1
|
Habermann M, Strube A, Büchel C. How control modulates pain. Trends Cogn Sci 2025; 29:60-72. [PMID: 39462693 DOI: 10.1016/j.tics.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Pain, an indicator of potential tissue damage, ideally falls under individual control. Although previous work shows a trend towards reduced pain in contexts where pain is controllable, there is a large variability across studies that is probably related to different aspects of control. We therefore outline a taxonomy of different aspects of control relevant to pain, sketch how control over pain can be integrated into a Bayesian pain model, and suggest changes in expectations and their precision as potential mechanisms. We also highlight confounding cognitive factors, particularly predictability, that emphasize the necessity for careful experimental designs. Finally, we describe the neurobiological underpinnings of how control affects pain processing in studies using different types of control, and highlight the roles of the anterior insula, middle frontal gyrus (MFG), and anterior cingulate cortex (ACC).
Collapse
Affiliation(s)
- Marie Habermann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Andreas Strube
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Present Address: Center for Depression, Anxiety, and Stress Research, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Pacheco-Barrios K, Heemels RE, Martinez-Magallanes D, Daibes M, Naqui-Xicota C, Andrade M, Fregni F. Neural correlates of phantom motor execution: A functional neuroimaging systematic review and meta-analysis. Cortex 2024; 181:295-304. [PMID: 39341715 PMCID: PMC11611634 DOI: 10.1016/j.cortex.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024]
Abstract
Phantom motor execution (PME) shows promise as a new treatment for phantom limb pain (PLP) by inducing motor-related analgesia and retraining the pain network activation. However, the current understanding of the neural correlates underlying PME is limited. Databases were systematically searched for multimodal neuroimaging studies to explore the neural correlates of PME. A narrative synthesis (17 studies, n = 328) and coordinate-based meta-analysis were performed to identify activation commonalities. Contrasting PME-vs-REST revealed differential activation of the supplementary motor area (SMA), post-central gyrus, and dorsolateral superior frontal gyrus; while PME-vs-ME revealed differential activation of the right anterior insula, anterior cingulate, left amygdala, and right striatum. Further narrative synthesis revealed a positive correlation between PME-induced brain activity and PLP intensity, and a specific connectivity pattern during PME on the SMA-M1 network compared to ME and motor imagery. Our results suggest that the PME represents a distinct type of motor network activation, partially overlapping with ME and motor imagery activations but with special activation of interoceptive regulation and mood-related regions. Thus, confirming its potential as a therapeutic approach for PLP.
Collapse
Affiliation(s)
- Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru.
| | - Robin Emily Heemels
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Heverlee, Belgium
| | - Daniela Martinez-Magallanes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Marianna Daibes
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Cristina Naqui-Xicota
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Maria Andrade
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
3
|
Moffatt J, Finotti G, Tsakiris M. With hand on heart: A cardiac Rubber Hand Illusion. Biol Psychol 2024; 186:108756. [PMID: 38280444 DOI: 10.1016/j.biopsycho.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Body illusions such as the Rubber Hand Illusion (RHI) have highlighted how multisensory integration underpins the sense of one's own body. Much of this research has focused on senses arising from outside the body (e.g. vision and touch), but sensations from within the body may also play a role. In a pre-registered study, participants completed a cardiac variation of the RHI, where taps to the finger occurred in or out of time with the heartbeat. We replicated the RHI effect, showing that synchronous but not asynchronous taps to the real and rubber hand increased sensations of embodiment over the rubber hand and caused a shift in the perceived hand location. However, there were no significant influences of cardiac timing on embodiment, nor did it interact with visuo-tactile synchrony. An exploratory analysis found a three-way interaction between synchrony, cardiac timing and interoceptive accuracy as measured by a heartbeat counting task, such that greater interoceptive accuracy was associated with lower embodiment ratings in the systole condition compared to diastole, but only during synchronous stimulation. Although our novel methodology successfully replicated the RHI, our findings suggest that the cooccurence of vision and touch with cardiac signals may make little contribution to the sense of one's body.
Collapse
Affiliation(s)
- Jamie Moffatt
- Lab of Action & Body, Department of Psychology, Royal Holloway, University of London, UK.
| | - Gianluca Finotti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology, University of Bologna, Italy
| | - Manos Tsakiris
- Lab of Action & Body, Department of Psychology, Royal Holloway, University of London, UK
| |
Collapse
|
4
|
Castro F, Lenggenhager B, Zeller D, Pellegrino G, D'Alonzo M, Di Pino G. From rubber hands to neuroprosthetics: Neural correlates of embodiment. Neurosci Biobehav Rev 2023; 153:105351. [PMID: 37544389 PMCID: PMC10582798 DOI: 10.1016/j.neubiorev.2023.105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 07/10/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Our interaction with the world rests on the knowledge that we are a body in space and time, which can interact with the environment. This awareness is usually referred to as sense of embodiment. For the good part of the past 30 years, the rubber hand illusion (RHI) has been a prime tool to study embodiment in healthy and people with a variety of clinical conditions. In this paper, we provide a critical overview of this research with a focus on the RHI paradigm as a tool to study prothesis embodiment in individuals with amputation. The RHI relies on well-documented multisensory integration mechanisms based on sensory precision, where parietal areas are involved in resolving the visuo-tactile conflict, and premotor areas in updating the conscious bodily representation. This mechanism may be transferable to prosthesis ownership in amputees. We discuss how these results might transfer to technological development of sensorised prostheses, which in turn might progress the acceptability by users.
Collapse
Affiliation(s)
- Fabio Castro
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, via Alvaro del Portillo 5, 00128 Rome, Italy; Institute of Sport, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Bigna Lenggenhager
- Department of Psychology, Cognitive Psychology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany; Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050 Zurich, Switzerland
| | - Daniel Zeller
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Giovanni Pellegrino
- Epilepsy program, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Marco D'Alonzo
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, via Alvaro del Portillo 5, 00128 Rome, Italy.
| | - Giovanni Di Pino
- Neurophysiology and Neuroengineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, via Alvaro del Portillo 5, 00128 Rome, Italy
| |
Collapse
|
5
|
Svensson P, Malešević N, Wijk U, Björkman A, Antfolk C. The rubber hand illusion evaluated using different stimulation modalities. Front Neurosci 2023; 17:1237053. [PMID: 37781250 PMCID: PMC10536259 DOI: 10.3389/fnins.2023.1237053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Tactile feedback plays a vital role in inducing ownership and improving motor control of prosthetic hands. However, commercially available prosthetic hands typically do not provide tactile feedback and because of that the prosthetic user must rely on visual input to adjust the grip. The classical rubber hand illusion (RHI) where a brush is stroking the rubber hand, and the user's hidden hand synchronously can induce ownership of a rubber hand. In the classic RHI the stimulation is modality-matched, meaning that the stimulus on the real hand matches the stimulus on the rubber hand. The RHI has also been used in previous studies with a prosthetic hand as the "rubber hand," suggesting that a hand prosthesis can be incorporated within the amputee's body scheme. Interestingly, previous studies have shown that stimulation with a mismatched modality, where the rubber hand was brushed, and vibrations were felt on the hidden hand also induced the RHI. The aim of this study was to compare how well mechanotactile, vibrotactile, and electrotactile feedback induced the RHI in able-bodied participants and forearm amputees. 27 participants with intact hands and three transradial amputees took part in a modified RHI experiment. The rubber hand was stroked with a brush, and the participant's hidden hand/residual limb received stimulation with either brush stroking, electricity, pressure, or vibration. The three latter stimulations were modality mismatched with regard to the brushstroke. Participants were tested for ten different combinations (stimulation blocks) where the stimulations were applied on the volar (glabrous skin), and dorsal (hairy skin) sides of the hand. Outcome was assessed using two standard tests (questionnaire and proprioceptive drift). All types of stimulation induced RHI but electrical and vibration stimulation induced a stronger RHI than pressure. After completing more stimulation blocks, the proprioceptive drift test showed that the difference between pre- and post-test was reduced. This indicates that the illusion was drifting toward the rubber hand further into the session.
Collapse
Affiliation(s)
- Pamela Svensson
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Nebojša Malešević
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| | - Ulrika Wijk
- Department of Translational Medicine – Hand Surgery, Lund University and Skåne University Hospital, Malmö, Sweden
| | - Anders Björkman
- Department of Hand Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christian Antfolk
- Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Zbinden J, Lendaro E, Ortiz-Catalan M. A multi-dimensional framework for prosthetic embodiment: a perspective for translational research. J Neuroeng Rehabil 2022; 19:122. [PMID: 36369004 PMCID: PMC9652836 DOI: 10.1186/s12984-022-01102-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
The concept of embodiment has gained widespread popularity within prosthetics research. Embodiment has been claimed to be an indicator of the efficacy of sensory feedback and control strategies. Moreover, it has even been claimed to be necessary for prosthesis acceptance, albeit unfoundedly. Despite the popularity of the term, an actual consensus on how prosthetic embodiment should be used in an experimental framework has yet to be reached. The lack of consensus is in part due to terminological ambiguity and the lack of an exact definition of prosthetic embodiment itself. In a review published parallel to this article, we summarized the definitions of embodiment used in prosthetics literature and concluded that treating prosthetic embodiment as a combination of ownership and agency allows for embodiment to be quantified, and thus useful in translational research. Here, we review the potential mechanisms that give rise to ownership and agency considering temporal, spatial, and anatomical constraints. We then use this to propose a multi-dimensional framework where prosthetic embodiment arises within a spectrum dependent on the integration of volition and multi-sensory information as demanded by the degree of interaction with the environment. This framework allows for the different experimental paradigms on sensory feedback and prosthetic control to be placed in a common perspective. By considering that embodiment lays along a spectrum tied to the interactions with the environment, one can conclude that the embodiment of prosthetic devices should be assessed while operating in environments as close to daily life as possible for it to become relevant.
Collapse
|
7
|
Zbinden J, Lendaro E, Ortiz-Catalan M. Prosthetic embodiment: systematic review on definitions, measures, and experimental paradigms. J Neuroeng Rehabil 2022; 19:37. [PMID: 35346251 PMCID: PMC8962549 DOI: 10.1186/s12984-022-01006-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
The term embodiment has become omnipresent within prosthetics research and is often used as a metric of the progress made in prosthetic technologies, as well as a hallmark for user acceptance. However, despite the frequent use of the term, the concept of prosthetic embodiment is often left undefined or described incongruently, sometimes even within the same article. This terminological ambiguity complicates the comparison of studies using embodiment as a metric of success, which in turn hinders the advancement of prosthetics research. To resolve these terminological ambiguities, we systematically reviewed the used definitions of embodiment in the prosthetics literature. We performed a thematic analysis of the definitions and found that embodiment is often conceptualized in either of two frameworks based on body representations or experimental phenomenology. We concluded that treating prosthetic embodiment within an experimental phenomenological framework as the combination of ownership and agency allows for embodiment to be a quantifiable metric for use in translational research. To provide a common reference and guidance on how to best assess ownership and agency, we conducted a second systematic review, analyzing experiments and measures involving ownership and agency. Together, we highlight a pragmatic definition of prosthetic embodiment as the combination of ownership and agency, and in an accompanying article, we provide a perspective on a multi-dimensional framework for prosthetic embodiment. Here, we concluded by providing recommendations on metrics that allow for outcome comparisons between studies, thereby creating a common reference for further discussions within prosthetics research.
Collapse
Affiliation(s)
- Jan Zbinden
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Eva Lendaro
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Max Ortiz-Catalan
- Center for Bionics and Pain Research, Mölndal, Sweden.
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Operational Area 3, Sahlgrenska University Hospital, Gothenburg, Sweden.
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
8
|
Bliek A, Bekrater-Bodmann R, Beckerle P. Cognitive Models of Limb Embodiment in Structurally Varying Bodies: A Theoretical Perspective. Front Psychol 2021; 12:716976. [PMID: 35002827 PMCID: PMC8732998 DOI: 10.3389/fpsyg.2021.716976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Using the seminal rubber hand illusion and related paradigms, the last two decades unveiled the multisensory mechanisms underlying the sense of limb embodiment, that is, the cognitive integration of an artificial limb into one's body representation. Since also individuals with amputations can be induced to embody an artificial limb by multimodal sensory stimulation, it can be assumed that the involved computational mechanisms are universal and independent of the perceiver's physical integrity. This is anything but trivial, since experimentally induced embodiment has been related to the embodiment of prostheses in limb amputees, representing a crucial rehabilitative goal with clinical implications. However, until now there is no unified theoretical framework to explain limb embodiment in structurally varying bodies. In the present work, we suggest extensions of the existing Bayesian models on limb embodiment in normally-limbed persons in order to apply them to the specific situation in limb amputees lacking the limb as physical effector. We propose that adjusted weighting of included parameters of a unified modeling framework, rather than qualitatively different model structures for normally-limbed and amputated individuals, is capable of explaining embodiment in structurally varying bodies. Differences in the spatial representation of the close environment (peripersonal space) and the limb (phantom limb awareness) as well as sensorimotor learning processes associated with limb loss and the use of prostheses might be crucial modulators for embodiment of artificial limbs in individuals with limb amputation. We will discuss implications of our extended Bayesian model for basic research and clinical contexts.
Collapse
Affiliation(s)
- Adna Bliek
- Chair of Autonomous Systems and Mechatronics, Department of Electrical Engineering, Faculty of Engineering, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robin Bekrater-Bodmann
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Beckerle
- Chair of Autonomous Systems and Mechatronics, Department of Electrical Engineering, Faculty of Engineering, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Lang VA, Zbinden J, Wessberg J, Ortiz-Catalan M. Hand Temperature Is Not Consistent With Illusory Strength During the Rubber Hand Illusion. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1416-1418. [PMID: 34891550 DOI: 10.1109/embc46164.2021.9630200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rubber hand illusion is known to invoke a sense of ownership of a rubber hand when a person watches the stroking of the rubber hand in synchrony with their own hidden hand. Quantification of the sense of ownership is traditionally performed with the rubber hand illusion questionnaire, but the search for reliable physiological measurements persists. Skin temperature has been previously suggested and debated as a biomarker for ownership. We investigated hand temperature as a measure of rubber hand illusory strength via thermal imaging of the hand during the rubber hand experiment. No relationship was found between reported illusory strength and skin temperature.Clinical Relevance- Our results indicate that skin temperature is not a suitable biomarker for rubber hand illusory strength.
Collapse
|
10
|
Barresi G, Marinelli A, Caserta G, de Zambotti M, Tessadori J, Angioletti L, Boccardo N, Freddolini M, Mazzanti D, Deshpande N, Frigo CA, Balconi M, Gruppioni E, Laffranchi M, De Michieli L. Exploring the Embodiment of a Virtual Hand in a Spatially Augmented Respiratory Biofeedback Setting. Front Neurorobot 2021; 15:683653. [PMID: 34557082 PMCID: PMC8454775 DOI: 10.3389/fnbot.2021.683653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 07/26/2021] [Indexed: 01/15/2023] Open
Abstract
Enhancing the embodiment of artificial limbs-the individuals' feeling that a virtual or robotic limb is integrated in their own body scheme-is an impactful strategy for improving prosthetic technology acceptance and human-machine interaction. Most studies so far focused on visuo-tactile strategies to empower the embodiment processes. However, novel approaches could emerge from self-regulation techniques able to change the psychophysiological conditions of an individual. Accordingly, this pilot study investigates the effects of a self-regulated breathing exercise on the processes of body ownership underlying the embodiment of a virtual right hand within a Spatially Augmented Respiratory Biofeedback (SARB) setting. This investigation also aims at evaluating the feasibility of the breathing exercise enabled by a low-cost SARB implementation designed for upcoming remote studies (a need emerged during the COVID-19 pandemic). Twenty-two subjects without impairments, and two transradial prosthesis users for a preparatory test, were asked (in each condition of a within-group design) to maintain a normal (about 14 breaths/min) or slow (about 6 breaths/min) respiratory rate to keep a static virtual right hand "visible" on a screen. Meanwhile, a computer-generated sphere moved from left to right toward the virtual hand during each trial (1 min) of 16. If the participant's breathing rate was within the target (slow or normal) range, a visuo-tactile event was triggered by the sphere passing under the virtual hand (the subjects observed it shaking while they perceived a vibratory feedback generated by a smartphone). Our results-mainly based on questionnaire scores and proprioceptive drift-highlight that the slow breathing condition induced higher embodiment than the normal one. This preliminary study reveals the feasibility and potential of a novel psychophysiological training strategy to enhance the embodiment of artificial limbs. Future studies are needed to further investigate mechanisms, efficacy and generalizability of the SARB techniques in training a bionic limb embodiment.
Collapse
Affiliation(s)
- Giacinto Barresi
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Andrea Marinelli
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering, Università degli Studi di Genova, Genoa, Italy
| | - Giulia Caserta
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
- Movement Biomechanics and Motor Control Lab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - Jacopo Tessadori
- Visual Geometry and Modelling, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience, Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Nicolò Boccardo
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Marco Freddolini
- Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Dario Mazzanti
- Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Nikhil Deshpande
- Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Carlo Albino Frigo
- Movement Biomechanics and Motor Control Lab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience, Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Emanuele Gruppioni
- Centro Protesi INAIL, Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro, Bologna, Italy
| | | | | |
Collapse
|