1
|
Rohrs EC, Reynolds S, Dres M. Diaphragm neurostimulation in mechanical ventilation: current status and future prospects. Expert Rev Med Devices 2025:1-9. [PMID: 40366956 DOI: 10.1080/17434440.2025.2504454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/18/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
INTRODUCTION Diaphragm neurostimulation is a muscle stimulation technique that, through electrodes placed directly on or at the vicinity of the phrenic nerves, induces diaphragm contractions independently of the patient's cooperation. Recently, the technical development of temporary diaphragm neurostimulation devices has paved the way for a new era in the management of critically ill patients. AREAS COVERED In this review, we describe the latest technical developments in diaphragm neurostimulation and its physiological effects. We searched MEDLINE of experimental and clinical studies in English language published from database inception until 31 October 2024. We also discuss the advances in terms of patients centered outcomes and the key areas for improvement. Lastly, we introduce possible future directions and the novel improvements in patient care. EXPERT OPINION The research on diaphragm neurostimulation promise as an emerging intervention which addresses common complications associated with mechanical ventilation. Large-scale clinical trials are necessary to validate diaphragm neurostimulation efficacy and safety in humans, establish treatment protocols, and determine cost-effectiveness, all of which are essential for diaphragm neurostimulation to be widely accepted in clinical practice.
Collapse
Affiliation(s)
- Elizabeth C Rohrs
- Biomedical, Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
- Royal Columbian Hospital, Critical Care, Fraser Health Authority, New Westminster, Canada
| | - Steven Reynolds
- Biomedical, Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
- Royal Columbian Hospital, Critical Care, Fraser Health Authority, New Westminster, Canada
| | - Martin Dres
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, Paris, France
- AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière, Service de Médecine Intensive - Réanimation (Département "R3S"), Paris, France
| |
Collapse
|
2
|
Ghazvineh S, Mooziri M, Salimi A, Mirnajafi-Zadeh J, Raoufy MR. Olfactory epithelium electrical stimulation mitigates memory and synaptic deficits caused by mechanical ventilation. Sci Rep 2025; 15:12197. [PMID: 40204831 PMCID: PMC11982190 DOI: 10.1038/s41598-025-96661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Mechanical ventilation (MV) causes a wide range of cognitive impairments. Unfortunately, to date, we are lacking knowledge about its underlying neural mechanisms and significant treatment options for the condition. Here, we show that MV-induced memory impairment in rats stems from dysfunctions in the olfactory bulb-medial prefrontal cortex-ventral hippocampus network and hippocampal synaptic currents imbalance. More importantly, we introduce a novel treatment approach, namely olfactory epithelium electrical stimulation (OEES) that shows promising preclinical results in mitigating the mentioned behavioral and neural disorders caused by MV. These results pave the way for research on non-invasive brain stimulation approaches and introduce the olfactory system as a potential target for treating cognitive or psychiatric disorders induced by MV.
Collapse
Affiliation(s)
- Sepideh Ghazvineh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Morteza Mooziri
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alireza Salimi
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Institute for Brain and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Institute for Brain and Cognition, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Regan K, Castle L, LeBourdais R, Kobayter A, Shi L, Wangsrikhun W, Grifno G, Banerji R, Batgidis A, Suki B, Nia HT. Micromechanics of lung capillaries across mouse lifespan and in positive- vs negative-pressure ventilation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.641015. [PMID: 40093157 PMCID: PMC11908188 DOI: 10.1101/2025.03.02.641015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The lung undergoes continuous remodeling throughout normal development and aging, including changes to alveolar and capillary structure and function. While histological methods allow static analysis of these age-related changes, characterizing the changes that occur in response to mechanical stimuli remains difficult, particularly over a dynamic, physiologically relevant range in a functioning lung. Alveolar and capillary distension - the change in diameter of alveoli and capillaries, respectively, in response to pressure changes - is one such process, where dynamically controlling and monitoring the diameter of the same capillary or alveolus is essential to infer its mechanical properties. We overcome these limitations by utilizing the recently developed crystal ribcage to image the alveoli and vasculature of a functional mouse lung across the lifespan in postnatal (6-7 days), young adult (12-18 weeks), and aged (20+ months) mice. Using a range of biologically relevant vascular (0-15 cmH2O) and transpulmonary (3-12 cmH2O) pressures, we directly quantify vascular and alveolar distention in the functional lung as we precisely adjust pulmonary pressures. Our results show differences in age-related alveolar and vascular distensibility: when we increase transpulmonary alveolar or vascular pressure, vessels in postnatal lungs expand less and undergo less radial and axial strain, under each respective pressure type, suggesting stiffer capillaries than in older lungs. However, while vessels in young adult and aged lungs respond similarly to variations in vascular pressure, differences in elasticity start to emerge at the alveolar scale in response to transpulmonary alveolar pressure changes. Our results further indicate that differing effects of ventilation mode (i.e., positive vs negative) present themselves at the capillary level, with vessels under positive pressure undergoing more compression than when under negative-pressure conditions. These findings contribute both to the understanding of the functional changes that occur within the lung across the lifespan, as well as to the debate of ventilation effects on lung microphysiology.
Collapse
Affiliation(s)
- Kathryn Regan
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Lauren Castle
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Robert LeBourdais
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | | | - Linzheng Shi
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Winita Wangsrikhun
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Gabrielle Grifno
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Rohin Banerji
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | | | - Belá Suki
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| | - Hadi T Nia
- Department of Biomedical Engineering, Boston University, Boston MA 02215
| |
Collapse
|
4
|
Bassi T, Rohrs E E, Parfait M, Hannigan BC, Reynolds S, Mayaux J, Decavèle M, Herrero J, Demoule A, Similowski T, Dres M. Restoring brain connectivity by phrenic nerve stimulation in sedated and mechanically ventilated patients. COMMUNICATIONS MEDICINE 2024; 4:235. [PMID: 39558091 PMCID: PMC11574298 DOI: 10.1038/s43856-024-00662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND In critically ill patients, deep sedation and mechanical ventilation suppress the brain-diaphragm-lung axis and are associated with cognitive issues in survivors. METHODS This exploratory crossover design study investigates whether phrenic nerve stimulation can enhance brain activity and connectivity in six deeply sedated, mechanically ventilated patients with acute respiratory distress syndrome. RESULTS Our findings indicate that adding phrenic stimulation on top of invasive mechanical ventilation in deeply sedated, critically ill, moderate acute respiratory distress syndrome patients increases cortical activity, connectivity, and synchronization in the frontal-temporal-parietal cortices. CONCLUSIONS Adding phrenic stimulation on top of invasive mechanical ventilation in deeply sedated, critically ill, moderate acute respiratory distress syndrome patients increases cortical activity, connectivity, and synchronization. The observed changes resemble those during diaphragmatic breathing in awake humans. These results suggest that phrenic nerve stimulation has the potential to restore the brain-diaphragm-lung crosstalk when it has been shut down or impaired by mechanical ventilation and sedation. Further research should evaluate the clinical significance of these results.
Collapse
Affiliation(s)
- Thiago Bassi
- Lungpacer Medical Inc., Vancouver, BC, Canada.
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.
| | - Elizabeth Rohrs E
- Advancing Innovation in Medicine Institute, New Westminster, BC, Canada
| | - Melodie Parfait
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière- Service de Médecine Intensive et Réanimation, Paris, France
| | - Brett C Hannigan
- ETH Zurich, Department of Health Sciences and Technology, Zurich, Switzerland
| | - Steven Reynolds
- Advancing Innovation in Medicine Institute, New Westminster, BC, Canada
| | - Julien Mayaux
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière- Service de Médecine Intensive et Réanimation, Paris, France
| | - Maxens Decavèle
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière- Service de Médecine Intensive et Réanimation, Paris, France
| | - Jose Herrero
- The Feinstein Institutes for Medical Research, Northwell Health, New York, NY, 11030, USA
- Hofstra Northwell School of Medicine, New York, NY, 11549, USA
| | - Alexandre Demoule
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière- Service de Médecine Intensive et Réanimation, Paris, France
| | - Thomas Similowski
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière- (Département "R3S"), F-75013, Paris, France
| | - Martin Dres
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie respiratoire expérimentale et clinique, AP-HP. Sorbonne Université, Hôpital Pitié-Salpêtrière- Service de Médecine Intensive et Réanimation, Paris, France.
| |
Collapse
|
5
|
Rohrs EC, Fernandez KC, Bassi TG, Nicholas M, Wittmann J, Ornowska M, Gani M, Dakin I, Reynolds SC. Transvenous phrenic nerve stimulation reduces diaphragm injury during controlled mechanical ventilation in a preclinical model of ARDS. J Appl Physiol (1985) 2024; 137:1175-1181. [PMID: 39262337 PMCID: PMC11573254 DOI: 10.1152/japplphysiol.00884.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/11/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Patients with acute respiratory distress syndrome (ARDS) require periods of deep sedation and mechanical ventilation, leading to diaphragm dysfunction. Our study seeks to determine whether the combination of temporary transvenous diaphragm neurostimulation (TTDN) and mechanical ventilation changes the degree of diaphragm injury and cytokines concentration in a preclinical ARDS model. Moderate ARDS was induced in pigs using oleic acid, followed by ventilation for 12 h post-injury with volume-control at 8 mL/kg, positive end-expiratory pressure (PEEP) 5 cmH2O, respiratory rate and [Formula: see text] set to achieve normal arterial blood gases. Two groups received TTDN: every second breath (MV + TTDN50%, n = 6) or every breath (MV + TTDN100%, n = 6). One group received ventilation only (MV, n = 6). Full-thickness diaphragm and quadricep muscle biopsies were taken at study end. Samples were fixed and stained with hematoxylin and eosin and a point-counting technique was applied to calculate abnormal muscle area fraction. Cytokine concentrations were measured in homogenized tissue using porcine-specific enzyme-linked immunosorbent assay (ELISA) and compared with serum samples. Percentage of abnormal diaphragm tissue was different between MV [8.1% (6.0-8.8)] versus MV + TTDN50% [3.4% (2.1-4.8)], P = 0.010 and MV versus MV + TTDN100% [3.1% (2.5-4.0)], P = 0.005. Percentage of abnormal quadriceps tissue was not different between groups. Cytokine concentration patterns in diaphragm samples were different between all groups (P < 0.001) and the interaction between TTDN application and resultant cytokine concentration pattern was significant (P = 0.025). TTDN, delivered in synchrony with mechanical ventilation, mitigated diaphragm injury, as evidenced by less abnormal tissue in the diaphragm samples, in pigs with oleic acid-induced ARDS and is an exciting tool for lung and diaphragm-protective ventilation.NEW & NOTEWORTHY This study adds to our understanding of applying transvenous diaphragm neurostimulation synchronously with mechanical ventilation by examining its effects on diaphragm muscle injury and cytokine concentration patterns in pigs with acute respiratory distress syndrome (ARDS). We observed that using this therapy for 12 h post lung injury mitigated ventilator-induced diaphragm injury and changed the pattern of cytokine concentration measured in diaphragm tissue. These findings suggest that transvenous diaphragm neurostimulation is an exciting tool for lung and diaphragm protective ventilation.
Collapse
Affiliation(s)
- Elizabeth C Rohrs
- Simon Fraser University, Burnaby, British Columbia, Canada
- RCHF Advancing Innovation in Medicine Institute, New Westminster, British Columbia, Canada
| | | | - Thiago G Bassi
- Simon Fraser University, Burnaby, British Columbia, Canada
- Lungpacer Medical USA, Inc., Exton, Pennsylvania, United States
| | | | - Jessica Wittmann
- RCHF Advancing Innovation in Medicine Institute, New Westminster, British Columbia, Canada
| | - Marlena Ornowska
- Simon Fraser University, Burnaby, British Columbia, Canada
- RCHF Advancing Innovation in Medicine Institute, New Westminster, British Columbia, Canada
| | - Matt Gani
- Lungpacer Medical USA, Inc., Exton, Pennsylvania, United States
| | | | - Steven C Reynolds
- Simon Fraser University, Burnaby, British Columbia, Canada
- RCHF Advancing Innovation in Medicine Institute, New Westminster, British Columbia, Canada
| |
Collapse
|
6
|
van Rijn CM, Roberts JHM, Coulthard MG, Lambert HJ, McKeown DS, Howard DJ, van Egmond J. Negative Pressure Ventilation Can Prevent Ventilator-associated Brain Injury. Am J Respir Crit Care Med 2024; 210:954-955. [PMID: 39079128 PMCID: PMC11506893 DOI: 10.1164/rccm.202405-1016le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/24/2024] [Indexed: 10/02/2024] Open
Affiliation(s)
- Clementina M. van Rijn
- Donders Institute for Brain, Cognition and Behaviour, DCC, Radboud University, Nijmegen, The Netherlands
| | - James H. M. Roberts
- The Royal National Ear, Nose and Throat & Eastman Dental Hospitals, University College London Hospital, London, United Kingdom
| | - Malcolm G. Coulthard
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heather J. Lambert
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Jan van Egmond
- Donders Institute for Brain, Cognition and Behaviour, DCC, Radboud University, Nijmegen, The Netherlands
- Department of Anesthesiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Bassi T, Taran S, Girard TD, Robba C, Goligher EC. Ventilator-associated Brain Injury: A New Priority for Research in Mechanical Ventilation. Am J Respir Crit Care Med 2024; 209:1186-1188. [PMID: 38526447 PMCID: PMC11146544 DOI: 10.1164/rccm.202401-0069vp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024] Open
Affiliation(s)
- Thiago Bassi
- Department of Medicine, Division of Respirology, University Health Network, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine and
- Lungpacer Medical Inc., Vancouver, British Columbia, Canada
| | - Shaurya Taran
- Department of Medicine, Division of Respirology, University Health Network, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine and
| | - Timothy D. Girard
- Center for Research, Investigation, and Systems Modeling of Acute Illness, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Anesthesia and Critical Care, Scientific Institute for Research, Hospitalization and Healthcare Policlinico San Martino, Genoa, Italy; and
| | - Ewan C. Goligher
- Department of Medicine, Division of Respirology, University Health Network, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Quiros KAM, Nelson TM, Ulu A, Dominguez EC, Biddle TA, Lo DD, Nordgren TM, Eskandari M. A Comparative Study of Ex-Vivo Murine Pulmonary Mechanics Under Positive- and Negative-Pressure Ventilation. Ann Biomed Eng 2024; 52:342-354. [PMID: 37906375 PMCID: PMC10808462 DOI: 10.1007/s10439-023-03380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Increased ventilator use during the COVID-19 pandemic resurrected persistent questions regarding mechanical ventilation including the difference between physiological and artificial breathing induced by ventilators (i.e., positive- versus negative-pressure ventilation, PPV vs NPV). To address this controversy, we compare murine specimens subjected to PPV and NPV in ex vivo quasi-static loading and quantify pulmonary mechanics via measures of quasi-static and dynamic compliances, transpulmonary pressure, and energetics when varying inflation frequency and volume. Each investigated mechanical parameter yields instance(s) of significant variability between ventilation modes. Most notably, inflation compliance, percent relaxation, and peak pressure are found to be consistently dependent on the ventilation mode. Maximum inflation volume and frequency note varied dependencies contingent on the ventilation mode. Contradictory to limited previous clinical investigations of oxygenation and end-inspiratory measures, the mechanics-focused comprehensive findings presented here indicate lung properties are dependent on loading mode, and importantly, these dependencies differ between smaller versus larger mammalian species despite identical custom-designed PPV/NPV ventilator usage. Results indicate that past contradictory findings regarding ventilation mode comparisons in the field may be linked to the chosen animal model. Understanding the differing fundamental mechanics between PPV and NPV may provide insights for improving ventilation strategies and design to prevent associated lung injuries.
Collapse
Affiliation(s)
- K A M Quiros
- Department of Mechanical Engineering, University of California Riverside, 900 University Ave., Riverside, CA, 92506, USA
| | - T M Nelson
- Department of Mechanical Engineering, University of California Riverside, 900 University Ave., Riverside, CA, 92506, USA
| | - A Ulu
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, Riverside, CA, USA
| | - E C Dominguez
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, Riverside, CA, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
| | - T A Biddle
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, Riverside, CA, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
- School of Medicine, BREATHE Center, University of California, Riverside, CA, USA
| | - D D Lo
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, Riverside, CA, USA
- School of Medicine, BREATHE Center, University of California, Riverside, CA, USA
- Center for Health Disparities Research, University of California, Riverside, CA, USA
| | - T M Nordgren
- Division of Biomedical Sciences, Riverside School of Medicine, University of California, Riverside, CA, USA
- Environmental Toxicology Graduate Program, University of California, Riverside, CA, USA
- School of Medicine, BREATHE Center, University of California, Riverside, CA, USA
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - M Eskandari
- Department of Mechanical Engineering, University of California Riverside, 900 University Ave., Riverside, CA, 92506, USA.
- School of Medicine, BREATHE Center, University of California, Riverside, CA, USA.
- Department of Bioengineering, University of California, Riverside, CA, USA.
| |
Collapse
|
9
|
Purvis EM, Fedorczak N, Prah A, Han D, O’Donnell JC. Porcine Astrocytes and Their Relevance for Translational Neurotrauma Research. Biomedicines 2023; 11:2388. [PMID: 37760829 PMCID: PMC10525191 DOI: 10.3390/biomedicines11092388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes are essential to virtually all brain processes, from ion homeostasis to neurovascular coupling to metabolism, and even play an active role in signaling and plasticity. Astrocytic dysfunction can be devastating to neighboring neurons made inherently vulnerable by their polarized, excitable membranes. Therefore, correcting astrocyte dysfunction is an attractive therapeutic target to enhance neuroprotection and recovery following acquired brain injury. However, the translation of such therapeutic strategies is hindered by a knowledge base dependent almost entirely on rodent data. To facilitate additional astrocytic research in the translatable pig model, we present a review of astrocyte findings from pig studies of health and disease. We hope that this review can serve as a road map for intrepid pig researchers interested in studying astrocyte biology.
Collapse
Affiliation(s)
- Erin M. Purvis
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalia Fedorczak
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annette Prah
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Han
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John C. O’Donnell
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA (D.H.)
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Bassi TG, Rohrs EC, Fernandez KC, Ornowska M, Nicholas M, Wittmann J, Gani M, Evans D, Reynolds SC. Phrenic nerve stimulation mitigates hippocampal and brainstem inflammation in an ARDS model. Front Physiol 2023; 14:1182505. [PMID: 37215178 PMCID: PMC10196250 DOI: 10.3389/fphys.2023.1182505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: In porcine healthy-lung and moderate acute respiratory distress syndrome (ARDS) models, groups that received phrenic nerve stimulation (PNS) with mechanical ventilation (MV) showed lower hippocampal apoptosis, and microglia and astrocyte percentages than MV alone. Objectives: Explore whether PNS in combination with MV for 12 h leads to differences in hippocampal and brainstem tissue concentrations of inflammatory and synaptic markers compared to MV-only animals. Methods: Compare tissue concentrations of inflammatory markers (IL-1α, IL-1β, IL-6, IL-8, IL-10, IFN-γ, TNFα and GM-CSF), pre-synaptic markers (synapsin and synaptophysin) and post-synaptic markers (disc-large-homolog 4, N-methyl-D-aspartate receptors 2A and 2B) in the hippocampus and brainstem in three groups of mechanically ventilated pigs with injured lungs: MV only (MV), MV plus PNS every other breath (MV + PNS50%), and MV plus PNS every breath (MV + PNS100%). MV settings in volume control were tidal volume 8 ml/kg, and positive end-expiratory pressure 5 cmH2O. Moderate ARDS was achieved by infusing oleic acid into the pulmonary artery. Measurements and Main Results: Hippocampal concentrations of GM-CSF, N-methyl-D-aspartate receptor 2B, and synaptophysin were greater in the MV + PNS100% group compared to the MV group, p = 0.0199, p = 0.0175, and p = 0.0479, respectively. The MV + PNS100% group had lower brainstem concentrations of IL-1β, and IL-8 than the MV group, p = 0.0194, and p = 0.0319, respectively; and greater brainstem concentrations of IFN-γ and N-methyl-D-aspartate receptor 2A than the MV group, p = 0.0329, and p = 0.0125, respectively. Conclusion: In a moderate-ARDS porcine model, MV is associated with hippocampal and brainstem inflammation, and phrenic nerve stimulation on every breath mitigates that inflammation.
Collapse
Affiliation(s)
| | - Elizabeth C. Rohrs
- Advancing Innovation in Medicine Institute, New Westminster, BC, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
| | - Karl C. Fernandez
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
- Biomedical, Physiology, and Kinesiology Department, Simon Fraser University, Burnaby, BC, Canada
| | - Marlena Ornowska
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
| | - Michelle Nicholas
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
- Biomedical, Physiology, and Kinesiology Department, Simon Fraser University, Burnaby, BC, Canada
| | - Jessica Wittmann
- Biomedical, Physiology, and Kinesiology Department, Simon Fraser University, Burnaby, BC, Canada
| | - Matt Gani
- Lungpacer Medical Inc., Vancouver, BC, Canada
| | - Doug Evans
- Lungpacer Medical Inc., Vancouver, BC, Canada
| | - Steven C. Reynolds
- Advancing Innovation in Medicine Institute, New Westminster, BC, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC, Canada
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Recent studies have focused on identifying optimal targets and strategies of mechanical ventilation in patients with acute brain injury (ABI). The present review will summarize these findings and provide practical guidance to titrate ventilatory settings at the bedside, with a focus on managing potential brain-lung conflicts. RECENT FINDINGS Physiologic studies have elucidated the impact of low tidal volume ventilation and varying levels of positive end expiratory pressure on intracranial pressure and cerebral perfusion. Epidemiologic studies have reported the association of different thresholds of tidal volume, plateau pressure, driving pressure, mechanical power, and arterial oxygen and carbon dioxide concentrations with mortality and neurologic outcomes in patients with ABI. The data collectively make clear that injurious ventilation in this population is associated with worse outcomes; however, optimal ventilatory targets remain poorly defined. SUMMARY Although direct data to guide mechanical ventilation in brain-injured patients is accumulating, the current evidence base remains limited. Ventilatory considerations in this population should be extrapolated from high-quality evidence in patients without brain injury - keeping in mind relevant effects on intracranial pressure and cerebral perfusion in patients with ABI and individualizing the chosen strategy to manage brain-lung conflicts where necessary.
Collapse
Affiliation(s)
- Shaurya Taran
- Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Wahlster
- Department of Neurology
- Department of Neurological Surgery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Chiara Robba
- IRCCS, Policlinico San Martino
- Department of Surgical Sciences and Diagnostic Integrated, University of Genoa, Genoa, Italy
| |
Collapse
|
12
|
Diaphragm Neurostimulation Mitigates Ventilation-Associated Brain Injury in a Preclinical Acute Respiratory Distress Syndrome Model. Crit Care Explor 2022; 4:e0820. [PMID: 36601565 PMCID: PMC9788975 DOI: 10.1097/cce.0000000000000820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In a porcine healthy lung model, temporary transvenous diaphragm neurostimulation (TTDN) for 50 hours mitigated hippocampal apoptosis and inflammation associated with mechanical ventilation (MV). HYPOTHESIS Explore whether TTDN in combination with MV for 12 hours mitigates hippocampal apoptosis and inflammation in an acute respiratory distress syndrome (ARDS) preclinical model. METHODS AND MODELS Compare hippocampal apoptosis, inflammatory markers, and serum markers of neurologic injury between never ventilated subjects and three groups of mechanically ventilated subjects with injured lungs: MV only (LI-MV), MV plus TTDN every other breath, and MV plus TTDN every breath. MV settings in volume control were tidal volume 8 mL/kg and positive end-expiratory pressure 5 cm H2O. Lung injury, equivalent to moderate ARDS, was achieved by infusing oleic acid into the pulmonary artery. RESULTS Hippocampal apoptosis, microglia, and reactive-astrocyte percentages were similar between the TTDN-every-breath and never ventilated groups. The LI-MV group had a higher percentage of these measures than all other groups (p < 0.05). Transpulmonary driving pressure at study end was lower in the TTDN-every-breath group than in the LI-MV group; systemic inflammation and lung injury scores were not significantly different. The TTDN-every-breath group had considerably lower serum concentration of homovanillic acid (cerebral dopamine production surrogate) at study end than the LI-MV group (p < 0.05). Heart rate variability declined in the LI-MV group and increased in both TTDN groups (p < 0.05). INTERPRETATIONS AND CONCLUSIONS In a moderate-ARDS porcine model, MV is associated with hippocampal apoptosis and inflammation, and TTDN mitigates that hippocampal apoptosis and inflammation.
Collapse
|
13
|
Bassi TG, Rohrs EC, Fernandez KC, Ornowska M, Nicholas M, Gani M, Evans D, Reynolds SC. Diaphragm neurostimulation reduces mechanical power and mitigates brain injury associated with MV and ARDS. Eur J Med Res 2022; 27:298. [PMID: 36529746 PMCID: PMC9762073 DOI: 10.1186/s40001-022-00932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
| | - Elizabeth C. Rohrs
- grid.61971.380000 0004 1936 7494Simon Fraser University, Burnaby, BC Canada ,grid.416114.70000 0004 0634 3418Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC Canada
| | - Karl C. Fernandez
- grid.61971.380000 0004 1936 7494Simon Fraser University, Burnaby, BC Canada ,grid.416114.70000 0004 0634 3418Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC Canada
| | - Marlena Ornowska
- grid.61971.380000 0004 1936 7494Simon Fraser University, Burnaby, BC Canada
| | - Michelle Nicholas
- grid.61971.380000 0004 1936 7494Simon Fraser University, Burnaby, BC Canada ,grid.416114.70000 0004 0634 3418Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC Canada
| | - Matt Gani
- grid.509572.cLungpacer Medical Inc, Vancouver, BC Canada
| | - Doug Evans
- grid.509572.cLungpacer Medical Inc, Vancouver, BC Canada
| | - Steven C. Reynolds
- grid.61971.380000 0004 1936 7494Simon Fraser University, Burnaby, BC Canada ,grid.416114.70000 0004 0634 3418Fraser Health Authority, Royal Columbian Hospital, New Westminster, BC Canada
| |
Collapse
|
14
|
Ziaka M, Exadaktylos A. ARDS associated acute brain injury: from the lung to the brain. Eur J Med Res 2022; 27:150. [PMID: 35964069 PMCID: PMC9375183 DOI: 10.1186/s40001-022-00780-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/29/2022] [Indexed: 01/10/2023] Open
Abstract
A complex interrelation between lung and brain in patients with acute lung injury (ALI) has been established by experimental and clinical studies during the last decades. Although, acute brain injury represents one of the most common insufficiencies in patients with ALI and acute respiratory distress syndrome (ARDS), the underlying pathophysiology of the observed crosstalk remains poorly understood due to its complexity. Specifically, it involves numerous pathophysiological parameters such as hypoxemia, neurological adverse events of lung protective ventilation, hypotension, disruption of the BBB, and neuroinflammation in such a manner that the brain of ARDS patients-especially hippocampus-becomes very vulnerable to develop secondary lung-mediated acute brain injury. A protective ventilator strategy could reduce or even minimize further systemic release of inflammatory mediators and thus maintain brain homeostasis. On the other hand, mechanical ventilation with low tidal volumes may lead to self-inflicted lung injury, hypercapnia and subsequent cerebral vasodilatation, increased cerebral blood flow, and intracranial hypertension. Therefore, by describing the pathophysiology of ARDS-associated acute brain injury we aim to highlight and discuss the possible influence of mechanical ventilation on ALI-associated acute brain injury.
Collapse
Affiliation(s)
- Mairi Ziaka
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Panther EJ, Lucke-Wold B. Subarachnoid hemorrhage: management considerations for COVID-19. EXPLORATION OF NEUROPROTECTIVE THERAPY 2022; 2:65-73. [PMID: 35340712 PMCID: PMC8951071 DOI: 10.37349/ent.2022.00018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/18/2022] [Indexed: 02/05/2023]
Abstract
Subarachnoid hemorrhage (SAH) has deleterious outcomes for patients, and during the hospital stay, patients are susceptible to vasospasm and delayed cerebral ischemia. Coronavirus disease 2019 (COVID-19) has been shown to worsen hypertension through angiotensin-converting enzyme 2 (ACE2) activity, therefore, predisposing to aneurysm rupture. The classic renin-angiotensin pathway activation also predisposes to vasospasm and subsequent delayed cerebral ischemia. Matrix metalloproteinase 9 upregulation can lead to an inflammatory surge, which worsens outcomes for patients. SAH patients with COVID-19 are more susceptible to ventilator-associated pneumonia, reversible cerebral vasoconstriction syndrome, and respiratory distress. Emerging treatments are warranted to target key components of the anti-inflammatory cascade. The aim of this review is to explore how the COVID-19 virus and the intensive care unit (ICU) treatment of severe COVID can contribute to SAH.
Collapse
Affiliation(s)
- Eric J. Panther
- College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
16
|
Wei W, Sun Z, He S, Zhang W, Chen S, Cao YN, Wang N. Mechanical ventilation induces lung and brain injury through ATP production, P2Y1 receptor activation and dopamine release. Bioengineered 2022; 13:2346-2359. [PMID: 35034579 PMCID: PMC8974168 DOI: 10.1080/21655979.2021.2022269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mechanical ventilation can induce lung injury and exacerbate brain injury due to lung-brain interaction. The current study sought to investigate the mechanism of lung-brain interaction induced by mechanical ventilation and offer theoretical insight into the management of ventilator-induced brain injury. The experimental mice were assigned into the spontaneously breathing group and the mechanical ventilation group and injected with dopamine (DA) receptor antagonist haloperidol or P2Y1 receptor antagonist MRS2279 before ventilation. In vitro assay was conducted using lung epithelial cells MLE-12 hippocampal neuron cells and HT-22. Mouse recognition function and lung injury were examined. The condition and concentration of neurons in the hippocampus were observed. The levels of several inflammatory factors, DA, adenosine triphosphate (ATP), P2Y1R, and dysbindin-1 were detected. Mechanical ventilation induced lung and brain injury in mice, manifested in increased inflammatory factors in the bronchoalveolar lavage fluid and hippocampus, prolonged escape latency, and swimming distance and time in the target quadrant with a weakened concentration of neurons in the hippocampus. Our results presented elevated ATP and P2Y1R expressions in the mechanically ventilated mice and stretched MLE-12 cells. The mechanically ventilated mice and P2Y1 receptor activator MRS2365-treated HT-22 cells presented with elevated levels of DA and dysbindin-1. Inactivation of P2Y1 receptor in the hippocampus or blockage of DA receptor alleviated brain injury induced by mechanical ventilation in mice. To conclude, the current study elicited that lung injury induced by mechanical ventilation exacerbated brain injury in mice by increasing ATP production, activating the P2Y1 receptor, and thus promoting DA release.
Collapse
Affiliation(s)
- Wei Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhentao Sun
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shifeng He
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wanyue Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sai Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ya-Nan Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ning Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Bassi TG, Rohrs EC, Fernandez KC, Ornowska M, Nicholas M, Gani M, Evans D, Reynolds SC. Reply to: Stimulating Neural Pathways to Reduce Mechanical Ventilation-Associated Neuro-Cognitive Dysfunction. Am J Respir Crit Care Med 2022; 205:589-590. [PMID: 34978976 PMCID: PMC8906490 DOI: 10.1164/rccm.202111-2512le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Thiago G Bassi
- Simon Fraser University, 1763, Biomedicine and Physiology, Burnaby, British Columbia, Canada
| | | | | | - Marlena Ornowska
- Simon Fraser University, 1763, Burnaby, British Columbia, Canada
| | | | - Matt Gani
- Lungpacer Medical, Vancouver, British Columbia, Canada
| | - Doug Evans
- Lungpacer Medical, Vancouver, British Columbia, Canada
| | - Steven C. Reynolds
- Royal Columbian Hospital, University of British Columbia, Department of Medicine and Critical Care Medicine, New Westminster, British Columbia, Canada
| |
Collapse
|
18
|
Damiani LF, Engelberts D, Bastia L, Osada K, Katira BH, Otulakowski G, Goligher EC, Reid WD, Dubo S, Bruhn A, Post M, Kavanagh BP, Brochard LJ. Impact of Reverse Triggering Dyssynchrony During Lung-Protective Ventilation on Diaphragm Function: An Experimental Model. Am J Respir Crit Care Med 2021; 205:663-673. [PMID: 34941477 DOI: 10.1164/rccm.202105-1089oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Reverse triggering is a patient-ventilator interaction where a respiratory muscle contraction is triggered by a passive mechanical insufflation. Its impact on diaphragm structure and function is unknown. OBJECTIVE To establish an animal model of reverse triggering with lung injury receiving lung-protective ventilation and to assess its impact on structure and function of the diaphragm. METHODS Lung injury was induced by surfactant depletion and high stress ventilation in 32 ventilated pigs. Animals were allocated to receive passive mechanical ventilation or a lung-protective strategy with adjustments facilitating the occurrence of reverse triggering for 3 hours. Diaphragm function (transdiaphragmatic pressure (Pdi) during phrenic nerve stimulation [Force/frequency curve]) and structure (biopsies) were assessed. The impact of reverse triggering on diaphragm function was analyzed according to the breathing effort. RESULTS Compared to passive ventilation, the protective ventilation group with reverse triggering received significantly lower tidal volume (7 vs 10 ml/kg) and higher respiratory rate (45 vs 31 bpm). An entrainment pattern of 1:1 was frequent. Breathing effort induced by reverse triggering was highly variable across animals. Reverse triggering with the lowest tercile of breathing effort was associated with 23% higher twitch Pdi compared to passive ventilation, whereas reverse triggering with high breathing effort was associated with a 10% lower twitch Pdi and a higher proportion of abnormal muscle fibers. CONCLUSION In a reproducible animal model of reverse triggering with variable levels of breathing effort and entrainment patterns, reverse triggering with high effort is associated with impaired diaphragm function whereas reverse triggering with low effort is associated with preserved diaphragm force.
Collapse
Affiliation(s)
- L Felipe Damiani
- Pontificia Universidad Católica de Chile - Facultad de Medicina, Departamento de Ciencias de la Salud, Santiago, Chile
| | - Doreen Engelberts
- Hospital for Sick Children, 7979, Physiology & Experimental Medicine, Toronto, Ontario, Canada
| | - Luca Bastia
- SickKids, 7979, Translational Medicine, Toronto, Ontario, Canada.,University of Milan-Bicocca, 9305, Medicine, Milano, Lombardia, Italy
| | - Kohei Osada
- SickKids, 7979, Translational Medicine, Toronto, Ontario, Canada
| | - Bhushan H Katira
- Hospital for Sick Children, 7979, Paediatric Critical Care Medicine, Toronto, Ontario, Canada
| | - Gail Otulakowski
- Hospital for Sick Children Research Institute, Lung Biology, Toronto, Ontario, Canada
| | - Ewan C Goligher
- University Health Network, 7989, Department of Medicine, Division of Respirology, Critical Care Program, Toronto, Ontario, Canada.,University of Toronto, 7938, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada
| | - W Darlene Reid
- University of Toronto, Department of Physical Therapy, Toronto, Ontario, Canada
| | - Sebastián Dubo
- Universidad de Concepcion, 28056, Departamento de Kinesiología, Facultad de Medicina, Concepcion, Chile
| | - Alejandro Bruhn
- Pontificia Universidad Católica de Chile - Facultad de Medicina, Departamento de Medicina Intensiva, Santiago, Chile
| | - Martin Post
- Hospital for Sick Children, Lung Biology, Toronto, Ontario, Canada
| | - Brian P Kavanagh
- Hospital Sick Children, Department of Critical Care Medicine, Toronto, Ontario, Canada
| | - Laurent J Brochard
- St Michael's Hospital in Toronto, Li Ka Shing Knowledge Institute, Keenan Research Centre, Toronto, Ontario, Canada.,University of Toronto, 7938, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada;
| |
Collapse
|
19
|
Bassi TG, Rohrs EC, Fernandez KC, Ornowska M, Nicholas M, Gani M, Evans D, Reynolds SC. Transvenous Diaphragm Neurostimulation Mitigates Ventilation-associated Brain Injury. Am J Respir Crit Care Med 2021; 204:1391-1402. [PMID: 34491883 PMCID: PMC8865722 DOI: 10.1164/rccm.202101-0076oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Rationale: Mechanical ventilation (MV) is associated with hippocampal apoptosis and inflammation, and it is important to study strategies to mitigate them. Objectives: To explore whether temporary transvenous diaphragm neurostimulation (TTDN) in association with MV mitigates hippocampal apoptosis and inflammation after 50 hours of MV. Methods: Normal-lung porcine study comparing apoptotic index, inflammatory markers, and neurological-damage serum markers between never-ventilated subjects, subjects undergoing 50 hours of MV plus either TTDN every other breath or every breath, and subjects undergoing 50 hours of MV (MV group). MV settings in volume control were Vt of 8 ml/kg, and positive end-expiratory pressure of 5 cm H2O. Measurements and Main Results: Apoptotic indices, microglia percentages, and reactive astrocyte percentages were greater in the MV group in comparison with the other groups (P < 0.05). Transpulmonary pressure at baseline and at study end were both lower in the group receiving TTDN every breath, but lung injury scores and systemic inflammatory markers were not different between the groups. Serum concentrations of four neurological-damage markers were lower in the group receiving TTDN every breath than in the MV group (P < 0.05). Heart rate variability declined significantly in the MV group and increased significantly in both TTDN groups over the course of the experiments. Conclusions: Our study found that mechanical ventilation is associated with hippocampal apoptosis and inflammation, independent of lung injury and systemic inflammation. Also, in a porcine model, TTDN results in neuroprotection after 50 hours, and the degree of neuroprotection increases with greater exposure to TTDN.
Collapse
Affiliation(s)
- Thiago G. Bassi
- Simon Fraser University, Burnaby, British Columbia, Canada
- Lungpacer Medical Inc., Vancouver, British Columbia, Canada; and
| | - Elizabeth C. Rohrs
- Simon Fraser University, Burnaby, British Columbia, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, British Columbia, Canada
| | - Karl C. Fernandez
- Simon Fraser University, Burnaby, British Columbia, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, British Columbia, Canada
| | | | - Michelle Nicholas
- Simon Fraser University, Burnaby, British Columbia, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, British Columbia, Canada
| | - Matt Gani
- Lungpacer Medical Inc., Vancouver, British Columbia, Canada; and
| | - Doug Evans
- Lungpacer Medical Inc., Vancouver, British Columbia, Canada; and
| | - Steven C. Reynolds
- Simon Fraser University, Burnaby, British Columbia, Canada
- Fraser Health Authority, Royal Columbian Hospital, New Westminster, British Columbia, Canada
| |
Collapse
|
20
|
Martín-Vicente P, López-Martínez C, Lopez-Alonso I, López-Aguilar J, Albaiceta GM, Amado-Rodríguez L. Molecular mechanisms of postintensive care syndrome. Intensive Care Med Exp 2021; 9:58. [PMID: 34859298 PMCID: PMC8639215 DOI: 10.1186/s40635-021-00423-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Affiliation(s)
- Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain
| | - Inés Lopez-Alonso
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain.,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain.,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Josefina López-Aguilar
- Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain.,Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació I Innovació Parc Taulí I3PT, Sabadell, Spain
| | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain. .,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain. .,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain. .,Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain.
| | - Laura Amado-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain. .,Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Madrid, Spain. .,Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain. .,Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain.
| |
Collapse
|