1
|
Maqbool Q, Favoni O, Wicht T, Lasemi N, Sabbatini S, Stöger-Pollach M, Ruello ML, Tittarelli F, Rupprechter G. Highly Stable Self-Cleaning Paints Based on Waste-Valorized PNC-Doped TiO 2 Nanoparticles. ACS Catal 2024; 14:4820-4834. [PMID: 38601782 PMCID: PMC11003396 DOI: 10.1021/acscatal.3c06203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 04/12/2024]
Abstract
Adding photocatalytically active TiO2 nanoparticles (NPs) to polymeric paints is a feasible route toward self-cleaning coatings. While paint modification by TiO2-NPs may improve photoactivity, it may also cause polymer degradation and release of toxic volatile organic compounds. To counterbalance adverse effects, a synthesis method for nonmetal (P, N, and C)-doped TiO2-NPs is introduced, based purely on waste valorization. PNC-doped TiO2-NP characterization by vibrational and photoelectron spectroscopy, electron microscopy, diffraction, and thermal analysis suggests that TiO2-NPs were modified with phosphate (P=O), imine species (R=N-R), and carbon, which also hindered the anatase/rutile phase transformation, even upon 700 °C calcination. When added to water-based paints, PNC-doped TiO2-NPs achieved 96% removal of surface-adsorbed pollutants under natural sunlight or UV, paralleled by stability of the paint formulation, as confirmed by micro-Fourier transform infrared (FTIR) surface analysis. The origin of the photoinduced self-cleaning properties was rationalized by three-dimensional (3D) and synchronous photoluminescence spectroscopy, indicating that the dopants led to 7.3 times stronger inhibition of photoinduced e-/h+ recombination when compared to a benchmark P25 photocatalyst.
Collapse
Affiliation(s)
- Qaisar Maqbool
- Department of Materials, Environmental Sciences and
Urban Planning (SIMAU), Università Politecnica delle Marche, INSTM
Research Unit, via Brecce Bianche 12, 60131 Ancona,
Italy
- Institute of Materials Chemistry, TU
Wien, Getreidemarkt 9/BC, A-1060 Vienna, Austria
| | - Orlando Favoni
- Department of Materials, Environmental Sciences and
Urban Planning (SIMAU), Università Politecnica delle Marche, INSTM
Research Unit, via Brecce Bianche 12, 60131 Ancona,
Italy
| | - Thomas Wicht
- Institute of Materials Chemistry, TU
Wien, Getreidemarkt 9/BC, A-1060 Vienna, Austria
| | - Niusha Lasemi
- Institute of Materials Chemistry, TU
Wien, Getreidemarkt 9/BC, A-1060 Vienna, Austria
| | - Simona Sabbatini
- Department of Materials, Environmental Sciences and
Urban Planning (SIMAU), Università Politecnica delle Marche, INSTM
Research Unit, via Brecce Bianche 12, 60131 Ancona,
Italy
| | - Michael Stöger-Pollach
- University Service Center for Transmission
Electron Microscopy, TU Wien, 1040 Vienna,
Austria
| | - Maria Letizia Ruello
- Department of Materials, Environmental Sciences and
Urban Planning (SIMAU), Università Politecnica delle Marche, INSTM
Research Unit, via Brecce Bianche 12, 60131 Ancona,
Italy
| | - Francesca Tittarelli
- Department of Materials, Environmental Sciences and
Urban Planning (SIMAU), Università Politecnica delle Marche, INSTM
Research Unit, via Brecce Bianche 12, 60131 Ancona,
Italy
| | - Günther Rupprechter
- Institute of Materials Chemistry, TU
Wien, Getreidemarkt 9/BC, A-1060 Vienna, Austria
| |
Collapse
|
2
|
Miron A, Iordache TV, Valente AJM, Durães LMR, Sarbu A, Ivan GR, Zaharia A, Sandu T, Iovu H, Chiriac AL. Chitosan-Based Beads Incorporating Inorganic-Organic Composites for Copper Ion Retention in Aqueous Solutions. Int J Mol Sci 2024; 25:2411. [PMID: 38397088 PMCID: PMC10889537 DOI: 10.3390/ijms25042411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, there has been a challenging interest in developing low-cost biopolymeric materials for wastewater treatment. In the present work, new adsorbents, based on different types of chitosan (commercial, commercial chitin-derived chitosan and chitosan synthesized from shrimp shell waste) and inorganic-organic composites have been evaluated for copper ions removal. The efficacy of the synthesis of chitosan-based composite beads has been determined by studying various characteristics using several techniques, including FTIR spectroscopy, X-ray diffraction, porosimetry (N2 adsorption), and scanning electron microscopy (SEM). Adsorption kinetics was performed using different adsorption models to determine the adsorption behavior of the materials in the aqueous media. For all composite beads, regardless of the type of chitosan used, good capacity to remove copper ions from simulated waters was observed (up to 17 mg/g), which proves that the new materials hold potential for heavy metal retention. However, the adsorption efficiency was influenced by the type of chitosan used. Thus, for the series where commercial chitosan (CC) was used, the removal efficiency was approximately 29%; for the series with chitosan obtained from commercial chitin (SC), the removal efficiency was approximately 34%; for the series with chitosan enriched with CaCO3 (SH), the removal efficiency was approximately 52%.
Collapse
Affiliation(s)
- Andreea Miron
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania; (A.M.); (T.-V.I.); (A.S.); (G.R.I.); (A.Z.); (T.S.)
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Tanta-Verona Iordache
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania; (A.M.); (T.-V.I.); (A.S.); (G.R.I.); (A.Z.); (T.S.)
| | - Artur J. M. Valente
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal;
| | - Luisa Maria Rocha Durães
- CIEPQPF, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal;
| | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania; (A.M.); (T.-V.I.); (A.S.); (G.R.I.); (A.Z.); (T.S.)
| | - Georgeta Ramona Ivan
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania; (A.M.); (T.-V.I.); (A.S.); (G.R.I.); (A.Z.); (T.S.)
| | - Anamaria Zaharia
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania; (A.M.); (T.-V.I.); (A.S.); (G.R.I.); (A.Z.); (T.S.)
| | - Teodor Sandu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania; (A.M.); (T.-V.I.); (A.S.); (G.R.I.); (A.Z.); (T.S.)
| | - Horia Iovu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Anita-Laura Chiriac
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania; (A.M.); (T.-V.I.); (A.S.); (G.R.I.); (A.Z.); (T.S.)
| |
Collapse
|