1
|
Zhang L, Zhu YG, Guo R, Ning Y, Feng J, Chen XL, Zhu JF. PVA Composite Hydrogel Film for Rust Removal of an Ancient Chinese Fragile Bronze Artifact. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5312-5322. [PMID: 39968982 DOI: 10.1021/acs.langmuir.4c04775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
In heritage conservation, bronze artifacts are highly valued for their unique historical and cultural significance. However, due to the complex environmental factors and the long erosion of time, many bronze artifacts commonly face more severe rust issues, directly leading to fragility and even damage. Traditional rust removal methods often failed to effectively eliminate corrosion of fragile bronze artifacts and may cause irreversible damage, particularly for the delicate bronze artifacts with complicated surfaces. Therefore, there is an urgent need to explore milder and more efficient rust removal techniques for fragile bronze artifacts. This work reports a composite hydrogel film composed of poly(vinyl alcohol) (PVA) hydrogel and the chelating agent ethylenediaminetetraacetic acid (EDTA) based on a solvent-exchange method, which is further applied to remove copper rust from fragile bronze antiquities via surface attachment, hydrogel film formation, and the peel off process. EDTA reacts with metal oxides during the hydrogel film formation process. The copper rust was then removed from the surface of the artifact along with the hydrogel film. The PVA composite hydrogel film is further peeled off from the surface of fragile bronze antiquities due to its good toughness, effectively removing copper rust. The fabricated PVA composite hydrogel film was tested to clean a fragile bronze artifact excavated from Shaanxi Province in China, which can remove ∼90% of the copper rust from the surface. This indicates the effectiveness and feasibility of the PVA-based hydrogel film in the restoration and protection of fragile bronze artifacts.
Collapse
Affiliation(s)
- Li Zhang
- School of Conservation Science & Technology for Cultural Heritage, School of Material Science and Engineering, Shaanxi University of Science &Technology, Xi'an 710021, PR China
- Key Laboratory of Materials & Technology for Underground Cultural Heritage Conservation, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yao-Ge Zhu
- School of Conservation Science & Technology for Cultural Heritage, School of Material Science and Engineering, Shaanxi University of Science &Technology, Xi'an 710021, PR China
- Key Laboratory of Materials & Technology for Underground Cultural Heritage Conservation, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Rui Guo
- School of Conservation Science & Technology for Cultural Heritage, School of Material Science and Engineering, Shaanxi University of Science &Technology, Xi'an 710021, PR China
- Xi'an Institute of Archaeology and Conservation on Cultural Heritage, Xi'an 710068, China
| | - Yan Ning
- Xi'an Institute of Archaeology and Conservation on Cultural Heritage, Xi'an 710068, China
- School of Cultural Heritage, Northwest University, Xi'an 710127, China
| | - Jian Feng
- Xi'an Institute of Archaeology and Conservation on Cultural Heritage, Xi'an 710068, China
| | - Xiang-Li Chen
- School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710016, China
| | - Jian-Feng Zhu
- School of Conservation Science & Technology for Cultural Heritage, School of Material Science and Engineering, Shaanxi University of Science &Technology, Xi'an 710021, PR China
- Key Laboratory of Materials & Technology for Underground Cultural Heritage Conservation, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| |
Collapse
|
2
|
Rahmanian O, Dinari M, Mohammadi N, Aliakbarian L. Synthesis, characterization, and adsorption performance of naphthalene-based covalent organic polymer for high-efficiency methylene blue removal. Sci Rep 2024; 14:29029. [PMID: 39580577 PMCID: PMC11585619 DOI: 10.1038/s41598-024-80723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024] Open
Abstract
In this study, a novel naphthalene-based covalent organic polymer (N-COP) was synthesized and investigated as an advanced adsorbent for the efficient removal of Methylene Blue (MB) from aqueous solutions. The polymer was synthesized through a polycondensation reaction between cyanuric chloride and 1,5-dihydroxynaphthalene, followed by thorough purification. Comprehensive characterization was performed using Fourier Transform Infrared (FT-IR) spectroscopy, X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Brunauer-Emmett-Teller (BET) surface area analysis, and Field Emission Scanning Electron Microscopy (FE-SEM), confirming the successful formation of the porous polymer with a high surface area and thermal stability. Key adsorption parameters including pH, contact time, and initial MB concentration were systematically optimized. The adsorption behavior followed the Langmuir isotherm model under conditions of pH 7 and a contact time of 30 min, indicating a maximum uptake capacity of 90.09 mg/g, while kinetic analysis revealed a strong fit with the pseudo-second-order model. These results demonstrate that N-COP is a promising candidate for environmental applications (in compression with other adsorbents), particularly in the removal of MB from wastewater, offering an eco-friendly, high-efficiency solution to mitigate water pollution.
Collapse
Affiliation(s)
- Omid Rahmanian
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Dinari
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran.
| | - Nasim Mohammadi
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Leila Aliakbarian
- Food Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
3
|
Farasati Far B, Naimi-Jamal MR, Jahanbakhshi M, Keihankhadiv S, Baradarbarjastehbaf F. Enhanced methylene blue adsorption using single-walled carbon nanotubes/chitosan-graft-gelatin nanocomposite hydrogels. Sci Rep 2024; 14:19217. [PMID: 39160184 PMCID: PMC11333742 DOI: 10.1038/s41598-024-69969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
In the present study, single-walled carbon nanotubes (SWCNTs) incorporating chitosan-graft-gelatin (CS-g-GEL/SWCNTs) hydrogels were fabricated with multiple advantages, including cost-effectiveness, high efficiency, biodegradability, and ease of separation for methylene blue (MB) dye from aqueous solution. To verify the successful formulation of the prepared hydrogels, various characterization methods such as NMR, FTIR, XRD, FE-SEM, TGA, BET, and EDX were employed. The removal efficiency of CS-g-GEL/SWCNTs nanocomposite hydrogel increased significantly to 98.87% when the SWCNTs percentage was increased to 20%. The highest adsorption was observed for pH = 9, an adsorbent dose = 1.5 g L-1, a temperature = 25 °C, a contact time = 60 min, and a contaminant concentration = 20 mg L-1. Based on the thermodynamic results, spontaneous adsorption occurred from a negative Gibbs free energy (ΔG°). In addition, the thermodynamic analysis of the adsorption process revealed an average enthalpy of - 21.869 kJ mol-1 for the adsorption process at a temperature range of 25-45 °C, which indicates its spontaneous and exothermic behavior. The Langmuir isotherm model was successfully used to describe the equilibrium behavior of adsorption. The pseudo-first-order model better described adsorption kinetics compared to the pseudo-second-order, intra-particle, and Elovich models. CS-g-GEL/SWCNTs hydrogels have improved reusability for five consecutive cycles, suggesting that they may be effective for removing anionic dyes from aquatic environments.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Narmak, Tehran, Iran.
| | - Mehdi Jahanbakhshi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Shadi Keihankhadiv
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44_100, Gliwice, Poland
| | - Farid Baradarbarjastehbaf
- Faculty of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, University of Pécs, Pécs, Hungary
| |
Collapse
|
4
|
Belay Getahun M, Yadeta Ejeta S, Imae T, Chu JP. Effect of a three-dimensional nanotube array substrate on photocatalytic conversion performance of CO 2 gas to methanol by amine-loaded CuO/ZnO catalysts. J Colloid Interface Sci 2024; 674:118-127. [PMID: 38917712 DOI: 10.1016/j.jcis.2024.06.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/27/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The photocatalytic conversion of CO2 gas into energy-dense hydrocarbons holds the potential to address both environmental and energy problems. Catalysts consisting of CuO clusters/nanoparticles and ZnO nanorods on a metallic nanotube array (MeNTA) silicon substrate were utilized for CO2 reduction. The surface of the catalysts was modified with 3-amino-propyltriethoxysilane (APTES), the amine terminal of which can selectively bind CO2 gas. When photocatalytic CO2 reduction was performed with varying APTES and CuO contents, the highest methanol production of 4.5 mmol/g(catalyst) was obtained at 10 wt% APTES and 7.5 mM CuO contents. The high yield in the present work in comparison with previous reports is due to some advantages of the present catalytic system such as its enhanced activity, significant selectivity, and easy production: Nanometer-sized CuO produced by femtosecond pulse laser irradiation provides a larger active surface per volume and a free surface without a protector, which is favorable for advancing the catalytic activity. The formation of a heterojunction interface in a nanocomposite of p-type CuO and n-type ZnO increases holes at the valence band level of CuO, resulting in advantageous photovoltaic efficiency. The introduction of APTES on the catalyst surface enhances CO2 adsorption and brings about CO2 gas near the catalyst to accelerate the reaction rate. Finally, a three-dimensional tube array on the substrate enlarges the surface per volume for catalyst-loading compared to the two-dimensional substrate. Thus, the proposed catalytic system consisting of amine-loaded CuO/ZnO constructed on a three-dimensional nanotube array substrate is preferable for the photocatalytic conversion of CO2 gas to methanol.
Collapse
Affiliation(s)
- Minale Belay Getahun
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Shibiru Yadeta Ejeta
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Toyoko Imae
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Jinn P Chu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
5
|
Reda Aly A, El-Demerdash AG, Sadik W, El Rafy E, Shoeib T. Upcycling of sugar refining mud solid waste as a novel adsorbent for removing methylene blue and Congo red from wastewater. RSC Adv 2024; 14:13505-13520. [PMID: 38689825 PMCID: PMC11060308 DOI: 10.1039/d4ra01451k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
The feasibility of utilizing the mud solid waste (MSW) produced during the carbonation process of sugar refining as a cost-effective and environmentally friendly alternative for the water removal of methylene blue (MB) and Congo red (CR), being highly utilized organic dyes representing cationic and anionic species, respectively is presented. Prior to its use, the MSW was dried at 110 °C for 24 h and sieved through a 100-mesh screen. The chief constituent of the MSW utilized was CaCO3, with a point of zero charge (PZC) found at pH 8.4 and 7.96 m2 g-1 total surface area. XRD and FTIR data indicate the presence of interactions between the dyes and the MSW surface, indicating effective adsorption. Different variables, such as initial dye concentration, MSW weight, solution pH, contact time, and temperature, were all examined to determine the optimal dye removal conditions. A central composite design (CCD) approach based on response surface methodology (RSM) modeling was utilized to identify statistically significant parameters for MB and CR adsorption capacities onto the MSW adsorbent. The removal equilibrium was typically reached in 120 minutes, with the greatest removal efficiency of CR taking place at pH 2 and 328 K, while the highest MB removal efficiency was obtained at pH 12 and 296 K. Kinetic studies suggest the adsorption of both dyes on the MSW follow pseudo-second-order rates, as evident through the high correlations obtained. Linearized and non-linearized Langmuir models showed strong correlations indicating maximum adsorption capacities of 86.6 and 72.3 mg g-1 for MB and CR, respectively. High regeneration and reusability potential of the MSW was demonstrated especially for the adsorption of CR, where the removal efficiency was nearly constant throughout five adsorption cycles, ranging from 93 to 91%, while the reduction in the removal for MB was much more significantly impacted, diminishing from 95 to 79% after the five cycles.
Collapse
Affiliation(s)
- Aly Reda Aly
- Materials Science Department, Institute of Graduate Studies and Research, Alexandria University Alexandria Egypt
- Department of Chemistry, The American University in Cairo Egypt
| | - Abdel-Ghafar El-Demerdash
- Materials Science Department, Institute of Graduate Studies and Research, Alexandria University Alexandria Egypt
| | - Wagih Sadik
- Materials Science Department, Institute of Graduate Studies and Research, Alexandria University Alexandria Egypt
| | - Essam El Rafy
- Materials Science Department, Institute of Graduate Studies and Research, Alexandria University Alexandria Egypt
| | - Tamer Shoeib
- Department of Chemistry, The American University in Cairo Egypt
| |
Collapse
|
6
|
Amir D, Nasaruddin RR, Yousefi M, Mastuli MS, Sulaiman S, Alam MZ, Engliman NS. Investigating the synthesis parameters of durian skin-based activated carbon and the effects of silver nanocatalysts on its recyclability in methylene blue removal. DISCOVER NANO 2024; 19:32. [PMID: 38386194 PMCID: PMC10883905 DOI: 10.1186/s11671-024-03974-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Activated carbon (AC) is the most common and economically viable adsorbent for eliminating toxic organic pollutants, particularly dyes, from wastewater. Its widespread adoption is due to the simplicity and affordable production of AC, wherein low-cost agricultural wastes, such as durian skin can be used. Converting durian skin into AC presents a promising solution for its solid waste management. However, inherent drawbacks such as its non-selectivity, relatively short lifespan and laborious replacement and recovery processes diminish the overall efficacy of AC as an adsorbent. To address these challenges, the immobilisation of metal nanocatalysts such as silver nanoparticles (AgNPs) is one of the emerging solutions. AgNPs can facilitate the regeneration of the adsorption sites of AC by catalysing the conversion of the adsorbed dyes into harmless and simpler molecules. Nevertheless, the immobilisation of AgNPs on AC surface can be challenging as the pore size formation of AC is hard to control and the nanomaterials can easily leach out from the AC surface. Hence, in this study, we synthesised AC from durian skin (DS) and immobilised AgNPs on the AC-DS surface. Then, we used methylene blue (MB) removal for studying the adsorption capability and recyclability of the AC-DS. In the synthesis of AC-DS, the influences of reaction temperature, activating agent, and acid-washing to its capability in adsorptive removal of MB in solution were first determined. It was found that 400 °C, KOH activating agent, and the presence of acid-washing (50% of HNO3) resulted in AC-DS with the highest percentage of MB removal (91.49 ± 2.86%). Then, the overall results from three recyclability experiments demonstrate that AC-DS with immobilised AgNPs exhibited higher MB removal after several cycles (up to 6 cycles) as compared to AC-DS alone, proving the benefit of AgNPs for the recyclability of AC-DS. We also found that AgNPs/Citrate@AC-DS exhibited better adsorption capability and recyclability as compared to AgNPs/PVP@AC-DS indicating significant influences of type of stabilisers in this study. This study also demonstrates that the presence of more oxygen-containing functional groups (i.e., carboxyl and hydroxyl functional groups) after acid-washing on AC-DS and in citrate molecules, has greater influence to the performance of AC-DS and AgNPs/Citrate@AC-DS in the removal of MB as compared to the influences of their BET surface area and pore structure. The findings in this study have the potential to promote and serve as a guideline for harnessing the advantages of nanomaterials, such as AgNPs, to enhance the properties of AC for environmental applications.
Collapse
Affiliation(s)
- Dzilal Amir
- Department of Chemical Engineering and Sustainability, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia
| | - Ricca Rahman Nasaruddin
- Department of Chemical Engineering and Sustainability, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia.
- Bioenvironmental Engineering Research Centre, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia.
| | - Maryam Yousefi
- Department of Chemical Engineering and Sustainability, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia
| | - Mohd Sufri Mastuli
- School of Chemistry and Environment, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
- Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Sarina Sulaiman
- Department of Chemical Engineering and Sustainability, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia
| | - Md Zahangir Alam
- Department of Chemical Engineering and Sustainability, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia
- Bioenvironmental Engineering Research Centre, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia
| | - Nurul Sakinah Engliman
- Department of Chemical Engineering and Sustainability, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia
- Bioenvironmental Engineering Research Centre, Kulliyyah of Engineering, International Islamic University Malaysia, Jalan Gombak, 53100, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Osooli P, Yamini Y, Tabibpour M, Nasrollahi SS, Nikfarjam N. Electrophoretically deposited sulfonated poly(styrene-co-divinylbenzene) on a screw for microextraction of cationic dyes from aqueous solutions. J Sep Sci 2023; 46:e2300421. [PMID: 37688348 DOI: 10.1002/jssc.202300421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
In the present work, a novel solid-phase microextraction on a screw (MES) was employed to extract cationic dyes (malachite green, methylene blue, and rhodamine B) from food samples and fish breeding pool water. The sulfonated poly(styrene-co-divinylbenzene) was electrophoretically deposited on the surface of the grooves of a screw. Then the screw was placed inside a silicon tube as a holder to create a channel to run a test solution through it. The extracted dyes on the coated screw were eluted by a suitable eluent. High-performance liquid chromatography with an ultraviolet/visible detector was utilized for the separation and analysis of the analytes. The effective parameters of the analyte extraction efficiency were optimized. Under optimum conditions, the limits of detection were 0.15 μg/L, and calibration curves were linear in the range of 0.50-250.00 μg/L, with coefficients of determination > 0.989 for all studied dyes. The relative standard deviations of intra and inter-day (n = 3) were in the range of 2.8%-7.0% and 7.0%-9.5%, respectively. The MES was applied as a simple and repeatable method with acceptable relative recoveries (82.0%-103.0%) for the determination of cationic dyes in grape nectar, ice pop, jelly powder, and fish breeding pool water.
Collapse
Affiliation(s)
- Payam Osooli
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | | | | | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
| |
Collapse
|
8
|
High-performance supercapacitors using synergistic hierarchical Ni-doped copper compounds/activated carbon composites with MXenes and carbon dots as simultaneous performance enhancers. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Moghadaskhou F, Tadjarodi A, Mollahosseini A, Maleki A. Synthesis of UiO-66-Sal-Cu(OH) 2 by a Simple and Novel Method: MOF-Based Metal Thin Film as a Heterogeneous Catalyst for Olefin Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4021-4032. [PMID: 36633596 DOI: 10.1021/acsami.2c18907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs), particularly UiO-66-NH2, are employed as a catalyst in many industrial catalyst applications. As converting catalysts into thin film significantly increases their catalytic properties for the epoxidation of olefins, we report a general approach to synthesizing MOF thin films (UiO-66-Sal-Cu(OH)2). Using the postsynthesis method (PSM), UiO-66-NH2 was functionalized with salicylaldehyde and entrapped on copper hydroxide nanoparticle surfaces using a modern strategy (MOF thin film). We used field-emission scanning electron microscopy (FE-SEM), EDX (energy-dispersive X-ray analysis), XRD (X-ray diffraction), FT-IR (Fourier transform infrared), BET (Brunauer-Emmett-Teller), TGA (thermogravimetric analysis), XPS (X-ray photoelectron spectroscopy), and ICP-MS (inductively coupled plasma mass spectrometry) to determine the structure and morphology of the synthesized UiO-66-Sal-Cu(OH)2. The oxidation of cyclooctene by the UiO-66-Sal-Cu(OH)2 thin film was studied. Due to its advantages, such as being environmentally friendly (base metal-loaded catalyst, room temperature, solvent-free reaction), reusability, and high yield, this compound can be an appropriate catalyst for the oxidation of olefins.
Collapse
Affiliation(s)
- Fatemeh Moghadaskhou
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Afsaneh Mollahosseini
- Research Laboratory of Spectroscopy & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran
| |
Collapse
|
10
|
Umegaki T, Noguchi D, Fukumoto T. Decomposition of Nitrous Oxide using a Copper‐supported Shirasu Catalyst. ChemistrySelect 2022. [DOI: 10.1002/slct.202201763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tetsuo Umegaki
- Department of Materials and Applied Chemistry College of Science and Technology Nihon University 1-8-14, Kanda Surugadai Chiyoda-ku Tokyo 101-8308
| | - Daisuke Noguchi
- National Institute of Technology Miyakonojo College 473-1, Yoshio Miyakonojo Miyazaki 885-8567
| | - Tsubasa Fukumoto
- Takachiho Shirasu Co. Nakakirishima 1719 Yamada Miyakonojo Miyazaki 889-4602
| |
Collapse
|
11
|
Behera M, Kumari N, Raza K, Singh R. Fabrication of glutathione functionalized self-assembled magnetite nanochains for effective removal of crystal violet and phenol red dye from aqueous matrix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72260-72278. [PMID: 35303233 DOI: 10.1007/s11356-022-19520-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
A novel fabrication of magnetite (Fe3O4) nanochains, surface functionalized with glutathione (GSH), has been attempted through a basic wet reduction method, coalesced with oxidative etching for the removal of crystal violet (CV) and phenol red (PR) from an aqueous solution. The structural and functional characterizations of GSH@Fe3O4 MNPs were performed using SEM-EDX, DLS, XRD, and FTIR. The nanochain-structured adsorbent was found to have an average size of 24 ± 1.29 nm and a zeta potential value of - 6.44 mV. The batch experiments showed that GSH@Fe3O4 MNPs have a brilliant removal efficiency of 97% and 79% for CV and PR dyes, respectively, within a period of 60 min. The influence of different operational parameters like adsorbent dosage, pH, temperature, reaction time, and initial dye concentration on the removal behaviour of the adsorbent was studied in detail. The adsorbate-adsorbent reaction was tested over isotherm models, and the reaction fitted well for Langmuir isotherm with an excellent qmax value of 1619.5 mg/g and 1316.16 mg/g for CV and PR dye, respectively. The experimental results were also validated using different reaction kinetics, and it was found that the pseudo-first-order model fits well for PR dye adsorption (R2 = 0.91), while adsorption of CV dye was in best agreement with the pseudo-second-order kinetic model (R2 = 0.98). Thermodynamic studies revealed that the adsorption reaction was spontaneous and endothermic in nature. Furthermore, GSH@Fe3O4 MNPs can be reused effectively up to 5 cycles of dye removal. Major mechanisms involved in the adsorption reaction were expected to be electrostatic attraction, hydrogen bonding, and π-interactions. The efficiency of GSH@Fe3O4 MNPs in real water samples suggested that it has a high potential for dye removal from complex aqueous systems and could be used as an effective alternative for remediation of dyes contaminated water.
Collapse
Affiliation(s)
- Monalisha Behera
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer-305817, Rajasthan, India
| | - Nisha Kumari
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer-305817, Rajasthan, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Rajasthan, Ajmer-305817, India
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer-305817, Rajasthan, India.
| |
Collapse
|
12
|
Mokoba T, Liu Y, Wu Y, Zhang TC, Yuan S. Agave-Angustifolia-like Cu 3Mo 2O 9 Nanoplate-Coated Copper Mesh for Effective Emulsion Separation and Photocatalytic Degradation of Soluble Dyes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Thabang Mokoba
- Low-carbon Technology and Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yajie Liu
- Low-carbon Technology and Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yue Wu
- Low-carbon Technology and Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tian Cheng Zhang
- Civil and Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, Nebraska 68182-0178, United States
| | - Shaojun Yuan
- Low-carbon Technology and Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
Tanpichai S, Boonmahitthisud A, Soykeabkaew N, Ongthip L. Review of the recent developments in all-cellulose nanocomposites: Properties and applications. Carbohydr Polym 2022; 286:119192. [DOI: 10.1016/j.carbpol.2022.119192] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022]
|
14
|
Hien VX, Dong VT, Vuong DD, Chien ND. From Microurchins to V 2O 5 Nanowalls: Improved Synthesis through Vanadium Powder and Fast, Selective Adsorption of Methylene Blue. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:264-274. [PMID: 34958226 DOI: 10.1021/acs.langmuir.1c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Research on synthesizing micro- and nanosized materials directly from metals has attracted considerable attention because of its simplicity, ability to synthesize in large quantities, and high uniformity. This study proposes a simple method to synthesize high-uniformity or high-density V2O5 microurchins and nanowalls directly from vanadium powder. Remarkably, the synthesis condition of 60 °C for 1 h is considered to be an optimal condition to convert metals into micro- or nano-oxides. The as-synthesized V2O5 nanowalls can adsorb nearly 90% of methylene blue in the dark in 3 min. The adsorption selectivity of these samples with several pigments is investigated.
Collapse
Affiliation(s)
- Vu Xuan Hien
- School of Engineering Physics, Hanoi University of Science and Technology, 01 Dai Co Viet Street, Hanoi, 100000, Vietnam
| | - Vu Thanh Dong
- School of Engineering Physics, Hanoi University of Science and Technology, 01 Dai Co Viet Street, Hanoi, 100000, Vietnam
| | - Dang Duc Vuong
- School of Engineering Physics, Hanoi University of Science and Technology, 01 Dai Co Viet Street, Hanoi, 100000, Vietnam
| | - Nguyen Duc Chien
- School of Engineering Physics, Hanoi University of Science and Technology, 01 Dai Co Viet Street, Hanoi, 100000, Vietnam
| |
Collapse
|
15
|
Sarojini G, Babu SV, Rajamohan N, Rajasimman M, Pugazhendhi A. Application of a polymer-magnetic-algae based nano-composite for the removal of methylene blue - Characterization, parametric and kinetic studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118376. [PMID: 34656675 DOI: 10.1016/j.envpol.2021.118376] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/19/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The potential ability of synthesized PPy-Fe3O4-SW nano-composite to remove Methylene Blue (MB) from synthetic textile dye solution was investigated under batch conditions. Through parametric studies, the influence of process parameters namely solution pH, on the effective performance of nano-composite was studied. PPy - Fe3O4- SW nano-composite removed 99.14% of MB at the optimized conditions of pH-10, temperature - 25 °C, initial MB concentration - 50 mg/L, nano-composite dosage - 20 mg and contact time - 20 min. PPy - Fe3O4- SW nano-composite has a maximum sorption capacity of 666.66 mg/g. The kinetics and isotherm study revealed that the chromium adsorption obeys pseudo second order (PSO) model (R2 = 0.9941) and Freundlich isotherm (R2 = 0.9910) respectively. The PSO kinetic constant (K2) was found to be 0.000442 (g/mg) min. The thermodynamic feasibility was confirmed through negative values of standard free energy at all tested conditions. The characteristics of adsorption study were analyzed and the results of FTIR, SEM and EDS confirmed the uptake of MB by PPy-Fe3O4-SW nano-composite.
Collapse
Affiliation(s)
- G Sarojini
- Department of Petrochemical Engineering, SVS College of Engineering, Coimbatore, India
| | - S Venkatesh Babu
- Department of Petroleum Engineering, JCT College of Engineering & Technology, Coimbatore, India
| | - N Rajamohan
- Faculty of Engineering, Sohar University, Sohar, P C:311, Oman
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
16
|
Water Treatment from MB Using Zn-Ag MWCNT Synthesized by Double Arc Discharge. MATERIALS 2021; 14:ma14237205. [PMID: 34885360 PMCID: PMC8658634 DOI: 10.3390/ma14237205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022]
Abstract
A new type of nano-adsorbent zinc-silver nanoparticles ornamented by multi-walled carbon nanotubes (Zn-Ag MWCNT) was efficiently synthesized by double arc discharge using a newly designed rotating cylinder electrode. Zn-Ag MWCNT was characterized by different instrumental methods to get information about the sample shape, size, and crystallinity. Without irradiation, Zn-Ag MWCNT indicated significant potential for elimination against methylene blue (MB) which is dissolved in deionized water. When the adsorbent concentration was 0.1 g/L at normal 8 pH, the Zn-Ag MWCNTs were efficient in removing 97% of the MB from 40 mg/L that was dissolved in water for 10 min. The dye removal activity of (Zn-Ag) decorated MWCNTs was attributed to the influence of silver and zinc nanoparticles on the MWCNTs. Finally, this approach was both cost-effective and efficient.
Collapse
|
17
|
Álvarez AM, Guerrón DB, Montero Calderón C. Natural zeolite as a chromium VI removal agent in tannery effluents. Heliyon 2021; 7:e07974. [PMID: 34568598 PMCID: PMC8449171 DOI: 10.1016/j.heliyon.2021.e07974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/12/2021] [Accepted: 09/07/2021] [Indexed: 01/11/2023] Open
Abstract
This study concerns Cr(VI) removal using zeolites in a batch system for tannery effluent. In the initial stage, natural zeolite (ZN) and synthetic zeolite (ZS) were characterized, obtaining a Si/Al ratio of 4.64 and 1.60, and with predominant clinoptilolite and faujasite phases, the surface area of 9.34 and 25.82 m2/g and cation exchange capacity of 84.05 and 188.72 meq/100 g, respectively. Subsequently, ZN and ZS were activated with HCl and NaOH. Through preliminary tests, with a solution of K2Cr2O7, it was determined that the highest Cr(VI) removal for both, ZN and ZS, was with NaOH activation, obtaining 82 and 56% removal, respectively. According to Ecuadorian regulations, the Cr(VI) concentration exceeds the maximum permissible limits on the tannery effluent. For this effluent, it was determined that the highest Cr(VI) removal, 45%, is obtained with 1 g of ZN activated with NaOH and 100 mL of effluent. With ZN-NaOH, removal tests were carried out in a fixed bed with 5, 10, and 20 g of natural zeolite. The natural zeolite also has chromium removal capacity in the bed system, achieving similar removals to those obtained in the batch experiments, but decreasing the treatment time. Thus, both natural and synthetic zeolites can remove Cr(VI) in tannery effluents, achieving this effluent with permissible limits.
Collapse
Affiliation(s)
- Ana María Álvarez
- Universidad de las Fuerzas Armadas "ESPE" - Departamento de Ciencias de la Tierra y la Construcción - Maestría en Sistemas de Gestión Ambiental, Sangolquí, Ecuador
| | - Darío Bolaños Guerrón
- Universidad de las Fuerzas Armadas "ESPE" - Departamento de Ciencias de la Tierra y la Construcción - Maestría en Sistemas de Gestión Ambiental, Sangolquí, Ecuador.,Universidad de las Fuerzas Armadas "ESPE" - Centro de Nanociencia y Nanotecnología (CENCINAT), Sangolquí, Ecuador
| | - Carolina Montero Calderón
- Universidad de las Fuerzas Armadas "ESPE" - Departamento de Ciencias de la Tierra y la Construcción - Maestría en Sistemas de Gestión Ambiental, Sangolquí, Ecuador.,Facultad de Ingeniería Química, Universidad Central del Ecuador, Quito, Ecuador
| |
Collapse
|
18
|
Shojaei S, Shojaei S, Band SS, Farizhandi AAK, Ghoroqi M, Mosavi A. Application of Taguchi method and response surface methodology into the removal of malachite green and auramine-O by NaX nanozeolites. Sci Rep 2021; 11:16054. [PMID: 34362984 PMCID: PMC8346513 DOI: 10.1038/s41598-021-95649-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
In the present study, the simultaneous removal of malachite green (MG) and auramine-O (AO) dyes from the aqueous solution by NaX nanozeolites in a batch system is investigated. Taguchi method and response surface methodology (RSM) were used to optimize and model dye removal conditions. In order to do so, the effect of various factors (dyes concentration, sonication time, ionic strength, adsorbent dosage, temperature, and pH of the solution) on the amount of dye removal was evaluated by the Taguchi method. Then, the most important factors were chosen and modeled by the RSM method so as to reach the highest percentage of dye removal. The proposed quadratic models to remove both dyes were in good accordance with the actual experimental data. The maximum removal efficiencies of MG and AO dyes in optimal operating conditions were 99.07% and 99.61%, respectively. Also, the coefficients of determination (R2) for test data were 0.9983 and 0.9988 for MG and AO dyes, respectively. The reusability of NaX nanozeolites was evaluated during the adsorption process of MG and AO. The results showed that the adsorption efficiency decreases very little up to five cycles. Moreover, NaX nanozeolites were also applied as adsorbents to remove MG and AO from environmental water samples, and more than 98.1% of both dyes were removed from the solution in optimal conditions.
Collapse
Affiliation(s)
- Siroos Shojaei
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, 98135-674, Iran.
| | - Saeed Shojaei
- Department of Arid and Mountainous Regions Reclamation, Faculty of Natural Resources, University of Tehran, Tehran, Iran
| | - Shahab S Band
- Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, 64002, Yunlin, Taiwan.
| | | | - Milad Ghoroqi
- Department of Civil Engineering, Islamic Azad University, Central Tehran Branch, Tehran, P.O. Box 13185, Iran
| | - Amir Mosavi
- John von Neumann Faculty of Informatics, Obuda University, 1034, Budapest, Hungary
| |
Collapse
|
19
|
Palani G, Arputhalatha A, Kannan K, Lakkaboyana SK, Hanafiah MM, Kumar V, Marella RK. Current Trends in the Application of Nanomaterials for the Removal of Pollutants from Industrial Wastewater Treatment-A Review. Molecules 2021; 26:molecules26092799. [PMID: 34068541 PMCID: PMC8126079 DOI: 10.3390/molecules26092799] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
In the recent decades, development of new and innovative technology resulted in a very high amount of effluents. Industrial wastewaters originating from various industries contribute as a major source of water pollution. The pollutants in the wastewater include organic and inorganic pollutants, heavy metals, and non-disintegrating materials. This pollutant poses a severe threat to the environment. Therefore, novel and innovative methods and technologies need to adapt for their removal. Recent years saw nanomaterials as a potential candidate for pollutants removal. Nowadays, a range of cost-effective nanomaterials are available with unique properties. In this context, nano-absorbents are excellent materials. Heavy metal contamination is widespread in underground and surface waters. Recently, various studies focused on the removal of heavy metals. The presented review article here focused on removal of contaminants originated from industrial wastewater utilizing nanomaterials.
Collapse
Affiliation(s)
- Geetha Palani
- Physics Research Centre, Dhanalakshmi College of Engineering, Tambaram 601301, Chennai, India;
| | - A. Arputhalatha
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA;
| | - Karthik Kannan
- School of Advanced Materials and Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gum-si, Gyeongbuk 39177, Korea;
| | - Sivarama Krishna Lakkaboyana
- School of Ocean Engineering, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu DarulIman, Malaysia
- Correspondence:
| | - Marlia M. Hanafiah
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India;
| | - Ravi Kumar Marella
- Department of Chemistry (H & S), PACE Institute of Technology & Sciences, Ongole 523001, Prakasam, India;
| |
Collapse
|