8718922 DOI: 10.3389/fnins.2021.791670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: Neurofilament light chain in serum (sNfL) has been suggested as a biomarker for the assessment of neuroaxonal damage. Since NfL are not expressed in muscle, elevated sNfL in patients with primary myopathies suggest additional nervous system involvement. To verify this hypothesis, we measured sNfL in a series of patients with myopathies. Methods: sNfL were determined in 62 patients with molecular proven primary myopathies in whom some nervous system involvement may be predicted: myotonic dystrophy type I and II (DM I, II) and mitochondrial disease. In addition, sNfL were measured in 8 patients with facioscapulohumeral muscular dystrophy (FSHD) and in a disease control group caused by genetic defects exclusively expressed in muscle. Results: sNfL values were significantly elevated in the DM I, the DM II and the mitochondrial group, with FSHD patients showing the lowest sNfL elevations. sNfL levels in the disease control group were not different from the healthy controls. A significant correlation between repeat length and sNfL levels was found in the DM I patients, but not in the DM II patients. Mitochondrial patients with encephalopathy showed significantly higher sNfL concentrations compared to patients with only muscular symptoms. Conclusion: sNfL levels are elevated in myopathies with, based on the underlying molecular defect or clinical features, established nervous system involvement, i.e., myotonic dystrophies and mitochondrial disorders. sNfL were also raised in FSHD, where involvement of the nervous system is not usually clinically apparent. Thus, sNfL concentrations may serve as a biomarker for additional neuronal damage in primary myopathies.
Collapse
Affiliation(s)
- Annika Saak
- Department of Neurology, University Hospital Dresden, Dresden, Germany
| | - Pascal Benkert
- Department Klinische Forschung, University Hospital Basel, Basel, Switzerland
| | - Katja Akgün
- Department of Neurology, University Hospital Dresden, Dresden, Germany
| | - Eline Willemse
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | - Tjalf Ziemssen
- Department of Neurology, University Hospital Dresden, Dresden, Germany
| | - Sandra Jackson
- Department of Neurology, University Hospital Dresden, Dresden, Germany
| | - Jochen Schaefer
- Department of Neurology, University Hospital Dresden, Dresden, Germany
| |
Collapse
|
5
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|