1
|
Mittal R, Rasane P, Gunjal M, Singh J. Brassica oleracea as a functional crop: phytochemical potential and sustainable applications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3525-3538. [PMID: 40007500 DOI: 10.1002/jsfa.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Broccoli (Brassica oleracea var. italica L.), a biennial cool-season crop of the Brassicaceae family, originates from the Mediterranean region and is renowned for its exceptional nutritional qualities. Its increasing global popularity has been attributed to its bioactive compounds, particularly glucosinolates and their hydrolysis product, sulforaphane, which provide numerous health benefits. Sulforaphane demonstrates protective effects against metabolic diseases such as diabetes mellitus and severe conditions, including stroke, myocardial infarction, and cancer. Broccoli's low caloric and high fiber content makes it an ideal dietary component. Its by-products, often considered inedible (stalks, stems, and leaves), also have various sustainable applications. These include prolonging shelf life, the development of agrochemicals, the creation of nanoparticles, and the formulation of functional foods, beverages, and medicines, all at reduced costs. This review highlights broccoli's health-supporting attributes and phytochemical composition, emphasizing its potential as a functional crop. The study also explores the use of broccoli's postharvest residues in zero-waste solutions, highlighting their potential as eco-friendly alternatives with economic benefits for the food and agricultural industries. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rhythm Mittal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Mahendra Gunjal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| |
Collapse
|
2
|
Shabbir R, Javed T, Wenzhi W, Yating C, Benpeng Y, Linbo S, Tingting S, Shuzhen Z, Chen P. Insights into recent advances in secondary metabolites (SMs)-mediated defense responses in plants. Crit Rev Biotechnol 2025:1-15. [PMID: 40268520 DOI: 10.1080/07388551.2025.2484598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Accepted: 03/05/2025] [Indexed: 04/25/2025]
Abstract
Climate change induces various environmental stressors that restrict plant processes, thereby limiting overall crop productivity. Plant secondary metabolites (SMs) enable plants to quickly detect a broad array of environmental stressors and respond in accordance to rapidly changing environmental scenarios. Notably, SMs regulate defense signaling cascades and provide defensive functions to safeguard plants against various biotic and abiotic stressors. In this review, we provide an overview of insights into recent advances in types and biosynthetic pathways of SMs. We emphasize the mechanisms of different biotic and abiotic elicitors-induced SMs synthesis and accumulation to regulate defense responses. In addition, SMs-mediated regulation of plant processes act through phytohormones signaling cascades is discussed. Finally, we show that transcriptional factors regulating SMs biosynthesis and associated regulatory networks could be used for creating resilient plants. Overall, this comprehensive review gives insight into recent advances regarding crucial roles of SMs in enhanced resistance and provides new ideas for the development of stress-resistant varieties under current climate change scenarios.
Collapse
Affiliation(s)
- Rubab Shabbir
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Nanfan and Seed Industry, Guangdong Academy of Sciences, Guangzhou, China
| | - Talha Javed
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wang Wenzhi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chang Yating
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Benpeng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shen Linbo
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Sun Tingting
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhang Shuzhen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Pinghua Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Rojas-Rojas FU, Gómez-Vázquez IM, Estrada-de Los Santos P, Shimada-Beltrán H, Vega-Arreguín JC. The potential of Paraburkholderia species to enhance crop growth. World J Microbiol Biotechnol 2025; 41:62. [PMID: 39904926 PMCID: PMC11794353 DOI: 10.1007/s11274-025-04256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025]
Abstract
Agrochemicals are the primary alternative for maintaining the high yields necessary to produce sufficient plant-based foods to supply the world population. In recent decades, one of the most extensively explored alternatives to replace agrochemicals and reduce their environmental impact has been the use of microorganism-based products to boost crop yields with less environmental impact. This review focuses on the results of studies that have demonstrated the potential of the genus Paraburkholderia to increase crop yields and be utilized in biofertilizers and biocontrol products. A literature search was performed electronically considering articles and books published until August 19, 2024. We identified 24 species of Paraburkholderia with the ability to improve crop yields after their inoculation by different methods on seeds, seedlings, plantlets, adult crops, or fruits. The effects of these bacteria have been tested under laboratory, greenhouse, or field conditions. These Paraburkholderia species mediate their positive impact on crop growth by direct and indirect plant growth-promoting mechanisms, which include improving nutrient uptake, stimulating growth by phytohormone production, regulation and stimulation of metabolic pathways, induction of abiotic stress tolerance, and disease control by direct pathogen inhibition or induction of systemic resistance in plants. The literature reviewed here supports the use of Paraburkholderia in bio-inputs under the actual panorama of climate change and the necessity to increase sustainable agriculture worldwide.
Collapse
Affiliation(s)
- Fernando Uriel Rojas-Rojas
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
| | - Ingrid Melissa Gómez-Vázquez
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
| | - Paulina Estrada-de Los Santos
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala S/N Col. Santo Tomás Alc., 11340, Miguel Hidalgo, Ciudad de México, México
| | - Harumi Shimada-Beltrán
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México
| | - Julio C Vega-Arreguín
- Laboratorio de Ciencias AgroGenómicas, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México.
- Laboratorio Nacional PlanTECC, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (ENES-León, UNAM), Blvd. UNAM 2011, 37684, León, Guanajuato, México.
| |
Collapse
|
4
|
González-Cardona C, López WR, Jovel J, Soto-Suárez M, Ceballos-Aguirre N. Paraburkholderia tropica Primes a Multilayered Transcriptional Defense Response to the Nematode Meloidogyne spp. in Tomato. Int J Mol Sci 2024; 25:12584. [PMID: 39684296 DOI: 10.3390/ijms252312584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Meloidogyne causes a devastating disease known as root-knot that affects tomatoes and other cash crops worldwide. Conversely, Paraburkholderia tropica has proven beneficial in mitigating the effects of various pathogens in plants. We aimed to unravel the molecular events that underlie the beneficial effects of the bacterium and the detrimental impacts of the nematode when inoculated separately or together in tomato plants. The transcriptional responses induced by P. tropica (TB group (tomato-bacteria group)), Meloidogyne spp. (TN group (tomato-nematode group)) or by the two agents (TBN group (tomato-bacteria-nematode group)) in tomato were assessed by RNA-seq. We implemented a transcript discovery pipeline which allowed the identification of 2283 putative novel transcripts. Differential expression analysis revealed that upregulated transcripts were much more numerous than downregulated ones. At the gene ontology level, the most activated term was 'hydrolase activity acting on ester bonds' in all groups. In addition, when both microbes were inoculated together, 'hydrolase activity acting on O-glycosyl compounds' was activated. This finding suggests defense responses related to lipid and carbohydrate metabolism, membrane remodeling and signal transduction. Notably, defense genes, transcription factors and protein kinases stood out. Differentially expressed transcripts suggest the activation of a multifaceted plant defense response against the nematode occurred, which was exacerbated by pre-inoculation of P. tropica.
Collapse
Affiliation(s)
- Carolina González-Cardona
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
| | - Walter Ricardo López
- Departamento de Física y Química, Facultad de Ciencias Naturales, Universidad Nacional de Colombia Sede Manizales, km 9 vía Aeropuerto la Nubia, Manizales 170003, Caldas, Colombia
| | - Juan Jovel
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| | - Mauricio Soto-Suárez
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, km 14 vía Mosquera-Bogotá, Mosquera 250047, Cundinamarca, Colombia
| | - Nelson Ceballos-Aguirre
- Facultad de Ciencias Agropecuarias, Universidad de Caldas, Calle 65 No. 26-10, Manizales 170003, Caldas, Colombia
| |
Collapse
|
5
|
Cai C, de Vos RC, Qian H, Bucher J, Bonnema G. Metabolomic and Transcriptomic Profiles in Diverse Brassica oleracea Crops Provide Insights into the Genetic Regulation of Glucosinolate Profiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16032-16044. [PMID: 38975781 PMCID: PMC11261609 DOI: 10.1021/acs.jafc.4c02932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024]
Abstract
Glucosinolates (GSLs) are plant secondary metabolites commonly found in the cruciferous vegetables of the Brassicaceae family, offering health benefits to humans and defense against pathogens and pests to plants. In this study, we investigated 23 GSL compounds' relative abundance in four tissues of five different Brassica oleracea morphotypes. Using the five corresponding high-quality B. oleracea genome assemblies, we identified 183 GSL-related genes and analyzed their expression with mRNA-Seq data. GSL abundance and composition varied strongly, among both tissues and morphotypes, accompanied by different gene expression patterns. Interestingly, broccoli exhibited a nonfunctional AOP2 gene due to a conserved 2OG-FeII_Oxy domain loss, explaining the unique accumulation of two health-promoting GSLs. Additionally, transposable element (TE) insertions were found to affect the gene structure of MAM3 genes. Our findings deepen the understanding of GSL variation and genetic regulation in B. oleracea morphotypes, providing valuable insights for breeding with tailored GSL profiles in these crops.
Collapse
Affiliation(s)
- Chengcheng Cai
- Plant
Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
- State
Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology
and Genetic Improvement of Horticultural Crops of the Ministry of
Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural
Genomics, Institute of Vegetables and Flowers,
Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ric C.H. de Vos
- Bioscience, Wageningen
University and Research, Wageningen 6708 PB, The Netherlands
| | - Hao Qian
- Plant
Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Johan Bucher
- Plant
Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Guusje Bonnema
- Plant
Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
6
|
Díaz FP, Dussarrat T, Carrasco-Puga G, Colombié S, Prigent S, Decros G, Bernillon S, Cassan C, Flandin A, Guerrero PC, Gibon Y, Rolin D, Cavieres LA, Pétriacq P, Latorre C, Gutiérrez RA. Ecological and metabolic implications of the nurse effect of Maihueniopsis camachoi in the Atacama Desert. THE NEW PHYTOLOGIST 2024; 241:1074-1087. [PMID: 37984856 DOI: 10.1111/nph.19415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Plant-plant positive interactions are key drivers of community structure. Yet, the underlying molecular mechanisms of facilitation processes remain unexplored. We investigated the 'nursing' effect of Maihueniopsis camachoi, a cactus that thrives in the Atacama Desert between c. 2800 and 3800 m above sea level. We hypothesised that an important protective factor is thermal amelioration of less cold-tolerant species with a corresponding impact on molecular phenotypes. To test this hypothesis, we compared plant cover and temperatures within the cactus foliage with open areas and modelled the effect of temperatures on plant distribution. We combined eco-metabolomics and machine learning to test the molecular consequences of this association. Multiple species benefited from the interaction with M. camachoi. A conspicuous example was the extended distribution of Atriplex imbricata to colder elevations in association with M. camachoi (400 m higher as compared to plants in open areas). Metabolomics identified 93 biochemical markers predicting the interaction status of A. imbricata with 79% accuracy, independently of year. These findings place M. camachoi as a key species in Atacama plant communities, driving local biodiversity with an impact on molecular phenotypes of nursed species. Our results support the stress-gradient hypothesis and provide pioneer insights into the metabolic consequences of facilitation.
Collapse
Affiliation(s)
- Francisca P Díaz
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, 2362807, Valparaíso, Chile
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- ANID Millennium Institute Center for Genome Regulation and ANID Millennium Institute for Integrative Biology (iBio), Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Thomas Dussarrat
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
| | - Gabriela Carrasco-Puga
- ANID Millennium Institute Center for Genome Regulation and ANID Millennium Institute for Integrative Biology (iBio), Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Sophie Colombié
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Sylvain Prigent
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Guillaume Decros
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
| | - Stéphane Bernillon
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Cédric Cassan
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Amélie Flandin
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Pablo C Guerrero
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 7800003, Concepción, Chile
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos, 8331150, Santiago, Chile
| | - Yves Gibon
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Dominique Rolin
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Lohengrin A Cavieres
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 7800003, Concepción, Chile
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Claudio Latorre
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Rodrigo A Gutiérrez
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- ANID Millennium Institute Center for Genome Regulation and ANID Millennium Institute for Integrative Biology (iBio), Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| |
Collapse
|
7
|
King E, Wallner A, Guigard L, Rimbault I, Parrinello H, Klonowska A, Moulin L, Czernic P. Paraburkholderia phytofirmans PsJN colonization of rice endosphere triggers an atypical transcriptomic response compared to rice native Burkholderia s.l. endophytes. Sci Rep 2023; 13:10696. [PMID: 37400579 DOI: 10.1038/s41598-023-37314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/20/2023] [Indexed: 07/05/2023] Open
Abstract
The plant microbiome has recently emerged as a reservoir for the development of sustainable alternatives to chemical fertilizers and pesticides. However, the response of plants to beneficial microbes emerges as a critical issue to understand the molecular basis of plant-microbiota interactions. In this study, we combined root colonization, phenotypic and transcriptomic analyses to unravel the commonalities and specificities of the response of rice to closely related Burkholderia s.l. endophytes. In general, these results indicate that a rice-non-native Burkholderia s.l. strain, Paraburkholderia phytofirmans PsJN, is able to colonize the root endosphere while eliciting a markedly different response compared to rice-native Burkholderia s.l. strains. This demonstrates the variability of plant response to microbes from different hosts of origin. The most striking finding of the investigation was that a much more conserved response to the three endophytes used in this study is elicited in leaves compared to roots. In addition, transcriptional regulation of genes related to secondary metabolism, immunity, and phytohormones appear to be markers of strain-specific responses. Future studies need to investigate whether these findings can be extrapolated to other plant models and beneficial microbes to further advance the potential of microbiome-based solutions for crop production.
Collapse
Affiliation(s)
- Eoghan King
- Plant Health Institute of Montpellier, IRD, CIRAD, University of Montpellier, l'Institut Agro, Montpellier, France.
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain.
| | - Adrian Wallner
- Plant Health Institute of Montpellier, IRD, CIRAD, University of Montpellier, l'Institut Agro, Montpellier, France
- SFR Condorcet - FR CNRS 3417, University of Reims Champagne-Ardenne, Induced Resistance and Plant Bioprotection (RIBP) - EA 4707, Cedex 2, BP1039, 51687, Reims, France
| | - Ludivine Guigard
- Plant Health Institute of Montpellier, IRD, CIRAD, University of Montpellier, l'Institut Agro, Montpellier, France
| | - Isabelle Rimbault
- Plant Health Institute of Montpellier, IRD, CIRAD, University of Montpellier, l'Institut Agro, Montpellier, France
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Agnieszka Klonowska
- Plant Health Institute of Montpellier, IRD, CIRAD, University of Montpellier, l'Institut Agro, Montpellier, France
| | - Lionel Moulin
- Plant Health Institute of Montpellier, IRD, CIRAD, University of Montpellier, l'Institut Agro, Montpellier, France
| | - Pierre Czernic
- Plant Health Institute of Montpellier, IRD, CIRAD, University of Montpellier, l'Institut Agro, Montpellier, France.
| |
Collapse
|
8
|
Liu X, Ju Y, Mandzhieva S, Pinskii D, Minkina T, Rajput VD, Roane T, Huang S, Li Y, Ma LQ, Clemens S, Rensing C. Sporadic Pb accumulation by plants: Influence of soil biogeochemistry, microbial community and physiological mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130391. [PMID: 36410245 DOI: 10.1016/j.jhazmat.2022.130391] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/23/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Recent results revealed that considerable Pb accumulation in plants is possible under specific soil conditions that make Pb phytoavailable. In this review, the sources and transformations of Pb in soils, the interaction of Pb with bacteria and specifically the microbiota in the soil, factors and mechanisms of Pb uptake, translocation and accumulation in plants and Pb toxicity in living organisms are comprehensively elaborated. Specific adsorption and post-adsorption transformations of Pb in soil are the main mechanisms affecting the mobility, bioavailability, and toxicity of Pb. The adsorption ability of Pb largely depends on the composition and properties of soils and environmental conditions. Microbial impact on Pb mobility in soil and bioavailability as well as bacterial resistance to Pb are considered. Specific mechanisms conferring Pb-resistance, including Pb-efflux, siderophores, and EPS, have been identified. Pathways of Pb entry into plants as well as mechanisms of in planta Pb transport are poorly understood. Available evidence suggests the involvement of Ca transporters, organic acids and the phytochelatin pathway in Pb transport, mobility and detoxification, respectively.
Collapse
Affiliation(s)
- Xue Liu
- Institute of Environmental Remediation and Human Health, College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Yongwang Ju
- Institute of Environmental Remediation and Human Health, College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Saglara Mandzhieva
- Southern Federal University, 105, Bolshaya Sadovaya Street, Rostov-on-Don 344006, Russia
| | - David Pinskii
- Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Tatiana Minkina
- Southern Federal University, 105, Bolshaya Sadovaya Street, Rostov-on-Don 344006, Russia
| | - Vishnu D Rajput
- Southern Federal University, 105, Bolshaya Sadovaya Street, Rostov-on-Don 344006, Russia
| | - Timberley Roane
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Shuangqin Huang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany.
| | - Christopher Rensing
- Institute of Environmental Remediation and Human Health, College of Ecology and Environment, Southwest Forestry University, Kunming 650224, China; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
9
|
Jeon JS, Rybka D, Carreno-Quintero N, De Vos R, Raaijmakers JM, Etalo DW. Metabolic signatures of rhizobacteria-induced plant growth promotion. PLANT, CELL & ENVIRONMENT 2022; 45:3086-3099. [PMID: 35751418 DOI: 10.1111/pce.14385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 05/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Various root-colonizing bacterial species can promote plant growth and trigger systemic resistance against aboveground leaf pathogens and herbivore insects. To date, the underlying metabolic signatures of these rhizobacteria-induced plant phenotypes are poorly understood. To identify core metabolic pathways that are targeted by growth-promoting rhizobacteria, we used combinations of three plant species and three rhizobacterial species and interrogated plant shoot chemistry by untargeted metabolomics. A substantial part (50%-64%) of the metabolites detected in plant shoot tissue was differentially affected by the rhizobacteria. Among others, the phenylpropanoid pathway was targeted by the rhizobacteria in each of the three plant species. Differential regulation of the various branches of the phenylpropanoid pathways showed an association with either plant growth promotion or growth reduction. Overall, suppression of flavonoid biosynthesis was associated with growth promotion, while growth reduction showed elevated levels of flavonoids. Subsequent assays with 12 Arabidopsis flavonoid biosynthetic mutants revealed that the proanthocyanidin branch plays an essential role in rhizobacteria-mediated growth promotion. Our study also showed that a number of pharmaceutically and nutritionally relevant metabolites in the plant shoot were significantly increased by rhizobacterial treatment, providing new avenues to use rhizobacteria to tilt plant metabolism towards the biosynthesis of valuable natural plant products.
Collapse
Affiliation(s)
- Je-Seung Jeon
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Dominika Rybka
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
| | - Natalia Carreno-Quintero
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- KeyGene, Wageningen, The Netherlands
| | - Ric De Vos
- Wageningen Plant Research, Bioscience, Wageningen, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Desalegn W Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology NIOO-KNAW, Wageningen, The Netherlands
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
10
|
Mashabela MD, Tugizimana F, Steenkamp PA, Piater LA, Dubery IA, Mhlongo MI. Untargeted metabolite profiling to elucidate rhizosphere and leaf metabolome changes of wheat cultivars (Triticum aestivum L.) treated with the plant growth-promoting rhizobacteria Paenibacillus alvei (T22) and Bacillus subtilis. Front Microbiol 2022; 13:971836. [PMID: 36090115 PMCID: PMC9453603 DOI: 10.3389/fmicb.2022.971836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
The rhizosphere is a highly complex and biochemically diverse environment that facilitates plant–microbe and microbe–microbe interactions, and this region is found between plant roots and the bulk soil. Several studies have reported plant root exudation and metabolite secretion by rhizosphere-inhabiting microbes, suggesting that these metabolites play a vital role in plant–microbe interactions. However, the biochemical constellation of the rhizosphere soil is yet to be fully elucidated and thus remains extremely elusive. In this regard, the effects of plant growth-promoting rhizobacteria (PGPR)–plant interactions on the rhizosphere chemistry and above ground tissues are not fully understood. The current study applies an untargeted metabolomics approach to profile the rhizosphere exo-metabolome of wheat cultivars generated from seed inoculated (bio-primed) with Paenibacillus (T22) and Bacillus subtilis strains and to elucidate the effects of PGPR treatment on the metabolism of above-ground tissues. Chemometrics and molecular networking tools were used to process, mine and interpret the acquired mass spectrometry (MS) data. Global metabolome profiling of the rhizosphere soil of PGPR-bio-primed plants revealed differential accumulation of compounds from several classes of metabolites including phenylpropanoids, organic acids, lipids, organoheterocyclic compounds, and benzenoids. Of these, some have been reported to function in plant–microbe interactions, chemotaxis, biocontrol, and plant growth promotion. Metabolic perturbations associated with the primary and secondary metabolism were observed from the profiled leaf tissue of PGPR-bio-primed plants, suggesting a distal metabolic reprograming induced by PGPR seed bio-priming. These observations gave insights into the hypothetical framework which suggests that PGPR seed bio-priming can induce metabolic changes in plants leading to induced systemic response for adaptation to biotic and abiotic stress. Thus, this study contributes knowledge to ongoing efforts to decipher the rhizosphere metabolome and mechanistic nature of biochemical plant–microbe interactions, which could lead to metabolome engineering strategies for improved plant growth, priming for defense and sustainable agriculture.
Collapse
Affiliation(s)
- Manamele D. Mashabela
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Fidele Tugizimana
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
- International Research and Development Division, Omnia Group, Ltd., Johannesburg, South Africa
| | - Paul A. Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Lizelle A. Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Ian A. Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Msizi I. Mhlongo
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
- *Correspondence: Msizi I. Mhlongo,
| |
Collapse
|
11
|
Yeo HJ, Lim SY, Park CH, Kim CY, Sathasivam R, Kim JK, Park SU. Metabolic Analyses and Evaluation of Antioxidant Activity in Purple Kohlrabi Sprouts after Exposed to UVB Radiation. Antioxidants (Basel) 2022; 11:antiox11081443. [PMID: 35892645 PMCID: PMC9332045 DOI: 10.3390/antiox11081443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Various metabolites act as plant defense molecules due to their antioxidant abilities. This study aimed to investigate the influence of UVB irradiation on the accumulation of metabolites, including primary metabolites (sugar, sugar alcohols, amino acids, organic acids, and an amine) and secondary metabolites (anthocyanins, fatty acids, and phenolic acids), and its synergistic antioxidant ability, in purple kohlrabi sprouts. Metabolite analyses revealed a total of 92 metabolites in the sprouts. Specifically, the levels of most amino acids increased after 24 h of UVB treatment, and then slightly decreased in the kohlrabi sprouts. The levels of most sugars and sugar alcohols increased after 24 h of UVB treatment and then decreased. The levels of TCA cycle intermediates and phenolic acids gradually increased during the UVB treatment. Furthermore, the levels of some fatty acids gradually increased during the UVB treatment, and the levels of the other fatty acids increased after 6 h of UVB treatment and then decreased. In particular, the levels of most anthocyanins, known to be strong antioxidants, gradually increased after 24 h of UVB treatment. In the in vitro ABTS scavenging assay, UVB-treated purple kohlrabi sprouts showed increased scavenging ability. This may be attributed to the increased accumulation of metabolites acting as antioxidants, in response to UVB treatment. This study confirmed that UVB irradiation induced the alteration of primary and secondary metabolism in the kohlrabi sprouts.
Collapse
Affiliation(s)
- Hyeon Ji Yeo
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Korea; (H.J.Y.); (C.Y.K.)
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Soo-Yeon Lim
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea;
| | - Chang Ha Park
- Department of Biological Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea;
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Korea; (H.J.Y.); (C.Y.K.)
| | - Ramaraj Sathasivam
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Jae Kwang Kim
- Division of Life Sciences and Convergence Research Center for Insect Vectors, College of Life Sciences and Bioengineering, Incheon National University, Yeonsu-gu, Incheon 22012, Korea
- Correspondence: (J.K.K.); (S.U.P.); Tel.: +82-32-835-8241 (J.K.K.); +82-42-821-5730 (S.U.P.); Fax: +82-32-835-0763 (J.K.K.); +82-42-822-2631 (S.U.P.)
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
- Department of Smart Agriculture Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
- Correspondence: (J.K.K.); (S.U.P.); Tel.: +82-32-835-8241 (J.K.K.); +82-42-821-5730 (S.U.P.); Fax: +82-32-835-0763 (J.K.K.); +82-42-822-2631 (S.U.P.)
| |
Collapse
|
12
|
Vio SA, Bernabeu PR, García SS, Galar ML, Luna MF. Tracking and plant growth-promoting effect of Paraburkholderia tropica MTo-293 applied to Solanum lycopersicum. J Basic Microbiol 2022; 62:875-886. [PMID: 35575471 DOI: 10.1002/jobm.202100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 04/23/2022] [Indexed: 11/08/2022]
Abstract
Paraburkholderia tropica MTo-293 was applied as an experimental bio-input to Solanum lycopersicum (tomato) cv. Platense. Different plant growth systems and inoculation strategies were tested to evaluate P. tropica plant colonization at the seedling stage (growth chamber) using culture-dependent and -independent techniques. The effect of P. tropica on plant growth was evaluated in the growth chamber and greenhouse (productive stage) by biomass accumulation and fruit production, respectively. P. tropica was able to colonize the surface and inner root and stem of tomato seedlings regardless of the inoculation strategy-at sowing and/or before transplanting-showing the competitive nature of P. tropica in nonsterile substrate systems. A nested polymerase chain reaction was validated to track P. tropica in tomato plants even in the inner stem with endophytic P. tropica populations of less than 102 CFU g-1 of fresh weight. Efficient colonization of P. tropica correlated with a positive effect on tomato growth when applied at sowing and/or before transplanting: plant growth promotion was observed not only at the seedling stage but also at productive stages improving crop yield in two different seasons. To our knowledge, this report is the first to track and evaluate the plant growth-promoting effect of P. tropica MTo-293 in tomato plants grown in nonsterile substrate systems.
Collapse
Affiliation(s)
- Santiago A Vio
- Departamento de Química, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pamela R Bernabeu
- Departamento de Química, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Sabrina S García
- Departamento de Química, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María L Galar
- Departamento de Química, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María F Luna
- Departamento de Química, Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI, UNLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| |
Collapse
|
13
|
Jeon JS, Etalo DW, Carreno-Quintero N, de Vos RCH, Raaijmakers JM. Effects of Sulfur Assimilation in Pseudomonas fluorescens SS101 on Growth, Defense, and Metabolome of Different Brassicaceae. Biomolecules 2021; 11:1704. [PMID: 34827700 PMCID: PMC8615669 DOI: 10.3390/biom11111704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 01/07/2023] Open
Abstract
Genome-wide analysis of plant-growth-promoting Pseudomonas fluorescens strain SS101 (PfSS101) followed by site-directed mutagenesis previously suggested that sulfur assimilation may play an important role in growth promotion and induced systemic resistance in Arabidopsis. Here, we investigated the effects of sulfur metabolism in PfSS101 on growth, defense, and shoot metabolomes of Arabidopsis and the Brassica crop, Broccoli. Root tips of seedlings of Arabidopsis and two Broccoli cultivars were treated with PfSS101 or with a mutant disrupted in the adenylsulfate reductase cysH, a key gene in cysteine and methionine biosynthesis. Phenotyping of plants treated with wild-type PfSS101 or its cysH mutant revealed that sulfur assimilation in PfSS101 was associated with enhanced growth of Arabidopsis but with a reduction in shoot biomass of two Broccoli cultivars. Untargeted metabolomics revealed that cysH-mediated sulfur assimilation in PfSS101 had significant effects on shoot chemistry of Arabidopsis, in particular on chain elongation of aliphatic glucosinolates (GLSs) and on indole metabolites, including camalexin and the growth hormone indole-3-acetic acid. In Broccoli, PfSS101 sulfur assimilation significantly upregulated the relative abundance of several shoot metabolites, in particular, indolic GLSs and phenylpropanoids. These metabolome changes in Broccoli plants coincided with PfSS101-mediated suppression of leaf infections by Xanthomonas campestris. Our study showed the metabolic interconnectedness of plants and their root-associated microbiota.
Collapse
Affiliation(s)
- Je-Seung Jeon
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; (J.-S.J.); (D.W.E.)
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Desalegn W. Etalo
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; (J.-S.J.); (D.W.E.)
| | | | - Ric C. H. de Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), 6700 AA Wageningen, The Netherlands;
| | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands; (J.-S.J.); (D.W.E.)
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
14
|
Metabolomics Analyses Reveal Metabolites Affected by Plant Growth-Promoting Endophytic Bacteria in Roots of the Halophyte Mesembryanthemum crystallinum. Int J Mol Sci 2021; 22:ijms222111813. [PMID: 34769244 PMCID: PMC8584320 DOI: 10.3390/ijms222111813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023] Open
Abstract
Mesembryanthemum crystallinum L. (common ice plant) is an edible halophyte. However, if ice plants are used to phytoremediate salinity soil, there are problems of slow initial growth, and a long period before active NaCl uptake occurs under higher salinity conditions. Application of endophytic bacteria may improve the problem, but there remain gaps in our understanding of how endophytic bacteria affect the growth and the biochemical and physiological characteristics of ice plants. The aims of this study were to identify growth-promoting endophytic bacteria from the roots of ice plants and to document the metabolomic response of ice plants after application of selected endophytic bacteria. Two plant growth-promoting endophytic bacteria were selected on the basis of their ability to promote ice plant growth. The two strains putatively identified as Microbacterium spp. and Streptomyces spp. significantly promoted ice plant growth, at 2-times and 2.5-times, respectively, compared with the control and also affected the metabolome of ice plants. The strain of Microbacterium spp. resulted in increased contents of metabolites related to the tricarboxylic acid cycle and photosynthesis. The effects of salt stress were alleviated in ice plants inoculated with the endobacterial strains, compared with uninoculated plants. A deeper understanding of the complex interplay among plant metabolites will be useful for developing microbe-assisted soil phytoremediation strategies, using Mesembryanthemum species.
Collapse
|
15
|
Dietary Administration of Novel Multistrain Probiotics from Healthy Grouper Intestines Promotes the Intestinal Immune Response against NNV Infection. Life (Basel) 2021; 11:life11101053. [PMID: 34685424 PMCID: PMC8539657 DOI: 10.3390/life11101053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Epinephelus lanceolatus (giant grouper) is a high-value cultured species in the Asia-Pacific region. However, nervous necrosis virus (NNV) is an infectious viral disease that affects over 120 species of marine cultured species and causes high mortality, ranging from 90-100% in the grouper industry. Probiotics isolated from the intestines of healthy individuals have provided insight into novel approaches involved in the defense against viral pathogens. In this study, we isolated three strains of bacteria as candidate probiotics from healthy grouper intestines and a 28-day feeding trial was performed. At day 21, the nervous necrosis virus (NNV) challenge test was conducted for 7 days to evaluate the antiviral effect of candidate probiotics. The results showed that candidate probiotics could improve growth conditions, such as weight gain (WG) and specific growth rate (SGR), and increase the utilization of feed. Furthermore, the candidate probiotic mixture had the ability to protect against NNV, which could decrease the mortality rate by 100% in giant grouper after NNV challenge. Subsequently, we analyzed the mechanism of the candidate probiotic mixture's defense against NNV. A volcano plot revealed 203 (control vs. NNV), 126 (NNV vs. probiotics - NNV), and 5 (control vs. probiotics - NNV) differentially expressed transcripts in intestinal tissue. Moreover, principal components analysis (PCA) and cluster analysis heatmap showed large differences among the three groups. Functional pathway analysis showed that the candidate probiotic mixture could induce the innate and adaptive immunity of the host to defend against virus pathogens. Therefore, we hope that potential candidate probiotics could be successfully applied to the industry to achieve sustainable aquaculture.
Collapse
|
16
|
Mouden S, Bac-Molenaar JA, Kappers IF, Beerling EAM, Leiss KA. Elicitor Application in Strawberry Results in Long-Term Increase of Plant Resilience Without Yield Loss. FRONTIERS IN PLANT SCIENCE 2021; 12:695908. [PMID: 34276745 PMCID: PMC8282209 DOI: 10.3389/fpls.2021.695908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
For a first step integrating elicitor applications into the current IPM strategy increasing plant resilience against pests, we investigated repeated elicitor treatments in a strawberry everbearer nursery and cropping cycle under glass. During nursery methyl-jasmonate (MeJA), testing induction of defenses with plant bioassays was applied every 3 weeks. Thrips damage and reproduction by spider mites, whitefly and aphids were strongly reduced upon elicitor treatment. Subsequently, we applied MeJA every 3 weeks or based on scouting pests during a whole cropping cycle. Thrips leaf bioassays and LC-MS leaf metabolomics were applied to investigate the induction of defenses. Leaf damage by thrips was lower for both MeJA application schemes compared to the control except for the last weeks. While elicitor treatments after scouting also reduced damage, its effect did not last. Thrips damage decreased from vegetative to mature plants during the cropping cycle. At the end of the nursery phase, plants in the elicitor treatment were smaller. Surprisingly, growth during production was not affected by MeJA application, as were fruit yield and quality. LC-MS leaf metabolomics showed strong induction of vegetative plants decreasing during the maturation of plants toward the end of cultivation. Concurrently, no increase in the JA-inducible marker PPO was observed when measured toward the end of cultivation. Mostly flavonoid and phenolic glycosides known as plant defense compounds were induced upon MeJA application. While induced defense decreased with the maturation of plants, constitutive defense increased as measured in the leaf metabolome of control plants. Our data propose that young, relatively small plant stages lack constitutive defense necessitating an active JA defense response. As plants, mature constitutive defense metabolites seem to accumulate, providing a higher level of basal resistance. Our results have important implications for but are not limited to strawberry cultivation. We demonstrated that repeated elicitor application could be deployed as part of an integrated approach for sustainable crop protection by vertical integration with other management tactics and horizontal integration to control multiple pests concurrently. This approach forms a promising potential for long-term crop protection in greenhouses.
Collapse
Affiliation(s)
- Sanae Mouden
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| | - Johanna A. Bac-Molenaar
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Johanna A. Bac-Molenaar
| | - Iris F. Kappers
- Laboratory of Plant Physiology, Plant Science Group, Wageningen University, Wageningen, Netherlands
| | - Ellen A. M. Beerling
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| | - Kirsten A. Leiss
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
17
|
Hug S, Liu Y, Heiniger B, Bailly A, Ahrens CH, Eberl L, Pessi G. Differential Expression of Paraburkholderia phymatum Type VI Secretion Systems (T6SS) Suggests a Role of T6SS-b in Early Symbiotic Interaction. FRONTIERS IN PLANT SCIENCE 2021; 12:699590. [PMID: 34394152 PMCID: PMC8356804 DOI: 10.3389/fpls.2021.699590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 05/06/2023]
Abstract
Paraburkholderia phymatum STM815, a rhizobial strain of the Burkholderiaceae family, is able to nodulate a broad range of legumes including the agriculturally important Phaseolus vulgaris (common bean). P. phymatum harbors two type VI Secretion Systems (T6SS-b and T6SS-3) in its genome that contribute to its high interbacterial competitiveness in vitro and in infecting the roots of several legumes. In this study, we show that P. phymatum T6SS-b is found in the genomes of several soil-dwelling plant symbionts and that its expression is induced by the presence of citrate and is higher at 20/28°C compared to 37°C. Conversely, T6SS-3 shows homologies to T6SS clusters found in several pathogenic Burkholderia strains, is more prominently expressed with succinate during stationary phase and at 37°C. In addition, T6SS-b expression was activated in the presence of germinated seeds as well as in P. vulgaris and Mimosa pudica root nodules. Phenotypic analysis of selected deletion mutant strains suggested a role of T6SS-b in motility but not at later stages of the interaction with legumes. In contrast, the T6SS-3 mutant was not affected in any of the free-living and symbiotic phenotypes examined. Thus, P. phymatum T6SS-b is potentially important for the early infection step in the symbiosis with legumes.
Collapse
Affiliation(s)
- Sebastian Hug
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Heiniger
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christian H. Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- *Correspondence: Gabriella Pessi,
| |
Collapse
|