1
|
Abedin I, Singha H, Singh S, Mukherjee T, Kim HW, Kundu S. Riverine Realities: Evaluating Climate Change Impacts on Habitat Dynamics of the Critically Endangered Gharial ( Gavialis gangeticus) in the Indian Landscape. Animals (Basel) 2025; 15:896. [PMID: 40150425 PMCID: PMC11939341 DOI: 10.3390/ani15060896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
The endemic and critically endangered gharial, Gavialis gangeticus, experienced a severe population decline in its range. However, conservation efforts, notably through the implementation of "Project Crocodile" in India, have led to a significant recovery of its population. The present study employs an ensemble Species Distribution Model (SDM) to delineate suitable habitats for G. gangeticus under current and future climatic scenarios to understand the impact of climate change. The model estimates that 46.85% of the area of occupancy is suitable under the present scenario, with this suitable area projected to increase by 145.16% in future climatic conditions. States such as Madhya Pradesh, Uttar Pradesh, and Assam are projected to experience an increase in habitat suitability, whereas Odisha and Rajasthan are anticipated to face declines. The study recommends conducting ground-truthing ecological assessments using advanced technologies and genetic analyses to validate the viability of newly identified habitats in the Lower Ganges, Mahanadi, and Brahmaputra River systems. These areas should be prioritized within the Protected Area network for potential translocation sites allocation. Collaborative efforts between the IUCN-SSC Crocodile Specialist Group and stakeholders are vital for prioritizing conservation and implementing site-specific interventions to protect the highly threatened gharial population in the wild.
Collapse
Affiliation(s)
- Imon Abedin
- Department of Zoology, Bodoland University, Kokrajhar 783370, India
| | - Hilloljyoti Singha
- Department of Zoology, Bodoland University, Kokrajhar 783370, India
- Centre for Wildlife Research and Biodiversity Conservation, Bodoland University, Kokrajhar 783370, India
| | - Shailendra Singh
- Turtle Survival Alliance Foundation India (TSAFI), Lucknow 226021, India
| | - Tanoy Mukherjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| | - Shantanu Kundu
- Ocean and Fisheries Development International Cooperation Institute, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
2
|
Sharma SP, Ghazi MG, Katdare S, Badola R, Hussain SA. Population status and genetic assessment of mugger (Crocodylus palustris) in a tropical regulated river system in North India. Sci Rep 2024; 14:7438. [PMID: 38548905 PMCID: PMC10978964 DOI: 10.1038/s41598-024-57983-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/24/2024] [Indexed: 04/01/2024] Open
Abstract
For rewilding the depleted crocodylian populations in India, a targeted 'one-species one area' based conservation approach was adopted in the early-1970s. Suitable habitats were identified and designated as protected areas, specifically targeted to recover a particular crocodylian species. A ~ 610 km stretch of Chambal River in the Ganga River Basin was declared as National Chambal Sanctuary to restore the 'Critically Endangered' gharial (Gavialis gangeticus), where active management of mugger (Crocodylus palustris) was discouraged. In the present study, we examined the population trends, occupancy, and genetic status of mugger by conducting population monitoring and genetic assessment to understand the status of potentially competitive mugger in the Sanctuary. Our finding suggests that the mugger population has notably increased and colonised the Sanctuary. We observed a moderate level of genetic diversity in the mugger, which was relatively higher compared to the gharial in the Sanctuary. The rapid colonization of ecological generalist mugger raises concerns about potential competition with ecological specialist gharial threatening its long-term sustainability. Considering the coexistence dynamics between the species, it is essential to extend adaptive management strategies for mugger to ensure successful recovery of gharial population in the Sanctuary.
Collapse
Affiliation(s)
- Surya Prasad Sharma
- Wildlife Institute of India, Chandrabani, P.O. Box # 18, Dehra Dun, 248002, Uttarakhand, India
| | | | - Suyash Katdare
- Wildlife Institute of India, Chandrabani, P.O. Box # 18, Dehra Dun, 248002, Uttarakhand, India
| | - Ruchi Badola
- Wildlife Institute of India, Chandrabani, P.O. Box # 18, Dehra Dun, 248002, Uttarakhand, India
| | - Syed Ainul Hussain
- Wildlife Institute of India, Chandrabani, P.O. Box # 18, Dehra Dun, 248002, Uttarakhand, India.
| |
Collapse
|
3
|
Das G, Das SP, Bit A, Sahoo L, Swain SK, Raghavendra CH, Krishnaprasoon NP, Sahoo SK, Das P. Development of novel SSR markers and validation by assessing the genetic diversity of endangered Deccan mahseer, Tor khudree. Mol Biol Rep 2024; 51:290. [PMID: 38329563 DOI: 10.1007/s11033-023-09188-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/20/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND The Deccan mahseer, Tor khudree (Sykes, 1839) is a potential game and food fish species belonging to the family cyprinidae and is categorized as endangered. Its distribution is restricted to southern part of India, specifically to Peninsular Rivers. This study is first to assess the genetic diversity and differentiation in Tor khudree by developing novel simple sequence repeat (SSR) markers. METHODS AND RESULTS Low depth next generation sequencing followed by sequence analysis in MISA software identified 187,649 SSRs. The novel fourteen validated SSR loci were used for population genetic analysis. All of the SSR loci were highly informative with mean PIC > 0.5. High mean allelic richness (9.29) observed heterozygosity (0.98) and expected heterozygosity (0.79) were observed across the loci. However, genetic differentiation was low but significant (0.052). Negative FIS values were observed in both locus-wise and populations indicating the presence of high heterozygosity. Intrapopulation variation was found to be high (96.29%). The population structure revealed two genetic stocks. CONCLUSIONS The results from the present study including the highly polymorphic markers developed would be a useful resource for further research on population genetics and conservation genetics of the species.
Collapse
Affiliation(s)
- Gargee Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | | | - Amrita Bit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - Subrat Kumar Swain
- Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan University, Bhubaneswar, India
| | | | - N P Krishnaprasoon
- PMFGR Centre of ICAR-National Bureau of Fish Genetic Resources, CMFRI Campus, Kochi, India
| | - Sangram Ketan Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
- Aquaculture Productions and Environment Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India
| | - Paramananda Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002, India.
| |
Collapse
|
4
|
Cetkovská E, Brandlová K, Ogden R, Černá Bolfíková B. Evaluation of the Impact of Population Management on the Genetic Parameters of Selected Spiral-Horned Antelopes. BIOLOGY 2024; 13:104. [PMID: 38392322 PMCID: PMC10886411 DOI: 10.3390/biology13020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
The rapid loss of biodiversity and the associated reduction and fragmentation of habitats means that ex situ populations have become an important part of species conservation. These populations, which are often established from a small number of founders, require careful management to avoid the negative effects of genetic drift and inbreeding. Although the inclusion of molecular data is recommended, their availability for captive breeding management remains limited. The aim of this study was to evaluate the relationship between the levels of genetic diversity in six spiral-horned antelope taxa bred under human care and their respective management strategies, conservation status, demography, and geographic origin, using 10 nuclear DNA microsatellite loci and mitochondrial control region DNA sequences. Our findings include associations between genetic diversity and management intensity but also with the diversity and contribution of wild populations to captive founders, with some populations apparently composed of animals from divergent wild lineages elevating captive genetic diversity. When population sizes are large, the potential advantages of maximizing genetic diversity in widely outcrossed populations may need careful consideration with respect to the potential disruption of adaptive diversity. Genetic data serve as a robust tool for managing captive populations, yet their interpretation necessitates a comprehensive understanding of species biology and history.
Collapse
Affiliation(s)
- Ema Cetkovská
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic
| | - Karolína Brandlová
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic
| | - Rob Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Barbora Černá Bolfíková
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic
| |
Collapse
|
5
|
Hong YK, Kim KR, Kim KS, Bang IC. The Impact of Weir Construction in Korea's Nakdong River on the Population Genetic Variability of the Endangered Fish Species, Rapid Small Gudgeon ( Microphysogobio rapidus). Genes (Basel) 2023; 14:1611. [PMID: 37628662 PMCID: PMC10454870 DOI: 10.3390/genes14081611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Microphysogobio rapidus, an endemic cyprinid fish species found exclusively in Korea, has been identified in only two tributaries of the Nakdong River. The species predominantly occupies the near-gravel bottom waters within shallow sections of the middle and lower reaches of the river, characterized by swift currents. M. rapidus is currently recognized as a critically endangered species due to its distinct habitat preference, as well as the negative impacts of stream dam development and water environment pollution. In this study, we used 10 microsatellite markers to examine the genetic diversity of M. rapidus in the upper Nam (UN), lower Nam (LN), and Deokcheon Rivers (DC) in Korea, with a specific focus on assessment of the impact of dam development. Fish sampled from the UN and LN showed a greater average number of alleles and allelic richness (A = 18.3-18.4, AR = 13.8) compared to those from DC (A = 11.8, AR = 11.5). The observed heterozygosity among the fish examined ranged from HO = 0.748 (LN) to 0.766 (DC). All three fish groups exhibited a significant departure from Hardy-Weinberg equilibrium (HWE) (p < 0.05). Despite having the largest effective population size (Ne = 175 and 157, respectively), the fish sampled from UN and LN showed the highest inbreeding coefficients (FIS = 0.056-0.053, respectively), which were highly significant (p < 0.01). In contrast, the fish sampled from DC exhibited the smallest effective population size (Ne = 61) and showed an inbreeding coefficient close to zero (p > 0.05). BOTTLENECK analysis and estimated M-ratio values (0.341-0.372) revealed indications of past population size reduction in all fish groups examined. No significant genetic differentiation (FST < 0.05) was detected using the DAPC, STRUCTURE, and AMOVA among the fish studied. However, pairwise comparisons of FST between fish sampled from the Nam and Deokcheon Rivers revealed significant values (p < 0.001) ranging from 0.013 to 0.014. In addition, the closest genetic distance (0.026) was observed between UN and LN, while the greatest distance (0.087) was found between UN and DC. Analysis of gene flow rates among the fish examined indicated asymmetrical gene exchange within the Nam River, which was 31.51% in the downstream direction (from UN to LN), with a minimal gene flow rate (0.41%) in the upstream (from LN to UN) direction. The opposite trend was recorded between DC and LN, with a higher gene flow rate (29.74%) in the upstream direction compared to the downstream direction (0.12%). Our study highlighted the importance of implementing long-term conservation efforts focused on maintaining river integrity by removing water barriers such as weirs that impede fish migration and implementing active protection measures, such as aquaculture breeding and reasonable stocking practices, to preserve M. rapidus in the study area.
Collapse
Affiliation(s)
- Yang-Ki Hong
- Natural History Division, National Science Museum, Daejeon 34143, Republic of Korea;
| | - Kang-Rae Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea;
| | - Keun-Sik Kim
- Restoration Research Team (Fishes/Amphibians & Reptiles), Research Center for Endangered Species, National Institute of Ecology, Yeongyang-gun 36531, Republic of Korea;
| | - In-Chul Bang
- Department of Biosystem, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
6
|
Choudhury N, Sahu TK, Rao AR, Rout AK, Behera BK. An Improved Machine Learning-Based Approach to Assess the Microbial Diversity in Major North Indian River Ecosystems. Genes (Basel) 2023; 14:genes14051082. [PMID: 37239442 DOI: 10.3390/genes14051082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The rapidly evolving high-throughput sequencing (HTS) technologies generate voluminous genomic and metagenomic sequences, which can help classify the microbial communities with high accuracy in many ecosystems. Conventionally, the rule-based binning techniques are used to classify the contigs or scaffolds based on either sequence composition or sequence similarity. However, the accurate classification of the microbial communities remains a major challenge due to massive data volumes at hand as well as a requirement of efficient binning methods and classification algorithms. Therefore, we attempted here to implement iterative K-Means clustering for the initial binning of metagenomics sequences and applied various machine learning algorithms (MLAs) to classify the newly identified unknown microbes. The cluster annotation was achieved through the BLAST program of NCBI, which resulted in the grouping of assembled scaffolds into five classes, i.e., bacteria, archaea, eukaryota, viruses and others. The annotated cluster sequences were used to train machine learning algorithms (MLAs) to develop prediction models to classify unknown metagenomic sequences. In this study, we used metagenomic datasets of samples collected from the Ganga (Kanpur and Farakka) and the Yamuna (Delhi) rivers in India for clustering and training the MLA models. Further, the performance of MLAs was evaluated by 10-fold cross validation. The results revealed that the developed model based on the Random Forest had a superior performance compared to the other considered learning algorithms. The proposed method can be used for annotating the metagenomic scaffolds/contigs being complementary to existing methods of metagenomic data analysis. An offline predictor source code with the best prediction model is available at (https://github.com/Nalinikanta7/metagenomics).
Collapse
Affiliation(s)
- Nalinikanta Choudhury
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Tanmaya Kumar Sahu
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi 284003, India
| | - Atmakuri Ramakrishna Rao
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
- Indian Council of Agricultural Research (ICAR), New Delhi 110001, India
| | - Ajaya Kumar Rout
- ICAR-Central Inland Fisheries Research Institute, West Bengal 700120, India
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, India
| | - Bijay Kumar Behera
- ICAR-Central Inland Fisheries Research Institute, West Bengal 700120, India
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, India
| |
Collapse
|
7
|
Gomard Y, Sanchez M, Bonanno A, Caubit M, Clémencet J. Development and characterization of twenty microsatellite markers for Phelsuma inexpectata (Squamata: Gekkonidae), a critically endangered gecko endemic to Reunion Island. Mol Biol Rep 2023; 50:5501-5507. [PMID: 37043149 DOI: 10.1007/s11033-023-08426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND The Manapany day gecko (Phelsuma inexpectata) is endemic to the south of Reunion Island. Threatened by habitat fragmentation and loss, human activities and invasive species, P. inexpectata is considered as critically endangered. Conservation measures are required but data on the species are missing, notably on its genetic diversity and population structure for which no specific markers are available to date. Here, we aimed to develop molecular markers to allow genetic studies of P. inexpectata. METHODS AND RESULTS We developed and characterized 20 polymorphic microsatellite markers based on 23 P. inexpectata individuals sampled from 10 sites. Then, the markers were tested on a total of 101 individuals, 30 from a natural site and 71 from an anthropized site. The mean values of Na, Ho and He were 2.3 (± 0.2), 0.353 (± 0.053) and 0.345 (± 0.046) in the natural site and 2.8 (± 0.3), 0.345 (± 0.051) and 0.338 (± 0.048) in the anthropized site, respectively. Based on the combined loci, the probability of identity (PID) for unrelated specimens were 2.7 × 10-7 and 2.6 × 10-7 in the natural and anthropized site, respectively. CONCLUSIONS This work provides the first set of microsatellite markers for P. inexpectata, constituting a valuable tool to conduct classical genetic studies on the species, such as estimating genetic diversity, population structure and kinship relationships among individuals. Such studies will provide relevant information on P. inexpectata and will therefore be helpful in the implementation of conservation measures for this threatened species.
Collapse
Affiliation(s)
- Yann Gomard
- UMR PVBMT (Peuplements Végétaux Et Bioagresseurs en Milieu Tropical), Université de La Réunion, Saint-Pierre, La Réunion, France.
| | - Mickaël Sanchez
- UMR PVBMT (Peuplements Végétaux Et Bioagresseurs en Milieu Tropical), Université de La Réunion, Saint-Pierre, La Réunion, France
| | - Alicia Bonanno
- UMR PVBMT (Peuplements Végétaux Et Bioagresseurs en Milieu Tropical), Université de La Réunion, Saint-Pierre, La Réunion, France
| | - Margot Caubit
- UMR PVBMT (Peuplements Végétaux Et Bioagresseurs en Milieu Tropical), Université de La Réunion, Saint-Pierre, La Réunion, France
| | - Johanna Clémencet
- UMR PVBMT (Peuplements Végétaux Et Bioagresseurs en Milieu Tropical), Université de La Réunion, Saint-Pierre, La Réunion, France
- UMR PVBMT (Peuplements Végétaux Et Bioagresseurs en Milieu Tropical), Université de La Réunion, Saint-Denis, La Réunion, France
| |
Collapse
|
8
|
Lourenço-de-Moraes R, Campos FS, Cabral P, Silva-Soares T, Nobrega YC, Covre AC, França FGR. Global conservation prioritization areas in three dimensions of crocodilian diversity. Sci Rep 2023; 13:2568. [PMID: 36781891 PMCID: PMC9925794 DOI: 10.1038/s41598-023-28413-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Crocodilians are a taxonomic group of large predators with important ecological and evolutionary benefits for ecosystem functioning in the face of global change. Anthropogenic actions affect negatively crocodilians' survival and more than half of the species are threatened with extinction worldwide. Here, we map and explore three dimensions of crocodilian diversity on a global scale. To highlight the ecological importance of crocodilians, we correlate the spatial distribution of species with the ecosystem services of nutrient retention in the world. We calculate the effectiveness of global protected networks in safeguarding crocodilian species and provide three prioritization models for conservation planning. Our results show the main hotspots of ecological and evolutionary values are in southern North, Central and South America, west-central Africa, northeastern India, and southeastern Asia. African species have the highest correlation to nutrient retention patterns. Twenty-five percent of the world's crocodilian species are not significantly represented in the existing protected area networks. The most alarming cases are reported in northeastern India, eastern China, and west-central Africa, which include threatened species with low or non-significant representation in the protected area networks. Our highest conservation prioritization model targets southern North America, east-central Central America, northern South America, west-central Africa, northeastern India, eastern China, southern Laos, Cambodia, and some points in southeastern Asia. Our research provides a global prioritization scheme to protect multiple dimensions of crocodilian diversity for achieving effective conservation outcomes.
Collapse
Affiliation(s)
- Ricardo Lourenço-de-Moraes
- Programa de Pós-graduação em Ecologia e Monitoramento Ambiental (PPGEMA), Universidade Federal da Paraíba, Rio Tinto, PB, 58297-000, Brazil.
| | - Felipe S Campos
- NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisbon, Portugal.
- Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Catalunya, Spain.
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193, Cerdanyola del Vallès, Catalunya, Spain.
| | - Pedro Cabral
- NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312, Lisbon, Portugal
| | - Thiago Silva-Soares
- Herpeto Capixaba project, Instituto Biodiversidade Neotropical, Nova Guarapari, Guarapari, ES, 29206-400, Brazil
- Museu de História Natural do Sul do Estado do Espírito Santo, Universidade Federal do Espírito Santo, Jerônimo Monteiro, ES, 29550-000, Brazil
| | - Yhuri C Nobrega
- Projeto Caiman, Instituto Marcos Daniel, Vitória, ES, 29055-290, Brazil
- Departamento de Medicina Veterinária, Centro Universitário FAESA, Vitória, ES, 29053-360, Brazil
| | - Amanda C Covre
- Programa de Pós-graduacão em Ecologia de Ambientes Aquáticos Continentais (PEA), Universidade Estadual de Maringá, Maringá, PR, 87020-900, Brazil
| | - Frederico G R França
- Programa de Pós-graduação em Ecologia e Monitoramento Ambiental (PPGEMA), Universidade Federal da Paraíba, Rio Tinto, PB, 58297-000, Brazil
| |
Collapse
|
9
|
Characterization of 35 new microsatellite markers for the blacktip reef shark (Carcharhinus melanopterus) and cross-species amplification in eight other shark species. Mol Biol Rep 2023; 50:3205-3215. [PMID: 36707491 DOI: 10.1007/s11033-022-08209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/13/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Shark species are overfished at a global scale, as they are poached for the finning industry or are caught as bycatch. Efficient conservation measures require fine-scale spatial and temporal studies to characterize shark habitat use, infer migratory habits, analyze relatedness, and detect population genetic differentiation. Gathering these types of data is costly and time-consuming, especially when it requires collection of shark tissue samples. METHODS AND RESULTS Genetic tools, such as microsatellite markers, are the most economical sampling method for collecting genetic data, as they enable the estimation of genetic diversity, population structure and parentage relationships and are thus an efficient way to inform conservation strategies. Here, a set of 45 microsatellite loci was tested on three blacktip reef shark (Carcharhinus melanopterus) populations from three Polynesian islands: Moorea, Morane and Tenararo. The set was composed of 10 previously published microsatellite markers and 35 microsatellite markers that were developed specifically for C. melanopterus as part of the present study. The 35 novel and 10 existing loci were cross-amplified on eight additional shark species (Carcharhinus amblyrhynchos, C. longimanus, C. sorrah, Galeocerdo cuvier, Negaprion acutidens, Prionacea glauca, Rhincodon typus and Sphyrna lewini). These species had an average of 69% of successful amplification, considered if at least 50% of the individual samples being successfully amplified per species and per locus. CONCLUSIONS This novel microsatellite marker set will help address numerous knowledge gaps that remain, concerning genetic stock identification, shark behavior and reproduction via parentage analysis.
Collapse
|
10
|
Ghosh T, Kumar S, Sharma K, Kakati P, Sharma A, Mondol S. Consideration of genetic variation and evolutionary history in future conservation of Indian one-horned rhinoceros (Rhinoceros unicornis). BMC Ecol Evol 2022; 22:92. [PMID: 35858827 PMCID: PMC9301832 DOI: 10.1186/s12862-022-02045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022] Open
Abstract
Background The extant members of the Asian rhinos have experienced severe population and range declines since Pleistocene through a combination of natural and anthropogenic factors. The one-horned rhino is the only Asian species recovered from such conditions but most of the extant populations are reaching carrying capacity. India currently harbours ~ 83% of the global wild one-horned rhino populations distributed across seven protected areas. Recent assessments recommend reintroduction-based conservation approaches for the species, and implementation of such efforts would greatly benefit from detailed genetic assessments and evolutionary history of these populations. Using mitochondrial data, we investigated the phylogeography, divergence and demographic history of one-horned rhinos across its Indian range. Results We report the first complete mitogenome from all the extant Indian wild one-horned rhino populations (n = 16 individuals). Further, we identified all polymorphic sites and assessed rhino phylogeography (2531 bp mtDNA, n = 111 individuals) across India. Results showed 30 haplotypes distributed as three distinct genetic clades (Fst value 0.68–1) corresponding to the states of Assam (n = 28 haplotypes), West Bengal and Uttar Pradesh (both monomorphic). The reintroduced population of Uttar Pradesh showed maternal signatures of Chitwan National Park, Nepal. Mitochondrial phylogenomics suggests one-horned rhino diverged from its recent common ancestors ~ 950 Kya and different populations (Assam, West Bengal and Uttar Pradesh/Nepal) coalesce at ~ 190–50 Kya, corroborating with the paleobiogeography history of the Indian subcontinent. Further, the demography analyses indicated historical decline in female effective population size ~ 300–200 Kya followed by increasing trends during ~ 110–60 Kya. Conclusion The phylogeography and phylogenomic outcomes suggest recognition of three ‘Evolutionary Significant Units (ESUs)’ in Indian rhino. With ongoing genetic isolation of the current populations, future management efforts should focus on identifying genetically variable founder animals and consider periodic supplementation events while planning future rhino reintroduction programs in India. Such well-informed, multidisciplinary approach will be the only way to ensure evolutionary, ecological and demographic stability of the species across its range. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02045-2.
Collapse
|
11
|
Mahfooz S, Singh P, Akhter Y. A comparative study of microsatellites among crocodiles and development of genomic resources for the critically endangered Indian gharial. Genetica 2022; 150:67-75. [DOI: 10.1007/s10709-021-00148-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
|