1
|
Liang Y, Gao B, Zhang X, Yi H, Li J, Zhang W. Combined addition of γ-PGA and DCD facilitates phytoremediation of heavy metals and carbon sequestration: A field experiment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124746. [PMID: 40054352 DOI: 10.1016/j.jenvman.2025.124746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/18/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
A field study examined the impact of γ-polyglutamic acid (γ-PGA), both alone and in combination with dicyandiamide (DCD), on the phytoremediation of soil contaminated with Cd, Pb, and Zn. This study focused on the heavy metal (HM) accumulation, and soil CO2 and N2O emissions in Cosmos sulphureus and Pennisetum americanum × P. purpureum, and soil microbial communities. The findings indicated that the application of γ-PGA, either alone or in combination with DCD, increased plant yield and HM bioavailability in the soil, leading to improved HM uptake by plants. For P. americanum × P. purpureum, compared to CK treatment, the combined addition of γ-PGA and DCD increased the Cd, Pb, and Zn extraction by 131.4%, 80.6%, and 99.7%, respectively. Compared to γ-PGA alone, the combined addition of γ-PGA and DCD reduced the soil N2O emission and global warming potential by 26.4% and 39.1%, respectively. P. americanum × P. purpureum treated with γ-PGA and DCD achieved C sequestration of 829 kg ha-1. Moreover, the application of γ-PGA, alone or in combination with DCD, increased the abundance of soil microbes. Bacteria (Proteobacteria, Actinobacteriota, and Firmicutes) as well as fungi (Basidiomycota and Mortierellomycota) contributed to HM accumulation and resistance to stress by altering soil enzyme activities, C and N fractions. Additionally, Acidobacteriota and Patescibacteria are beneficial to reducing soil GHG emissions and GWP in P. americanum × P. purpureum soil treated with γ-PGA and DCD. In conclusion, P. americanum × P. purpureum with the combined addition of γ-PGA and DCD increased HM extraction and total C sequestration in the plant-soil system. This approach offers a scientific basis and promising approach for integrating phytoremediation with C sequestration.
Collapse
Affiliation(s)
- Yexi Liang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Bo Gao
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin, 541004, China; College of Plant and Ecological Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xingfeng Zhang
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China.
| | - Haifeng Yi
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Junjiang Li
- College of Environmental Science and Engineering, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin, 541004, China
| | - Wenying Zhang
- College of Tourism & Landscape Architecture, Guilin University of Technology, Guilin, 541004, China; College of Plant and Ecological Engineering, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
2
|
Shu Y, Xie S, Fan H, Duan C, Liu Y, Chen Z. Tea cultivation: facilitating soil organic carbon accumulation and altering soil bacterial community-Leishan County, Guizhou Province, Southwest China. PeerJ 2025; 13:e18683. [PMID: 39872034 PMCID: PMC11771302 DOI: 10.7717/peerj.18683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/19/2024] [Indexed: 01/29/2025] Open
Abstract
Background Camellia sinensis is an important cash crop in southwestern China, with soil organic carbon playing a vital role in soil fertility, and microorganisms contributing significantly to nutrient cycling, thus both of them influencing tea tree growth and development. However, existing studies primarily focus on soil organic carbon, neglecting carbon fractions, and the relationship between soil organic carbon fractions and microbial communities is unclear. Consequently, this study aims to clarify the impact of different tea planting durations on soil organic carbon fractions and microbial communities and identify the main factors influencing microbial communities. It provides a theoretical basis for soil quality evaluation in the study area and scientific guidance for tea plantation management, thus fostering the region's economic sustainability. Methods This study selected tea plantations with different tea planting durations of 3-5 years (Y5), 12-16 years (Y15), 18-22 years (Y20), 40-42 years (Y40), and 48-50 years (Y50), as research subjects and adjacent uncultivated forest without a history of tea planting (CK) served as controls. Soil organic carbon (SOC), particulate organic carbon (POC), easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), microbial biomass carbon (MBC), and bacterial diversity were measured in the 0-20 cm and 20-40 cm soil layers, respectively. Results Compared to the adjacent uncultivated forest (CK), the soil organic carbon (SOC), easily oxidizable carbon (EOC), particulate organic carbon (POC), and dissolved organic carbon (DOC) contents in a 40-year tea plantation significantly increased. Nonetheless, the microbial biomass carbon (MBC) content notably decreased. POC/SOC ratios rose with prolonged planting, signifying enhanced conversion of organic carbon into particulate forms. Bacterial community diversity peaked at 15 years and declined by 40 years post-planting and after tea planting dominated by Acidobacteriota, Chloroflexi, Proteobacteria, and Actinobacteriota in the tea garden. FAPROTAX analysis highlighted aerobic and anaerobic chemoheterotrophy, cellulolysis, and nitrogen fixation as key bacterial functions. POC and MBC significantly influenced bacterial community structure. In conclusion, tea plantation soil exhibited the highest organic carbon content at 40 years of tea planting, indicating strong carbon accumulation capacity. However, soil acidification in the tea plantation may affect changes in organic carbon and bacterial community. Therefore, in the tea planting process, it is necessary to improve the management system of tea plantations to ensure the maintenance of a good ecological environment in the tea plantation soil, thus achieving sustainable development of the tea industry in the region.
Collapse
Affiliation(s)
- Yingge Shu
- College of Agronomy, Guizhou University, Guiyang, Guizhou, China
| | - Shan Xie
- College of Agronomy, Guizhou University, Guiyang, Guizhou, China
| | - Hong Fan
- College of Agronomy, Guizhou University, Guiyang, Guizhou, China
| | - Chun Duan
- College of Agronomy, Guizhou University, Guiyang, Guizhou, China
| | - Yuansheng Liu
- College of Agronomy, Guizhou University, Guiyang, Guizhou, China
| | - Zuyong Chen
- College of Agronomy, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Eaton WD, Hamilton DA. Increasing Ages of Inga punctata Tree Soils Facilitate Greater Fungal Community Abundance and Successional Development, and Efficiency of Microbial Organic Carbon Utilization. Microorganisms 2024; 12:1996. [PMID: 39458304 PMCID: PMC11509470 DOI: 10.3390/microorganisms12101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Leguminous Inga trees are thought to enhance soil carbon (C) accumulation following reforestation, through mostly unknown mechanisms. This study amplified soil DNA using the ITS1F and ITS4 primers for PCR and Illumina MiSeq methods to identify fungal taxa, and traditional C analysis methods to evaluate how planted 4-, 8-, and 11-year-old Inga punctata trees affected soil fungal community compositions and C utilization patterns compared to old-growth I. punctata trees and an adjacent unplanted pasture within the same reforestation zone in Monteverde, Costa Rica. Along the tree age gradient, the planted I. punctata trees enhanced the tree soil C capture capacity, as indicated by increased levels of soil biomass C, Respiration, and efficiency of organic C use (with lower qCO2 values), and development of increasingly more abundant, stable, and successionally developed fungal communities, including those associated with the decomposition of complex organic C compounds. The level and strength of differences coincided with differences in the time of separation between the pasture and tree age or between the different tree ages. Fungal taxa were also identified as potential indicators of the early and late stages of soil recovery. Thus, planting I. punctata should be part of future reforestation strategies used in this region of the Monteverde Cloud Forest in Costa Rica.
Collapse
Affiliation(s)
- William D. Eaton
- Biology Department, Dyson College, Pace University, New York, NY 10038, USA
- Department of Environment and Development, University for Peace, El Rodeo de Mora, San José 10701, Costa Rica
| | - Debra A. Hamilton
- Vermont Cooperative Fish and Wildlife Research Unit, Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA;
- Monteverde Institute, Monteverde, Puntarenas 60109, Costa Rica
| |
Collapse
|
4
|
Tariq A, Ullah A, Graciano C, Zeng F, Gao Y, Sardans J, Hughes AC, Zhang Z, Peñuelas J. Combining different species in restoration is not always the right decision: Monocultures can provide higher ecological functions than intercropping in a desert ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120807. [PMID: 38569266 DOI: 10.1016/j.jenvman.2024.120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Vegetation restoration in deserts is challenging due to these ecosystems' inherent fragility and harsh environmental conditions. One approach for active restoration involves planting native species, which can accelerate the recovery of ecosystem functions. To ensure the effectiveness of this process, carefully selecting species for planting is crucial. Generally, it is expected that a more diverse mix of species in the plantation will lead to the recovery of a greater number of ecosystem functions, especially when the selected species have complementary niche traits that facilitate maximum cooperation and minimize competition among them. In this study, we evaluated the planting of two native species from the hyper-desert of Taklamakan, China, which exhibit marked morpho-physiological differences: a phreatophytic legume (Alhagi sparsifolia) and a halophytic non-legume (Karelinia caspia). These species were grown in both monoculture and intercrop communities. Monoculture of the legume resulted in the highest biomass accumulation. Intercropping improved several ecosystem functions in the 50 cm-upper soil, particularly those related to phosphorus (P), carbon (C), and sulfur (S) concentrations, as well as soil enzyme activities. However, it also increased soil sodium (Na+) concentration and pH. Halophyte monocultures enhanced ecological functions associated with nitrogen concentrations in the upper soil and with P, S, C, and cation concentrations (K+, Ca2+, Mg2+, Cu2+, Fe2+, Zn2+, Co2+, Ni2+), along with enzyme activities in the deep soil. It also maximized Na+ accumulation in plant biomass. In summary, we recommend legume monoculture when the primary goal is to optimize biomass accumulation. Conversely, halophyte monoculture is advisable when the objective is to extract sodium from the soil or enhance ecosystem functions in the deep soil. Intercropping the two species is recommended to maximize the ecosystem functions of the upper soil, provided there is no salinization risk. When planning restoration efforts in desert regions, it is essential to understand the impact of each species on ecosystem function and how complementary species behave when intercropped. However, these interactions are likely species- and system-specific, highlighting the need for more work to optimize solutions for different arid ecosystems.
Collapse
Affiliation(s)
- Akash Tariq
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola Del Vallès, 08193, Catalonia, Spain.
| | - Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Corina Graciano
- Instituto de Fisiología Vegetal, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de La Plata 1900, Buenos Aires, Argentina
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yanju Gao
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola Del Vallès, 08193, Catalonia, Spain
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong, 852, China
| | - Zhihao Zhang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193, Barcelona, Catalonia, Spain; CREAF, Cerdanyola Del Vallès, 08193, Catalonia, Spain
| |
Collapse
|
5
|
Dou W, Xiao B, Revillini D, Delgado-Baquerizo M. Biocrusts enhance soil organic carbon stability and regulate the fate of new-input carbon in semiarid desert ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170794. [PMID: 38336052 DOI: 10.1016/j.scitotenv.2024.170794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Given their global prevalence, dryland (including hyperarid, arid, semiarid, and dry subhumid regions) ecosystems are critical for supporting soil organic carbon (SOC) stocks, with even small changes in such SOC pools affecting the global carbon (C) cycling. Biocrusts play an essential role in supporting C cycling in semiarid ecosystems. However, the influence of biocrusts and their successional stages on SOC and its fraction contents, as well as their role in regulating new input C into SOC fractions remain largely unknown. In this study, we collected continuous samples of bare soil (BS) and three successional stages of biocrust soils (cyanobacterial (CC), low-cover moss (LM), and high-cover moss (HM)) at 0-5 cm depth every month for one year in a semiarid desert ecosystem. We analyzed SOC changes among the samples and their fraction contents including: labile organic C (LOC) (composed of microbial biomass C (MBC), dissolved organic C (DOC), and easily oxidized organic C (EOC)) and recalcitrant organic C (ROC) fractions, soil nutrient content including: ammonium (NH4+-N), nitrate (NO3--N), and available phosphorus (AP), and soil temperature and moisture. We also conducted a 13C pulse-labelling experiment in the field to accurately quantify the effects of biocrust successional stage on exogenous C allocation to SOC fractions. Our results showed that the three successional stages of biocrust (CC-LM-HM) increased SOC and ROC contents by an average of 5.3 ± 3.6 g kg-1 and 4.0 ± 3.0 g kg-1, respectively; and the MBC, DOC, and EOC contents increased by an average of 41.7 ± 24.8 mg kg-1, 28.7 ± 12.6 mg kg-1, and 1.2 ± 0.6 g kg-1, respectively, compared to that of BS. These increases were attributed to an increase in photosynthetic pigment content, higher nutrient levels, and more suitable microclimates (e.g., higher moisture and more moderate temperature) during biocrust succession. More importantly, SOC stability was greatly improved with biocrust succession from cyanobacteria to moss, as evidenced by the reduction in soil EOC:SOC and EOC:ROC ratios by an average of 50 ± 34 % and 99 ± 67 %, respectively, while the ROC:SOC ratio increased by 33 ± 16 % with biocrust succession compared to those of BS. The biocrust SOC, DOC, and MBC 13C contents at different stages were on average 0.096 ± 0.034 mg kg-1, 0.010 ± 0.005 mg kg-1, and 0.014 ± 0.005 mg kg-1 higher than those of BS. Similarly, the allocation of new-input C among the DOC and MBC at different biocrust stages (19 ± 10 %) was significantly higher than that of BS (9 ± 6 %). New-input C into the biocrusts was fixed by microbes (43 ± 18 %) within ∼10 days and converted into other forms of C (85 ± 5 %) after 80 days. Our study provides a new perspective on how biocrusts support C cycling in semiarid desert ecosystems by mediating new C inputs into diverse fractional contents, and highlights the significance of biocrust successional stages in maintaining soil C stocks and stability in the dryland soil system.
Collapse
Affiliation(s)
- Weiqiang Dou
- Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bo Xiao
- Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, College of Land Science and Technology, China Agricultural University, Beijing 100193, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan 750021, China.
| | - Daniel Revillini
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville 41013, Spain
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville 41013, Spain
| |
Collapse
|
6
|
Daunoras J, Kačergius A, Gudiukaitė R. Role of Soil Microbiota Enzymes in Soil Health and Activity Changes Depending on Climate Change and the Type of Soil Ecosystem. BIOLOGY 2024; 13:85. [PMID: 38392304 PMCID: PMC10886310 DOI: 10.3390/biology13020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
The extracellular enzymes secreted by soil microorganisms play a pivotal role in the decomposition of organic matter and the global cycles of carbon (C), phosphorus (P), and nitrogen (N), also serving as indicators of soil health and fertility. Current research is extensively analyzing these microbial populations and enzyme activities in diverse soil ecosystems and climatic regions, such as forests, grasslands, tropics, arctic regions and deserts. Climate change, global warming, and intensive agriculture are altering soil enzyme activities. Yet, few reviews have thoroughly explored the key enzymes required for soil fertility and the effects of abiotic factors on their functionality. A comprehensive review is thus essential to better understand the role of soil microbial enzymes in C, P, and N cycles, and their response to climate changes, soil ecosystems, organic farming, and fertilization. Studies indicate that the soil temperature, moisture, water content, pH, substrate availability, and average annual temperature and precipitation significantly impact enzyme activities. Additionally, climate change has shown ambiguous effects on these activities, causing both reductions and enhancements in enzyme catalytic functions.
Collapse
Affiliation(s)
- Jokūbas Daunoras
- Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257 Vilnius, Lithuania
| | - Audrius Kačergius
- Lithuanian Research Centre for Agriculture and Forestry, Kedainiai Distr., LT-58344 Akademija, Lithuania
| | - Renata Gudiukaitė
- Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
7
|
Shu X, Liu W, Hu Y, Xia L, Fan K, Zhang Y, Zhang Y, Zhou W. Ecosystem multifunctionality and soil microbial communities in response to ecological restoration in an alpine degraded grassland. FRONTIERS IN PLANT SCIENCE 2023; 14:1173962. [PMID: 37593047 PMCID: PMC10431941 DOI: 10.3389/fpls.2023.1173962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
Linkages between microbial communities and multiple ecosystem functions are context-dependent. However, the impacts of different restoration measures on microbial communities and ecosystem functioning remain unclear. Here, a 14-year long-term experiment was conducted using three restoration modes: planting mixed grasses (MG), planting shrub with Salix cupularis alone (SA), and planting shrub with Salix cupularis plus planting mixed grasses (SG), with an extremely degraded grassland serving as the control (CK). Our objective was to investigate how ecosystem multifunctionality and microbial communities (diversity, composition, and co-occurrence networks) respond to different restoration modes. Our results indicated that most of individual functions (i.e., soil nutrient contents, enzyme activities, and microbial biomass) in the SG treatment were significantly higher than in the CK treatment, and even higher than MG and SA treatments. Compared with the CK treatment, treatments MG, SA, and SG significantly increased the multifunctionality index on average by 0.57, 0.23 and 0.76, respectively. Random forest modeling showed that the alpha-diversity and composition of bacterial communities, rather than fungal communities, drove the ecosystem multifunctionality. Moreover, we found that both the MG and SG treatments significantly improved bacterial network stability, which exhabited stronger correlations with ecosystem multifunctionality compared to fungal network stability. In summary, this study demonstrates that planting shrub and grasses altogether is a promising restoration mode that can enhance ecosystem multifunctionality and improve microbial diversity and stability in the alpine degraded grassland.
Collapse
Affiliation(s)
- Xiangyang Shu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Weijia Liu
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, China
| | - Yufu Hu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Longlong Xia
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Kunkun Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yulin Zhang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Liu S, Wu J, Li G, Yang C, Yuan J, Xie M. Seasonal freeze-thaw characteristics of soil carbon pools under different vegetation restoration types on the Longzhong Loess Plateau. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1019627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Soil carbon pools are important for maintaining the stability of the carbon cycle in terrestrial ecosystems and regulating climate change. However, it is not clear how soil carbon pools change under different vegetation restoration types at high altitudes during frequent seasonal freeze-thaws (FTs). Therefore, we studied the seasonal FT variability (before freezing, early stages of freezing, stable freeze stage, thawing stage) of soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidized organic carbon (EOC) under three vegetation restoration types (Grassland, GL; Caragana korshinskii, CK; Xanthoceras sorbifolia, XS) on the Longzhong Loess Plateau region. We found that during the seasonal FT, the 0–40 cm SOC, MBC, DOC, and EOC contents were higher in XS vegetation than in GL and CK vegetation, but the sensitivity index of SOC was lower in XS vegetation (sensitivity index = 2.79 to 9.91). In the 0–40 cm soil layer, the seasonal FT process reduced the MBC content and increased the DOC content in the three vegetation soils. Meanwhile, DOC and EOC contents accumulated obviously in the stable freezing period and decreased significantly in the thawing period. We also found that the SOC, MBC, DOC, and EOC contents were higher in the surface soils (0–10 cm) than in the underlying soils (10–20 and 20–40 cm), while the sensitivity of the soil carbon pool fractions to seasonal FT processes differed considerably between soil depths. Redundancy analysis (RDA) showed that soil total nitrogen, temperature, total phosphorus, and soil water content were important environmental factors influencing soil carbon pool fractions during seasonal FT. This study suggested that in the Longzhong Loess Plateau region, soil MBC and DOC were more susceptible to seasonal FT phenomena and that the soil system of the Xanthoceras sorbifolia vegetation had a stronger soil C sequestration function during the seasonal FT process.
Collapse
|
9
|
Driving Factors of Microbial Community Abundance and Structure in Typical Forest Soils of Sanjiang Plain, Northeast China. SUSTAINABILITY 2022. [DOI: 10.3390/su14138040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Until recently, a comprehensive evaluation of the environmental drivers on the abundance and structure of the microbial community in typical forest soils has not been thoroughly conducted. In this study, the typical forest soils (Mongolian oak (Quercus mongolica) soil, MOS; white birch (Betula platyphylla) soil, WBS; and white poplar (Populus davidiana) soil, WPS) in the Sanjiang Plain were selected to ascertain the differences and the major environmental factors driving soil microbial community abundance and structure. Results indicated that differences existed in the abundance and structure of the bacterial, archaeal, and fungal community. Co-occurrence network analysis showed that the bacterial and fungal networks were more complex than those of archaeal networks. Unclassified Acidobacteria and unclassified Pyrinomonadaceae were the keystone taxa in the bacterial networks, while Pleotrichocladium and Leotia were the keystone taxa in the fungal networks. Among all environmental factors, pH, SOM, and total N exhibited dominant roles in affecting the abundance of bacteria, archaea, and fungi. The redundancy analysis (RDA) showed that pH was the vital environmental factor responsible for driving the structure of the bacterial, archaeal, and fungal community.
Collapse
|
10
|
Hu Y, Jiang H, Chen Y, Wang Z, Yan Y, Sun P, Lu X. Nitrogen addition altered the microbial functional potentials of carbon and nitrogen transformation in alpine steppe soils on the Tibetan Plateau. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Wu J, Wang H, Li G, Wu J, Ma W. Vertical and seasonal changes in soil carbon pools to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau. Sci Rep 2021; 11:12268. [PMID: 34112825 PMCID: PMC8192520 DOI: 10.1038/s41598-021-90543-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Wet meadows provide opportunities to decrease carbon dioxide (CO2) and methane (CH4) released into the atmosphere by increasing the soil organic carbon (SOC) stored in wetland systems. Although wet meadows serve as the most important and stable C sinks, there has been very few investigations on the seasonal distributions of SOC fractions in high-altitude wet meadows. Here, we studied the effects of four vegetation degradation levels, non-degraded (ND), lightly degraded (LD), moderately degraded (MD), and heavily degraded (HD), on the measured vertical and seasonal changes of SOC and its different fractions. Among these vegetation degradation levels, 0-10 and 10-20 cm soil depths in ND plots had significantly higher SOC contents than the other degradation levels had throughout the year. This is attributed to the relatively greater inputs of aboveground plant litter and richer fine-root biomass in ND plots. Particulate organic carbon (POC) and light fraction organic carbon (LFOC) showed similar vertical and seasonal variations in autumn, reaching a minimum. Moreover, microbial biomass (MBC) and easily oxidizable organic carbon (EOC) contents were highest in summer and the smallest in winter, while dissolved organic carbon (DOC) content was highest in spring and lowest in summer, and were mainly concentrated in the 0-20 cm layer. Pearson correlation analysis indicated that soil properties and aboveground biomass were significantly related to different SOC fractions. The results indicate that vegetation degradation reduces the accumulation of total SOC and its different fractions, which may reduce carbon sink capacity and soil quality of alpine wet meadows, and increase atmospheric environmental pressure. In addition, vegetation biomass and soil characteristics play a key role in the formation and transformation of soil carbon. These results strengthen our understanding of soil C dynamics, specifically related to the different C fractions as affected by vegetation degradation levels and soil depth, in wet meadow systems.
Collapse
Affiliation(s)
- Jiangqi Wu
- grid.411734.40000 0004 1798 5176College of Forestry, Gansu Agricultural University, Lanzhou, 730070 China
| | - Haiyan Wang
- grid.411734.40000 0004 1798 5176College of Forestry, Gansu Agricultural University, Lanzhou, 730070 China
| | - Guang Li
- grid.411734.40000 0004 1798 5176College of Forestry, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jianghua Wu
- grid.25055.370000 0000 9130 6822School of Science and the Environment, Memorial University of Newfoundland, 20 University Drive, Corner Brook, NL A2H 5G4 Canada
| | - Weiwei Ma
- grid.411734.40000 0004 1798 5176College of Forestry, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|