1
|
Wu J, Lu J, Pan MZ, Gu XC, Dai L, Wang Y, Shen B, Zhang XB. Update on the roles and applications of extracellular vesicles in depression. World J Psychiatry 2025; 15:102643. [PMID: 40110012 PMCID: PMC11886331 DOI: 10.5498/wjp.v15.i3.102643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Depression is a prevalent mental disorder that affects numerous individuals, manifesting as persistent anhedonia, sadness, and hopelessness. Despite extensive research, the exact causes and optimal treatment approaches for depression remain unclear. Extracellular vesicles (EVs), which carry biological molecules such as proteins, lipids, nucleic acids, and metabolites, have emerged as crucial players in both pathological and physiological processes. EVs derived from various sources exert distinct effects on depression. Specifically, EVs released by neurons, astrocytes, microglia, oligodendrocytes, immune cells, stem cells, and even bacteria contribute to the pathogenesis of depression. Moreover, there is growing interest in potential of EVs as diagnostic and therapeutic tools for depression. This review provides a comprehensive overview of recent research on EVs from different sources, their roles in depression, and their potential clinical applications.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Jian Lu
- Laboratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Ming-Zhi Pan
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Xiao-Chu Gu
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Lu Dai
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Yun Wang
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Bin Shen
- Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| | - Xiao-Bin Zhang
- Department of Psychiatry, Suzhou Psychiatric Hospital, Institute of Mental Health, The Affiliated Guangji Hospital of Soochow University, Suzhou 215137, Jiangsu Province, China
| |
Collapse
|
2
|
Arizono K, Sedohara A, Tuvshinjargal K, Tanaka T, Koga M, Nakahara F, Ootani A, Kanno Y, Ikeuchi K, Saito M, Adachi E, Tsutsumi T, Yotsuyanagi H. MicroRNA in neuroexosome as a potential biomarker for HIV-associated neurocognitive disorders. J Neurovirol 2025; 31:56-74. [PMID: 39821903 PMCID: PMC11971210 DOI: 10.1007/s13365-024-01241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
HIV-associated neurocognitive disorder (HAND) is a complication of chronic inflammation caused by HIV infection that impairs cognitive and motor functions. HAND can occur at any age, regardless of the duration of infection, even in people living with HIV (PLWH) whose blood viral load is controlled by antiretroviral therapy. The diagnosis of HAND requires a battery of neuropsychological tests, which is time-consuming and burdensome, limiting its effectiveness for screening PLWH. Here, we aimed to identify biomarkers for quantitatively diagnosing and screening for HAND using minimally invasive blood tests. Neuronal-derived exosomes (neuroexosomes) were isolated from the peripheral blood of PLWH, and the transcriptomes of their microRNAs (miRNAs) were analyzed. We identified five upregulated miRNAs (hsa-miR-16-5p, hsa-miR-26a-3p, hsa-92a-3p, hsa-miR-103a-3p, and hsa-miR-185-5p), and two downregulated miRNA (hsa-miR-3613-3p and hsa-miR-4668-5p) in PLWH diagnosed with HAND (HAND PLWH). Functional analysis of five miRNAs whose expression levels increased in HAND PLWH using the database showed that these miRNAs are involved in motor proteins and endocytosis, which are associated with nerve function. The expression levels of hsa-miR-16-5p, hsa-miR-103a-3p, and hsa-miR-185-5p were significantly higher than those in the non-HIV controls and non-HAND PLWH, suggesting that these miRNAs are potential biomarkers for HAND. Since there were no changes in known dementia miRNA biomarkers in HAND PLWH, the miRNAs identified in this study will allow for early differentiation of HAND.
Collapse
Affiliation(s)
- Kotaro Arizono
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Ayako Sedohara
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan.
| | - Khulan Tuvshinjargal
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Takahiro Tanaka
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Fumio Nakahara
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-Shi, Tochigi, 329-0498, Japan
| | - Amato Ootani
- Department of Infectious Disease and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Yoshiaki Kanno
- Department of Infectious Disease and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Kazuhiko Ikeuchi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Department of Infectious Diseases, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Makoto Saito
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Eisuke Adachi
- Department of Infectious Disease and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Department of Infectious Diseases, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-Ku, Tokyo, 113-8654, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
- Department of Infectious Disease and Applied Immunology, IMSUT Hospital of The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-Ku, Tokyo, 108-8639, Japan
| |
Collapse
|
3
|
Tunset ME, Haslene-Hox H, Larsen JB, Kondziella D, Nygård M, Pedersen SA, Vaaler A, Llorente A. Clinical studies of blood-borne Extracellular vesicles in psychiatry: A systematic review. J Psychiatr Res 2025; 182:373-390. [PMID: 39862765 DOI: 10.1016/j.jpsychires.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/02/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Biomarkers for the diagnosis and clinical management of psychiatric disorders are currently lacking. Extracellular vesicles (EVs), lipid membrane-encapsulated vesicles released by cells, hold promise as a source of biomarkers due to their ability to carry molecules that reflect the status of their donor cells and their ubiquitous presence in biofluids. This review examines the literature on EVs in biofluids from psychiatric disorder patients, and discuss how the published studies contribute to our understanding of the pathophysiology of these conditions and to the discovery of potential biomarkers. We analyzed 46 studies on blood-borne EVs; no investigations on cerebrospinal fluid-derived EVs were found. A significant number of studies lacked optimal description of the methodology and/or characterization of the isolated EVs. Moreover, many studies aimed to capture brain-derived EVs, but often capture-proteins with low brain specificity were used. Considering biomarkers, miRNAs were the most investigated molecular type, but based on the studies analyzed it was not possible to identify robust biomarker candidates for the investigated disorders. Additionally, we describe the contribution of EV studies in illuminating the pathophysiology of psychiatric disorders, including research on insulin resistance, inflammation, mitochondrial dysfunction, and the microbiota. We conclude that there is a shortage of studies with detailed methodology description and EV sample characterization in psychiatric research. To exploit the potential of EVs to investigate psychiatric disorders and identify biomarkers more studies and validated protocols using capture proteins with high specificity to brain cells are needed. The review protocol was pre-registered in the PROSPERO database under the registration number CRD42021277534.
Collapse
Affiliation(s)
- Mette Elise Tunset
- Department of Psychosis and Rehabilitation, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway; Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Hanne Haslene-Hox
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Jeanette Brun Larsen
- Department of Psychosis and Rehabilitation, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mona Nygård
- Department of Psychosis and Rehabilitation, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway; Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Arne Vaaler
- Department of Mental Health- Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Acute Psychiatry, Division of Mental Healthcare, St. Olavs University Hospital, Trondheim, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
4
|
Van der Auwera S, Ameling S, Wittfeld K, Bülow R, Nauck M, Völzke H, Völker U, Grabe HJ. Circulating miRNAs modulating systemic low-grade inflammation and affecting neurodegeneration. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111130. [PMID: 39209100 DOI: 10.1016/j.pnpbp.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE AND DESIGN Inflammatory processes are an important part of the etiology of many chronic diseases across various medical domains, including neurodegeneration. Understanding their regulation on the molecular level represents a major challenge. Regulatory microRNAs (miRNAs), have been recognized for their role in post-transcriptionally modulating immune-related pathways serving as biomarkers for numerous diseases. SUBJECTS AND METHODS This study aims to investigate the association between 176 plasma-circulating miRNAs and the blood-based immune markers C-reactive protein and fibrinogen within the general population-based SHIP-TREND-0 cohort (N = 801) and assess their impact on neurodegeneration in linear regression and moderation analyses. RESULTS We provide strong evidence for miRNA-mediated regulation, particularly in relation to fibrinogen, identifying 48 significant miRNAs with a pronounced over-representation in chronic inflammatory and neurological diseases. Additional moderation analyses explored the influence of the APOE ε4 genotype and brain white matter neurodegeneration on the association between miRNAs and inflammation. Again, significant associations were observed for fibrinogen with special emphasize on hsa-miR-148a-3p, known to impact on neuroinflammation. CONCLUSIONS Our study suggests the involvement of several plasma-circulating miRNAs in regulating immunological markers while also being linked to neurodegeneration. The strong interplay between miRNAs and inflammation holds promising potential for clinical application in many immune-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany.
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
5
|
Severtsev VV, Pavkina MA, Ivanets NN, Vinnikova MA, Yakovlev AA. Extracellular Vesicles as Potential Biomarkers in Addictive Disorders. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1970-1984. [PMID: 39647826 DOI: 10.1134/s0006297924110117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 12/10/2024]
Abstract
Small extracellular vesicles (sEVs) and their role in mental and addictive disorders are extremely promising research areas. Because of their small size, sEVs can pass through the blood-brain barrier. The membrane of sEVs contain proteins that protect them against destruction by the organism's immune system. Due to these properties, sEVs circulating in the blood can be used as potential biomarkers of processes occurring in the brain. Exposure to psychoactive substances in vitro and in vivo affects sEV biogenesis and significantly alters the amount of sEVs and chemical composition of their cargo. Based on the published reports, sEVs carry numerous potential biomarkers of addictive pathologies, although the diagnostic significance of these markers still has to be evaluated. A large body of evidence indicates that psychoactive substances influence Rab family GTPases, Toll-like receptors, complement system components, and cytokines. In some studies, the effect of psychoactive substances on sEVs was found to be sex-dependent. It has become commonly accepted that sEVs are involved in the regulation of neuroinflammation and interaction between glial cells and neurons, as well as between peripheral cells and cells of the central nervous system. Here, we formulated a hypothesis on the existence of two mechanisms/stages involved in the effect of psychoactive substances on sEVs: the "fast" mechanism that provides neuroplasticity, and the "slow" one, resulting from the impaired biogenesis of sEVs and formation of aberrant vesicles.
Collapse
Affiliation(s)
- Vsevolod V Severtsev
- Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, 119048, Russia.
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical-Biological Agency of the Russian Federation, Moscow, 143007, Russia
| | - Margarita A Pavkina
- Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, 119048, Russia
| | - Nikolay N Ivanets
- Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, 119048, Russia
| | - Maria A Vinnikova
- Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, 119048, Russia
- Moscow Scientific and Practical Center of Narcology, Moscow Healthcare Department, Moscow, 109390, Russia
| | - Alexander A Yakovlev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
- Research and Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
6
|
de Sousa Fernandes MS, Costa MR, Badicu G, Yagin FH, Santos GCJ, da Costa JM, de Souza RF, Lagranha CJ, Ardigò LP, Souto FO. Can Environmental Enrichment Modulate Epigenetic Processes in the Central Nervous System Under Adverse Environmental Conditions? A Systematic Review. Cell Mol Neurobiol 2024; 44:69. [PMID: 39432132 PMCID: PMC11493835 DOI: 10.1007/s10571-024-01506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
The aim of this paper is to summarize the available evidence in the literature regarding the effects generated by exposure to an enriched environment (EE) on the modulation of epigenetic processes in the central nervous system under adverse environmental conditions. Searches were conducted in three databases: PubMed/Medline (1053 articles), Scopus (121 articles), and Embase (52 articles), which were subjected to eligibility criteria. Of the 1226 articles found, 173 duplicates were removed. After evaluating titles/abstracts, 904 studies were excluded, resulting in 49 articles, of which 14 were included in this systematic review. EE was performed using different inanimate objects. Adverse environmental conditions included CUMS, sepsis, nicotine exposure, PCP exposure, early stress, WAS, high fructose intake, TBI, and sevoflurane exposure. Regarding microRNA expression, after exposure to EE, an increase in the expression of miR-221 and miR-483 was observed in the prefrontal cortex, and a reduction in the expression of miR-92a-3p and miR-134 in the hippocampus. Regarding histone modifications, in the hippocampus, there was a reduction of HAT, HDAC/HDAC4, H3 (acetyl K14), H4 (acetyl K15), H3K4me3, K3k27me3, and HDAC2/3/5. In the cortex, there was a reduction of HDAC2, and in the prefrontal cortex, there was an increase in acetylated H3. Regarding DNA modifications, there was a reduction of DNMT in the hippocampus. This systematic review concludes that the benefits of EE on the brain and behavior of animals are directly related to different epigenetic mechanisms, reflecting in cell growth and neuroplasticity. EE may be a non-pharmacological and easy-to-apply alternative to prevent symptoms in disorders affecting brain tissue.
Collapse
Affiliation(s)
| | | | - Georgian Badicu
- Department of Physical Education and Special Motricity, Transilvania University of Brasov, 500068, Brasov, Romania.
| | - Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya, 44280, Turkey
| | | | - Jonathan Manoel da Costa
- Multicenter Postgraduate Program in Physiological Sciences (PPGMCF), UFPE/CAV, Pernambuco, Brazil
| | | | - Claudia Jacques Lagranha
- Laboratory of Biochemistry and Molecular Biology of Physical Exercise, Academic Center of Vitoria de Santo Antão, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, Oslo, Norway
| | | |
Collapse
|
7
|
Dong T, Yu C, Mao Q, Han F, Yang Z, Yang Z, Pires N, Wei X, Jing W, Lin Q, Hu F, Hu X, Zhao L, Jiang Z. Advances in biosensors for major depressive disorder diagnostic biomarkers. Biosens Bioelectron 2024; 258:116291. [PMID: 38735080 DOI: 10.1016/j.bios.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Depression is one of the most common mental disorders and is mainly characterized by low mood or lack of interest and pleasure. It can be accompanied by varying degrees of cognitive and behavioral changes and may lead to suicide risk in severe cases. Due to the subjectivity of diagnostic methods and the complexity of patients' conditions, the diagnosis of major depressive disorder (MDD) has always been a difficult problem in psychiatry. With the discovery of more diagnostic biomarkers associated with MDD in recent years, especially emerging non-coding RNAs (ncRNAs), it is possible to quantify the condition of patients with mental illness based on biomarker levels. Point-of-care biosensors have emerged due to their advantages of convenient sampling, rapid detection, miniaturization, and portability. After summarizing the pathogenesis of MDD, representative biomarkers, including proteins, hormones, and RNAs, are discussed. Furthermore, we analyzed recent advances in biosensors for detecting various types of biomarkers of MDD, highlighting representative electrochemical sensors. Future trends in terms of new biomarkers, new sample processing methods, and new detection modalities are expected to provide a complete reference for psychiatrists and biomedical engineers.
Collapse
Affiliation(s)
- Tao Dong
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Chenghui Yu
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Qi Mao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Han
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenwei Yang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Pires
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Hu
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiao Hu
- Engineering Research Center of Ministry of Education for Smart Justice, School of Criminal Investigation, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Libo Zhao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
8
|
Ibrahim P, Denniston R, Mitsuhashi H, Yang J, Fiori LM, Żurawek D, Mechawar N, Nagy C, Turecki G. Profiling Small RNA From Brain Extracellular Vesicles in Individuals With Depression. Int J Neuropsychopharmacol 2024; 27:pyae013. [PMID: 38457375 PMCID: PMC10946232 DOI: 10.1093/ijnp/pyae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/07/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of disability with significant mortality risk. Despite progress in our understanding of the etiology of MDD, the underlying molecular changes in the brain remain poorly understood. Extracellular vesicles (EVs) are lipid-bound particles that can reflect the molecular signatures of the tissue of origin. We aimed to optimize a streamlined EV isolation protocol from postmortem brain tissue and determine whether EV RNA cargo, particularly microRNAs (miRNAs), have an MDD-specific profile. METHODS EVs were isolated from postmortem human brain tissue. Quality was assessed using western blots, transmission electron microscopy, and microfluidic resistive pulse sensing. EV RNA was extracted and sequenced on Illumina platforms. Functional follow-up was performed in silico. RESULTS Quality assessment showed an enrichment of EV markers, as well as a size distribution of 30 to 200 nm in diameter, and no contamination with cellular debris. Small RNA profiling indicated the presence of several RNA biotypes, with miRNAs and transfer RNAs being the most prominent. Exploring miRNA levels between groups revealed decreased expression of miR-92a-3p and miR-129-5p, which was validated by qPCR and was specific to EVs and not seen in bulk tissue. Finally, in silico functional analyses indicate potential roles for these 2 miRNAs in neurotransmission and synaptic plasticity. CONCLUSION We provide a streamlined isolation protocol that yields EVs of high quality that are suitable for molecular follow-up. Our findings warrant future investigations into brain EV miRNA dysregulation in MDD.
Collapse
Affiliation(s)
- Pascal Ibrahim
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Ryan Denniston
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Haruka Mitsuhashi
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Jennie Yang
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Laura M Fiori
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Dariusz Żurawek
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Naguib Mechawar
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Corina Nagy
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
García-Cerro S, Gómez-Garrido A, Garcia G, Crespo-Facorro B, Brites D. Exploratory Analysis of MicroRNA Alterations in a Neurodevelopmental Mouse Model for Autism Spectrum Disorder and Schizophrenia. Int J Mol Sci 2024; 25:2786. [PMID: 38474035 DOI: 10.3390/ijms25052786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
MicroRNAs (miRNAs) play a crucial role in the regulation of gene expression levels and have been implicated in the pathogenesis of autism spectrum disorder (ASD) and schizophrenia (SCZ). In this study, we examined the adult expression profiles of specific miRNAs in the prefrontal cortex (PFC) of a neurodevelopmental mouse model for ASD and SCZ that mimics perinatal pathology, such as NMDA receptor hypofunction, and exhibits behavioral and neurophysiological phenotypes related to these disorders during adulthood. To model the early neuropathogenesis of the disorders, mouse pups were administered subcutaneously with ketamine (30 mg/Kg) at postnatal days 7, 9, and 11. We focused on a set of miRNAs most frequently altered in ASD (miR-451a and miR-486-3p) and in SCZ (miR-132-3p and miR-137-3p) according to human studies. Additionally, we explored miRNAs whose alterations have been identified in both disorders (miR-21-5p, miR-92a-2-5p, miR-144-3p, and miR-146a-5p). We placed particular emphasis on studying the sexual dimorphism in the dynamics of these miRNAs. Our findings revealed significant alterations in the PFC of this ASD- and SCZ-like mouse model. Specifically, we observed upregulated miR-451a and downregulated miR-137-3p. Furthermore, we identified sexual dimorphism in the expression of miR-132-3p, miR-137-3p, and miR-92a-2-5p. From a translational perspective, our results emphasize the potential involvement of miR-92a-2-5p, miR-132-3p, miR-137-3p, and miR-451a in the pathophysiology of ASD and SCZ and strengthen their potential as biomarkers and therapeutic targets of such disorders.
Collapse
Affiliation(s)
- Susana García-Cerro
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
| | - Ana Gómez-Garrido
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
| | - Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Benedicto Crespo-Facorro
- Translational Psychiatry Group, Ibis-Biomedicine Institute of Sevilla-CSIC, Manuel Siurot AV, 41013 Seville, Spain
- Spanish Network for Research in Mental Health (CIBERSAM), Monforte de Lemos AV, 3-5, 28029 Madrid, Spain
- Mental Health Unit, Virgen del Rocio University Hospital, Manuel Siurot AV, 41013 Seville, Spain
- Department of Psychiatry, Faculty of Medicine, University of Seville, Sánchez Pizjuán AV, 41013 Seville, Spain
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Lab, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
10
|
Kumar A, Nader MA, Deep G. Emergence of Extracellular Vesicles as "Liquid Biopsy" for Neurological Disorders: Boom or Bust. Pharmacol Rev 2024; 76:199-227. [PMID: 38351075 PMCID: PMC10877757 DOI: 10.1124/pharmrev.122.000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 02/16/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as an attractive liquid biopsy approach in the diagnosis and prognosis of multiple diseases and disorders. The feasibility of enriching specific subpopulations of EVs from biofluids based on their unique surface markers has opened novel opportunities to gain molecular insight from various tissues and organs, including the brain. Over the past decade, EVs in bodily fluids have been extensively studied for biomarkers associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, major depressive disorders, substance use disorders, human immunodeficiency virus-associated neurocognitive disorder, and cancer/treatment-induced neurodegeneration. These studies have focused on the isolation and cargo characterization of either total EVs or brain cells, such as neuron-, astrocyte-, microglia-, oligodendrocyte-, pericyte-, and endothelial-derived EVs from biofluids to achieve early diagnosis and molecular characterization and to predict the treatment and intervention outcomes. The findings of these studies have demonstrated that EVs could serve as a repetitive and less invasive source of valuable molecular information for these neurological disorders, supplementing existing costly neuroimaging techniques and relatively invasive measures, like lumbar puncture. However, the initial excitement surrounding blood-based biomarkers for brain-related diseases has been tempered by challenges, such as lack of central nervous system specificity in EV markers, lengthy protocols, and the absence of standardized procedures for biological sample collection, EV isolation, and characterization. Nevertheless, with rapid advancements in the EV field, supported by improved isolation methods and sensitive assays for cargo characterization, brain cell-derived EVs continue to offer unparallel opportunities with significant translational implications for various neurological disorders. SIGNIFICANCE STATEMENT: Extracellular vesicles present a less invasive liquid biopsy approach in the diagnosis and prognosis of various neurological disorders. Characterizing these vesicles in biofluids holds the potential to yield valuable molecular information, thereby significantly impacting the development of novel biomarkers for various neurological disorders. This paper has reviewed the methodology employed to isolate extracellular vesicles derived from various brain cells in biofluids, their utility in enhancing the molecular understanding of neurodegeneration, and the potential challenges in this research field.
Collapse
Affiliation(s)
- Ashish Kumar
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Michael A Nader
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Gagan Deep
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| |
Collapse
|
11
|
Li H, Yuan Y, Xie Q, Dong Z. Exosomes: potential targets for the diagnosis and treatment of neuropsychiatric disorders. J Transl Med 2024; 22:115. [PMID: 38287384 PMCID: PMC10826005 DOI: 10.1186/s12967-024-04893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
The field of neuropsychiatry is considered a middle ground between neurological and psychiatric disorders, thereby bridging the conventional boundaries between matter and mind, consciousness, and function. Neuropsychiatry aims to evaluate and treat cognitive, behavioral, and emotional disorders in individuals with neurological conditions. However, the pathophysiology of these disorders is not yet fully understood, and objective biological indicators for these conditions are currently lacking. Treatment options are also limited due to the blood-brain barrier, which results in poor treatment effects. Additionally, many drugs, particularly antipsychotic drugs, have adverse reactions, which make them difficult to tolerate for patients. As a result, patients often abandon treatment owing to these adverse reactions. Since the discovery of exosomes in 1983, they have been extensively studied in various diseases owing to their potential as nanocellulators for information exchange between cells. Because exosomes can freely travel between the center and periphery, brain-derived exosomes can reflect the state of the brain, which has considerable advantages in diagnosis and treatment. In addition, administration of engineered exosomes can improve therapeutic efficacy, allow lesion targeting, ensure drug stability, and prevent systemic adverse effects. Therefore, this article reviews the source and biological function of exosomes, relationship between exosomes and the blood-brain barrier, relationship between exosomes and the pathological mechanism of neuropsychiatric disorders, exosomes in the diagnosis and treatment of neuropsychiatric disorders, and application of engineered exosomes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Haorao Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yanling Yuan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zaiquan Dong
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
12
|
Xu L, Li L, Chen Q, Huang Y, Chen X, Qiao D. The Role of Non-coding RNAs in Methamphetamine-Induced Neurotoxicity. Cell Mol Neurobiol 2023; 43:2415-2436. [PMID: 36752885 PMCID: PMC11410138 DOI: 10.1007/s10571-023-01323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Methamphetamine (METH) is an amphetamine-type stimulant that is highly toxic to the central nervous system (CNS). Repeated intake of METH can lead to addiction, which has become a globalized problem, resulting in multiple public health and safety problems. Recently, the non-coding RNA (ncRNA) has been certified to play an essential role in METH addiction through various mechanisms. Herein, we mainly focused on three kinds of ncRNAs including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), which are involved in neurotoxicity effects such as cognitive impairment, behavioral abnormalities, and psychiatric disorders due to METH abuse. In addition, differential expression (DE) ncRNAs also suggest that specific responses and sensitivity to METH neurotoxicity exist in different brain regions and cells. We summarized the relationships between the ncRNAs and METH-induced neurotoxicity and psychiatric disturbances, respectively, hoping to provide new perspectives and strategies for the prevention and treatment of METH abuse. Schematic diagram of the non-coding RNAs (ncRNAs) was involved in methamphetamine (METH)-induced neurotoxicity. The ncRNAs were involved in METH-induced blood-brain barrier disruption, neuronal, astrocyte, and microglial damage, and synaptic neurotransmission impairment. The study of ncRNAs is a hot spot in the future to further understand the neurotoxicity of METH and provide more favorable scientific support for clinical diagnosis and innovation of related treatments.
Collapse
Affiliation(s)
- Luyao Xu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Lingyue Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Qianling Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Yuebing Huang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Xuebing Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China.
| | - Dongfang Qiao
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China.
| |
Collapse
|
13
|
Kurtulmuş A, Koçana CÇ, Toprak SF, Sözer S. The role of Extracellular Genomic Materials (EGMs) in psychiatric disorders. Transl Psychiatry 2023; 13:262. [PMID: 37464177 PMCID: PMC10354097 DOI: 10.1038/s41398-023-02549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Extracellular Genomic Materials (EGMs) are the nucleic acids secreted or released from all types of cells by endogenous or exogenous stimuli through varying mechanisms into the extracellular region and inevitably to all biological fluids. EGMs could be found as free, protein-bound, and/ or with vesicles. EGMs can potentially have immunophenotypic and/or genotypic characteristics of a cell of origin, travel to distant organs, and interact with the new microenvironment. To achieve all, EGMs might bi-directionally transit through varying membranes, including the blood-brain barrier. Such ability provides the transfer of any information related to the pathophysiological changes in psychiatric disorders in the brain to the other distant organ systems or vice versa. In this article, many aspects of EGMs have been elegantly reviewed, including their potential in diagnosis as biomarkers, application in treatment modalities, and functional effects in the pathophysiology of psychiatric disorders. The psychiatric disorders were studied under subgroups of Schizophrenia spectrum disorders, bipolar disorder, depressive disorders, and an autism spectrum disorders. EGMs provide a robust and promising tool in clinics for prognosis and diagnosis. The successful application of EGMs into treatment modalities might further provide encouraging outcomes for researchers and clinicians in psychiatric disorders.
Collapse
Affiliation(s)
- Ayşe Kurtulmuş
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
- Istanbul Göztepe Prof.Dr.Süleyman Yalçın City Hospital, Department of Psychiatry, Istanbul, Turkey
| | - Cemal Çağıl Koçana
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Selçuk Sözer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
14
|
Si Q, Wu L, Pang D, Jiang P. Exosomes in brain diseases: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e287. [PMID: 37313330 PMCID: PMC10258444 DOI: 10.1002/mco2.287] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/15/2023] Open
Abstract
Exosomes are extracellular vesicles with diameters of about 100 nm that are naturally secreted by cells into body fluids. They are derived from endosomes and are wrapped in lipid membranes. Exosomes are involved in intracellular metabolism and intercellular communication. They contain nucleic acids, proteins, lipids, and metabolites from the cell microenvironment and cytoplasm. The contents of exosomes can reflect their cells' origin and allow the observation of tissue changes and cell states under disease conditions. Naturally derived exosomes have specific biomolecules that act as the "fingerprint" of the parent cells, and the contents changed under pathological conditions can be used as biomarkers for disease diagnosis. Exosomes have low immunogenicity, are small in size, and can cross the blood-brain barrier. These characteristics make exosomes unique as engineering carriers. They can incorporate therapeutic drugs and achieve targeted drug delivery. Exosomes as carriers for targeted disease therapy are still in their infancy, but exosome engineering provides a new perspective for cell-free disease therapy. This review discussed exosomes and their relationship with the occurrence and treatment of some neuropsychiatric diseases. In addition, future applications of exosomes in the diagnosis and treatment of neuropsychiatric disorders were evaluated in this review.
Collapse
Affiliation(s)
- Qingying Si
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Linlin Wu
- Department of OncologyTengzhou Central People's HospitalTengzhouChina
| | - Deshui Pang
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningChina
- Institute of Translational PharmacyJining Medical Research AcademyJiningChina
| |
Collapse
|
15
|
Wu J, Li S, Zhang Y. Research progress in role of exosomes exosomes in mental disorders. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:771-781. [PMID: 37539580 PMCID: PMC10930398 DOI: 10.11817/j.issn.1672-7347.2023.220379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 08/05/2023]
Abstract
Exosomes are a class of extracellular vesicles with a structure of lipid bilayer-membrane. In the central nervous system (CNS), exosomes can be secreted from both neurons and glial cells. Exosomes released into the extracellular matrix can freely cross the blood-brain barrier and function as crucial carriers of cellular communication and substance exchange in the CNS. Exosomes play a key role in the pathological process of mental disorders such as schizophrenia, depression, and bipolar disorder, and they have the potential to be used as a targeted carrier of antipsychotic medications. Exosomes are likely to become a new tool in the future to aid in the early prevention, accurate diagnosis, and effective treatment for people with mental disorders.
Collapse
Affiliation(s)
- Jialing Wu
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Shansi Li
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Yi Zhang
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha 410011.
- Medical Psychological Institute, Central South University, Changsha 410011.
- National Clinical Research Center for Mental Disorders (Xiangya), Changsha 410011, China.
| |
Collapse
|
16
|
Xu C, Acevedo P, Wang L, Wang N, Ozuna K, Shafique S, Karithara A, Padilla V, Mao C, Xie X, Wang K. Sleep Apnea and Substance Use Disorders Associated with Co-Occurrence of Anxiety Disorder and Depression among U.S. Adults: Findings from the NSDUH 2008-2014. Brain Sci 2023; 13:brainsci13040661. [PMID: 37190626 DOI: 10.3390/brainsci13040661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Few studies have focused on sleep apnea and substance use disorders with co-occurrence of anxiety disorder and depression. This study included a total of 270,227 adults, 9268 with co-occurrence of anxiety disorder and depression in the past year, from the combined 2008-2014 National Survey on Drug Use and Health (NSDUH) data, which are the latest datasets with measures of anxiety disorder and sleep apnea. Weighted multinomial logistic regression analyses were used to estimate the associations between anxiety disorder and depression and their co-occurrence. Comorbidity was highly prevalent: 40.4% of those with depression also met the criteria for anxiety disorder, whereas 51.8% of those with anxiety disorder also met the criteria for depression. The prevalences of anxiety only and co-occurrence increased from 2008 to 2014. The prevalences of anxiety disorder only, depression only, and co-occurrence of anxiety disorder and depression in individuals with sleep apnea were 4.4%, 12.9%, and 12.2%, respectively, and the prevalences in substance use disorders were 6.4%, 9.4%, and 10.7%, respectively. The results showed that sleep apnea, substance use disorders, and nicotine dependence were significantly associated with increased odds of anxiety disorder, depression, and co-occurrence (all p values < 0.0001). Furthermore, several chronic diseases (asthma, bronchitis, hypertension, and heart disease) were associated with the co-occurrence of anxiety disorder and depression. These findings suggest clinicians and other healthcare providers consider screening for depression and anxiety with sleep apnea and substance use disorders for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Chun Xu
- Department of Health and Biomedical Sciences, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Priscila Acevedo
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Liang Wang
- Department of Public Health, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76798, USA
| | - Nianyang Wang
- Department of Health Policy and Management, School of Public Health, University of Maryland, College Park, MD 20742, USA
| | - Kaysie Ozuna
- Department of Health and Biomedical Sciences, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Saima Shafique
- School of Nursing, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Annu Karithara
- Department of Health and Biomedical Sciences, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Victoria Padilla
- Department of Health and Biomedical Sciences, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Chunxiang Mao
- Department of Health and Biomedical Sciences, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX 78520, USA
| | - Xin Xie
- Department of Economics and Finance, College of Business and Technology, East Tennessee State University, Johnson City, TN 37614, USA
| | - Kesheng Wang
- School of Nursing, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
17
|
Ji X, Zhao Z. Exposure to enriched environment ameliorated chronic unpredictable mild stress-induced depression-like symptoms in rats via regulating the miR-92a-3p/kruppel-like factor 2 (KLF2) pathway. Brain Res Bull 2023; 195:14-24. [PMID: 36638871 DOI: 10.1016/j.brainresbull.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Silencing of miR-92a-3p may be beneficial in relieving depression of chronically stressed rats. The level of kruppel-like factor 2 (KLF2) was increased in the striatum of depressed rats after ketamine treatment. Enriched environment (EE) ameliorated depression-like behaviors in rats. However, the specific mechanism of EE treatment on depression induced by chronic unpredictable mild stress (CUMS) remains unclear. METHODS After CUMS-induced male Sprague Dawley rats were treated under EE or/and Adeno-Associated Virus (AAV)-miR-92a-3p, depression-like behaviors, cognitive ability, dendritic spine density, as well as levels of miR-92a-3p and KLF2 were detected by the behavioral tests, morris water maze test, Golgi staining, and quantitative real-time polymerase chain reaction (qRT-PCR) as needed. The body weight of rats was also measured. Next, primary hippocampal neurons were cultivated. The targeting relationship between miR-92a-3p and KLF2 was analyzed by TargetScan v7.2 and dual-luciferase reporter assay. After hippocampal neurons were transfected with miR-92a-3p mimic or/and overexpressed KLF2 vector, the cell viability, and apoptosis, together with the levels of KLF2, brain-derived neurotrophic factor (BDNF), phosphorylated (p)-tropomysin related kinase B (p-TrkB) and TrkB were determined by MTT assay, flow cytometry, qRT-PCR, and western blot as needed. RESULTS EE ameliorated CUMS-induced depression-like behaviors and cognitive ability, and elevated the neuronal dendritic spine density and KLF2 level, but reduced miR-92a-3p level in hippocampal tissues, while the above effects were reversed by AAV-miR-92a-3p. MiR-92a-3p mimic restrained cell viability, along with p-TrkB/ TrkB and BDNF levels, but promoted apoptosis in hippocampal neurons, which were reversed by overexpressed KLF2. CONCLUSION EE ameliorates CUMS-induced depression-like symptoms in rats via regulating the miR-92a-3p/KLF2 pathway.
Collapse
Affiliation(s)
- Xiao Ji
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhenwu Zhao
- Emergency Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China.
| |
Collapse
|
18
|
Korobkova L, Morin EL, Aoued H, Sannigrahi S, Garza KM, Siebert ER, Walum H, Cabeen RP, Sanchez MM, Dias BG. RNA in extracellular vesicles during adolescence reveal immune, energetic and microbial imprints of early life adversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529808. [PMID: 36865138 PMCID: PMC9980043 DOI: 10.1101/2023.02.23.529808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Exposure to early life adversity (ELA), including childhood maltreatment, is one of the most significant risk factors for the emergence of neuropsychiatric disorders in adolescence and adulthood. Despite this relationship being well established, the underlying mechanisms remain unclear. One way to achieve this understanding is to identify molecular pathways and processes that are perturbed as a consequence of childhood maltreatment. Ideally, these perturbations would be evident as changes in DNA, RNA or protein profiles in easily accessible biological samples collected in the shadow of childhood maltreatment. In this study, we isolated circulating extracellular vesicles (EVs) from plasma collected from adolescent rhesus macaques that had either experienced nurturing maternal care (CONT) or maternal maltreatment (MALT) in infancy. RNA sequencing of RNA in plasma EVs and gene enrichment analysis revealed that genes related to translation, ATP synthesis, mitochondrial function and immune response were downregulated in MALT samples, while genes involved in ion transport, metabolism and cell differentiation were upregulated. Interestingly, we found that a significant proportion of EV RNA aligned to the microbiome and that MALT altered the diversity of microbiome-associated RNA signatures found in EVs. Part of this altered diversity suggested differences in prevalence of bacterial species in CONT and MALT animals noted in the RNA signatures of the circulating EVs. Our findings provide evidence that immune function, cellular energetics and the microbiome may be important conduits via which infant maltreatment exerts effects on physiology and behavior in adolescence and adulthood. As a corollary, perturbations of RNA profiles related to immune function, cellular energetics and the microbiome may serve as biomarkers of responsiveness to ELA. Our results demonstrate that RNA profiles in EVs can serve as a powerful proxy to identify biological processes that might be perturbed by ELA and that may contribute to the etiology of neuropsychiatric disorders in the aftermath of ELA.
Collapse
|
19
|
Kong L, Zhang D, Huang S, Lai J, Lu L, Zhang J, Hu S. Extracellular Vesicles in Mental Disorders: A State-of-art Review. Int J Biol Sci 2023; 19:1094-1109. [PMID: 36923936 PMCID: PMC10008693 DOI: 10.7150/ijbs.79666] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/26/2023] [Indexed: 03/13/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale particles with various physiological functions including mediating cellular communication in the central nervous system (CNS), which indicates a linkage between these particles and mental disorders such as schizophrenia, bipolar disorder, major depressive disorder, etc. To date, known characteristics of mental disorders are mainly neuroinflammation and dysfunctions of homeostasis in the CNS, and EVs are proven to be able to regulate these pathological processes. In addition, studies have found that some cargo of EVs, especially miRNAs, were significantly up- or down-regulated in patients with mental disorders. For many years, interest has been generated in exploring new diagnostic and therapeutic methods for mental disorders, but scale assessment and routine drug intervention are still the first-line applications so far. Therefore, underlying the downstream functions of EVs and their cargo may help uncover the pathogenetic mechanisms of mental disorders as well as provide novel biomarkers and therapeutic candidates. This review aims to address the connection between EVs and mental disorders, and discuss the current strategies that focus on EVs-related psychiatric detection and therapy.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shu Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jing Zhang
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
20
|
Wu H, Zhang Z, Ma Y, Chen F, Xiong P, Xie Z, Ding G, Yu J, Wang K. Dynamic immune and exosome transcriptomic responses in patients undergoing psychostimulant methamphetamine withdrawal. Front Cell Neurosci 2022; 16:961131. [PMID: 36238831 PMCID: PMC9550894 DOI: 10.3389/fncel.2022.961131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (METH) addiction and withdrawal cause serious harm to both the immune system and nervous system. However, the pathogenesis remains largely unknown. Herein, we investigated the peripheral cytokines and exosomal transcriptome regulatory networks in the patients with METH use disorders (MUDs) undergoing withdrawal. Twenty-seven cytokines were simultaneously assessed in 51 subjects, including 22 at the acute withdrawal (AW) stage and 29 at the protracted withdrawal (PW) stage, and 31 age and gender-matched healthy controls (HCs). Compared to the HCs, significantly decreased levels of interleukin (IL)-1β, IL-9, IL-15, Basic FGF, and MIP1a, increased levels of IL-1rα, IL-6, Eotaxin IP-10, VEGF, and RANTES were identified in AW. These disturbances were mostly or partly restored to the baseline in PW. However, the cytokines IL-6, IL-7, and IL-12p70 were consistently increased even after one year of withdrawal. Besides, a significant decrease in CD3+T and CD4+T cell numbers was observed in AW, and the diminishment was restored to baseline in PW. Comparatively, there were no statistically significant changes in CD8+T, NK, and B cells. Furthermore, the exosomal mRNAs and long non-coding RNAs (lncRNA) were profiled, and the lncRNA-miRNA-mRNA networks were constructed and associated with METH AW and PW stages. Notably, the chemokine signaling was remarkably upregulated during AW. By contrast, the differentially expressed mRNAs/lincRNAs were significantly enriched in neurodegeneration-related diseases. Taken together, a group of METH withdrawal-related cytokines and exosomal mRNA/lncRNA regulatory networks were obtained, which provides a useful experimental and theoretical basis for further understanding of the pathogenesis of the withdrawal symptoms in MUDs.
Collapse
Affiliation(s)
- Hongjin Wu
- School of Medicine, Yunnan University, Yunnan, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- International Research Center for Regenerative Medicine, BOAO International Hospital, Qionghai, China
| | - Zunyue Zhang
- School of Medicine, Yunnan University, Yunnan, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Yuru Ma
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Fengrong Chen
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Pu Xiong
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Zhenrong Xie
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Guo Ding
- High School Attached to Shanghai Normal University, Shanghai, China
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- International Research Center for Regenerative Medicine, BOAO International Hospital, Qionghai, China
- *Correspondence: Juehua Yu https://orcid.org/0000-0002-1661-0503 Kunhua Wang
| | - Kunhua Wang
- School of Medicine, Yunnan University, Yunnan, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- *Correspondence: Juehua Yu https://orcid.org/0000-0002-1661-0503 Kunhua Wang
| |
Collapse
|
21
|
Chen F, Xu Y, Shi K, Zhang Z, Xie Z, Wu H, Ma Y, Zhou Y, Chen C, Yang J, Wang Y, Robbins TW, Wang K, Yu J. Multi-omics study reveals associations among neurotransmitter, extracellular vesicle-derived microRNA and psychiatric comorbidities during heroin and methamphetamine withdrawal. Biomed Pharmacother 2022; 155:113685. [PMID: 36137407 DOI: 10.1016/j.biopha.2022.113685] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022] Open
Abstract
Despite decades of research in the field of substance withdrawal, molecular biomarkers and related mechanistic study have generally been lacking. In addition to known neurotransmitters, circulating miRNAs are found in small vesicles known as exosomes within blood that have diagnostic potential and are known to contribute to psychiatric disorders. The aim of this work was to characterize the changes in neurotransmitter and exosomal miRNA profiles during heroin and methamphetamine withdrawal using a cross-sectional study design, and to determine their associations to psychiatric comorbidities in a large group of patients with substance use disorders (SUDs). Using weighted gene co-expression network analysis, a series of known, conserved, and novel exosomal miRNAs were identified as being associated with the severity of anxiety and depression, as well as the concentrations of neurotransmitters GABA, choline, and serotonin. Bioinformatics analyses established that the differences in the miRNA profile target signaling pathways are significantly associated with developmental and intellectual abnormalities. Notably, a set of dysregulated miRNA signatures including hsa-mia-451a and hsa-mir-21a resulted in an AUC of 0.966 and 0.861, respectively, for predicting the patients with SUDs. Furthermore, hsa-miR-744a-5p was positively correlated with serotonin, and its important role in maintaining neuronal development and function was revealed using an in vitro human induced pluripotent stem cells derived neuronal model. Our results suggest that the miRNA content of circulating exosomes represent a biomolecular "fingerprint" of the progression of substance withdrawal and may uncover the putative mechanism of how these exosomal miRNAs contribute to psychiatric symptoms.
Collapse
Affiliation(s)
- Fengrong Chen
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; School of Medicine, Kunming University of Science and Technology
| | - Yu Xu
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Kai Shi
- College of Science, Guilin University of Technology, Guilin 541004, China
| | - Zunyue Zhang
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; School of Medicine, Yunnan University, Yunnan, China
| | - Zhenrong Xie
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Hongjin Wu
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yuru Ma
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yong Zhou
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Cheng Chen
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jiqing Yang
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yuan Wang
- Department of R&D, Echo Biotech Co., Ltd, Beijing, China
| | - Trevor W Robbins
- Department of Psychology and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Kunhua Wang
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; School of Medicine, Yunnan University, Yunnan, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| |
Collapse
|
22
|
Lopez K, Camacho A, Jacquez Q, Amistadi MK, Medina S, Zychowski K. Lung-Based, Exosome Inhibition Mediates Systemic Impacts Following Particulate Matter Exposure. TOXICS 2022; 10:457. [PMID: 36006136 PMCID: PMC9413489 DOI: 10.3390/toxics10080457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) exposure is a global health issue that impacts both urban and rural communities. Residential communities in the Southwestern United States have expressed concerns regarding the health impacts of fugitive PM from rural, legacy mine-sites. In addition, the recent literature suggests that exosomes may play a role in driving toxicological phenotypes following inhaled exposures. In this study, we assessed exosome-driven mechanisms and systemic health impacts following inhaled dust exposure, using a rodent model. Using an exosome inhibitor, GW4869 (10 μM), we inhibited exosome generation in the lungs of mice via oropharyngeal aspiration. We then exposed mice to previously characterized inhaled particulate matter (PM) from a legacy mine-site and subsequently assessed downstream behavioral, cellular, and molecular biomarkers in lung, serum, and brain tissue. Results indicated that CCL-2 was significantly upregulated in the lung tissue and downregulated in the brain (p < 0.05) following PM exposure. Additional experiments revealed cerebrovascular barrier integrity deficits and increased glial fibrillary acidic protein (GFAP) staining in the mine-PM exposure group, mechanistically dependent on exosome inhibition. An increased stress and anxiety response, based on the open-field test, was noted in the mine-PM exposure group, and subsequently mitigated with GW4869 intervention. Exosome lipidomics revealed 240 and eight significantly altered positive-ion lipids and negative-ion lipids, respectively, across the three treatment groups. Generally, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) lipids were significantly downregulated in the PM group, compared to FA. In conclusion, these data suggest that systemic, toxic impacts of inhaled PM may be mechanistically dependent on lung-derived, circulating exosomes, thereby driving a systemic, proinflammatory phenotype.
Collapse
Affiliation(s)
- Keegan Lopez
- Department of Biology, College of Arts and Sciences, New Mexico Highlands University, Las Vegas, NM 88901, USA
| | - Alexandra Camacho
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA
| | - Quiteria Jacquez
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA
| | - Mary Kay Amistadi
- Arizona Laboratory for Emerging Contaminants, University of Arizona, Tucson, AZ 85721, USA
| | - Sebastian Medina
- Department of Biology, College of Arts and Sciences, New Mexico Highlands University, Las Vegas, NM 88901, USA
| | - Katherine Zychowski
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
23
|
Zhang Y, Xu C. Effects of exosomes on adult hippocampal neurogenesis and neuropsychiatric disorders. Mol Biol Rep 2022; 49:6763-6777. [PMID: 35262819 DOI: 10.1007/s11033-022-07313-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022]
Abstract
Exosomes are extracellular vesicles originating from the endosomal system, which are involved in intercellular substance transfer and cell waste elimination. Recent studies implicate the roles of exosomes in adult hippocampal neurogenesis, a process through which new granule cells are generated in the dentate gyrus, and which is closely related to mood and cognition, as well as psychiatric disorders. As such, exosomes are recognized as potential biomarkers of neurologic and psychiatric disorders. This review briefly introduces the synthesis and secretion mechanism of exosomes, and discuss the relationship between exosomes and hippocampal neurogenesis, and their roles in regulating depression, epilepsy and schizophrenia. Finally, we discuss the prospects of their application in diagnosing disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Ying Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Chi Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China. .,Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
24
|
Ma Y, Wu H, Wang H, Chen F, Xie Z, Zhang Z, Peng Q, Yang J, Zhou Y, Chen C, Chen M, Zhang Y, Yu J, Wang K. Psychiatric Comorbidities and Liver Injury Are Associated With Unbalanced Plasma Bile Acid Profile During Methamphetamine Withdrawal. Front Endocrinol (Lausanne) 2022; 12:801686. [PMID: 35046900 PMCID: PMC8761939 DOI: 10.3389/fendo.2021.801686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Background The pathogenesis of methamphetamine usedisorders (MUDs) remains largely unknown; however, bile acids may play arole as potential mediators of liver injury and psychiatric comorbidities.The aim of this study was to characterize bile acid (BA) profiles in plasmaof patients with MUDs undergoing withdrawal. Methods Liver functions and psychiatric symptoms wereevaluated in a retrospective cohort (30 MUDs versus 30 control subjects) andan exploratory cohort (30 MUDs including 10 subjects each at the 7-day,3-month, and 12-month withdrawal stages versus 10 control subjects). BAcompositions in plasma samples from MUD patients in the exploratory cohortwere determined by gas-liquid chromatography. Results Both psychiatric comorbidities andmethamphetamine-induced liver injury were observed in patients in both MUDcohorts. The plasma concentrations of the total BA, cholic acid (CA), andchenodeoxycholic acid (CDCA) were lower in MUD patients relative tocontrols. The maximum decline was observed at the 3-month stage, withgradual recovery at the 12-month stage. Notably, the ratios of deoxycholicacid (DCA)/CA and lithocholic acid (LCA)/CDCA were statistically significantat the 3-month stage comparing with controls. Significant correlations werefound between the LCA/CDCA and taurolithocholic acid (TLCA)/CDCA ratios andthe levels of alanine transaminase and aspartate aminotransferase, andbetween the LCA/CDCA ratio and the HAM-A score. Conclusion BA profile during METH withdrawal weremarkedly altered, with these unbalanced BAs being associated with liverinjury. The associations between BA profiles and psychiatric symptomssuggest an association between specific BAs and disease progression,possibly through the liver-brain axis.
Collapse
Affiliation(s)
- Yuru Ma
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongjin Wu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huawei Wang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fengrong Chen
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zhenrong Xie
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zunyue Zhang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Yunnan University, Kunming, China
| | - Qingyan Peng
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiqing Yang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yong Zhou
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng Chen
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Minghui Chen
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongjin Zhang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juehua Yu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kunhua Wang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), First Affiliated Hospital of Kunming Medical University, Kunming, China
- Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
25
|
Grimm SL, Mendez EF, Stertz L, Meyer TD, Fries GR, Gandhi T, Kanchi R, Selvaraj S, Teixeira AL, Kosten TR, Gunaratne P, Coarfa C, Walss-Bass C. MicroRNA-mRNA networks are dysregulated in opioid use disorder postmortem brain: Further evidence for opioid-induced neurovascular alterations. Front Psychiatry 2022; 13:1025346. [PMID: 36713930 PMCID: PMC9878702 DOI: 10.3389/fpsyt.2022.1025346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/05/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION To understand mechanisms and identify potential targets for intervention in the current crisis of opioid use disorder (OUD), postmortem brains represent an under-utilized resource. To refine previously reported gene signatures of neurobiological alterations in OUD from the dorsolateral prefrontal cortex (Brodmann Area 9, BA9), we explored the role of microRNAs (miRNA) as powerful epigenetic regulators of gene function. METHODS Building on the growing appreciation that miRNAs can cross the blood-brain barrier, we carried out miRNA profiling in same-subject postmortem samples from BA9 and blood tissues. RESULTS miRNA-mRNA network analysis showed that even though miRNAs identified in BA9 and blood were fairly distinct, their target genes and corresponding enriched pathways overlapped strongly. Among the dominant enriched biological processes were tissue development and morphogenesis, and MAPK signaling pathways. These findings point to robust, redundant, and systemic opioid-induced miRNA dysregulation with a potential functional impact on transcriptomic changes. Further, using correlation network analysis, we identified cell-type specific miRNA targets, specifically in astrocytes, neurons, and endothelial cells, associated with OUD transcriptomic dysregulation. Finally, leveraging a collection of control brain transcriptomes from the Genotype-Tissue Expression (GTEx) project, we identified a correlation of OUD miRNA targets with TGF beta, hypoxia, angiogenesis, coagulation, immune system, and inflammatory pathways. DISCUSSION These findings support previous reports of neurovascular and immune system alterations as a consequence of opioid abuse and shed new light on miRNA network regulators of cellular response to opioid drugs.
Collapse
Affiliation(s)
- Sandra L Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Emily F Mendez
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Laura Stertz
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Thomas D Meyer
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Gabriel R Fries
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tanmay Gandhi
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Rupa Kanchi
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Sudhakar Selvaraj
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antonio L Teixeira
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Thomas R Kosten
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston, TX, United States
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Consuelo Walss-Bass
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
26
|
Fu CH, Chen HC, Huang CC, Chang PH, Lee TJ. Serum High-Sensitivity C-Reactive Protein Is Associated with Postoperative Psychiatric Status in Patients with Empty Nose Syndrome. Diagnostics (Basel) 2021; 11:diagnostics11122388. [PMID: 34943627 PMCID: PMC8700485 DOI: 10.3390/diagnostics11122388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
Many patients diagnosed with empty nose syndrome (ENS) later develop mental illness. The literature addressing biomarkers associated with postoperative psychiatric status is limited. This study aimed to assess the association between high-sensitivity C-reactive protein (hs-CRP) and psychiatric status after surgery in ENS. We recruited patients with ENS undergoing endonasal submucosal implantation. Their pre- and postoperative psychiatric status was evaluated using the Beck depression inventory-II (BDI-II) and the Beck Anxiety Inventory (BAI). Serum hs-CRP was analyzed one day before and one year after surgery. Of the 43 patients enrolled, all subjective measurements had improved (symptom scores decreased) significantly by the third month postoperatively and remained plateaued till 12 months. Those with preoperative hs-CRP levels > 2.02 mg/L were likely to remain depressive 1 year postoperatively. The regression model showed that a preoperative hs-CRP level > 2.02 mg/L was significantly correlated with postoperative depression in patients with ENS (odds ratio, 19.9). Hs-CRP level seems to be a feasible predictor of surgical outcome regarding improved depression in patients with ENS. Patients with higher preoperative hs-CRP levels should be monitored closely after surgery.
Collapse
Affiliation(s)
- Chia-Hsiang Fu
- Department of Otolaryngology—Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333604, Taiwan; (C.-H.F.); (H.-C.C.); (C.-C.H.); (P.-H.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333604, Taiwan
| | - Hung-Chin Chen
- Department of Otolaryngology—Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333604, Taiwan; (C.-H.F.); (H.-C.C.); (C.-C.H.); (P.-H.C.)
| | - Chi-Che Huang
- Department of Otolaryngology—Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333604, Taiwan; (C.-H.F.); (H.-C.C.); (C.-C.H.); (P.-H.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333604, Taiwan
| | - Po-Hung Chang
- Department of Otolaryngology—Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333604, Taiwan; (C.-H.F.); (H.-C.C.); (C.-C.H.); (P.-H.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333604, Taiwan
| | - Ta-Jen Lee
- Department of Otolaryngology—Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333604, Taiwan; (C.-H.F.); (H.-C.C.); (C.-C.H.); (P.-H.C.)
- Department of Otolaryngology—Head and Neck Surgery, Xiamen Chang Gung Memorial Hospital, Xiamen 361000, China
- Correspondence:
| |
Collapse
|
27
|
Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder. Genes (Basel) 2021; 12:genes12101614. [PMID: 34681009 PMCID: PMC8535492 DOI: 10.3390/genes12101614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Methamphetamine (METH)-use disorder (MUD) is a very serious, potentially lethal, biopsychosocial disease. Exposure to METH causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug-seeking and drug-taking behavior that can remain a lifelong struggle. It is crucial to elucidate underlying mechanisms by which exposure to METH leads to molecular neuroadaptive changes at transcriptional and translational levels. Changes in gene expression are controlled by post-translational modifications via chromatin remodeling. This review article focuses on the brain-region specific combinatorial or distinct epigenetic modifications that lead to METH-induced changes in gene expression.
Collapse
|
28
|
Zhang Z, Wu H, Peng Q, Xie Z, Chen F, Ma Y, Zhang Y, Zhou Y, Yang J, Chen C, Li S, Zhang Y, Tian W, Wang Y, Xu Y, Luo H, Zhu M, Kuang YQ, Yu J, Wang K. Integration of Molecular Inflammatory Interactome Analyses Reveals Dynamics of Circulating Cytokines and Extracellular Vesicle Long Non-Coding RNAs and mRNAs in Heroin Addicts During Acute and Protracted Withdrawal. Front Immunol 2021; 12:730300. [PMID: 34489980 PMCID: PMC8416766 DOI: 10.3389/fimmu.2021.730300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/04/2021] [Indexed: 01/01/2023] Open
Abstract
Heroin addiction and withdrawal influence multiple physiological functions, including immune responses, but the mechanism remains largely elusive. The objective of this study was to investigate the molecular inflammatory interactome, particularly the cytokines and transcriptome regulatory network in heroin addicts undergoing withdrawal, compared to healthy controls (HCs). Twenty-seven cytokines were simultaneously assessed in 41 heroin addicts, including 20 at the acute withdrawal (AW) stage and 21 at the protracted withdrawal (PW) stage, and 38 age- and gender-matched HCs. Disturbed T-helper(Th)1/Th2, Th1/Th17, and Th2/Th17 balances, characterized by reduced interleukin (IL)-2, elevated IL-4, IL-10, and IL-17A, but normal TNF-α, were present in the AW subjects. These imbalances were mostly restored to the baseline at the PW stage. However, the cytokines TNF-α, IL-2, IL-7, IL-10, and IL-17A remained dysregulated. This study also profiled exosomal long non-coding RNA (lncRNA) and mRNA in the plasma of heroin addicts, constructed co-expression gene regulation networks, and identified lncRNA-mRNA-pathway pairs specifically associated with alterations in cytokine profiles and Th1/Th2/Th17 imbalances. Altogether, a large amount of cytokine and exosomal lncRNA/mRNA expression profiling data relating to heroin withdrawal was obtained, providing a useful experimental and theoretical basis for further understanding of the pathogenic mechanisms of withdrawal symptoms in heroin addicts.
Collapse
Affiliation(s)
- Zunyue Zhang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongjin Wu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qingyan Peng
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhenrong Xie
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fengrong Chen
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuru Ma
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yizhi Zhang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong Zhou
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiqing Yang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng Chen
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shaoyou Li
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongjin Zhang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Weiwei Tian
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan Wang
- Department of Research and Development, Echo Biotech Co., Ltd, Beijing, China
| | - Yu Xu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huayou Luo
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Zhu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi-Qun Kuang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juehua Yu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kunhua Wang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan University, Kunming, China
| |
Collapse
|