1
|
Garrett M, Vasilkov V, Mauermann M, Devolder P, Wilson JL, Gonzales L, Henry KS, Verhulst S. Deciphering Compromised Speech-in-Noise Intelligibility in Older Listeners: The Role of Cochlear Synaptopathy. eNeuro 2025; 12:ENEURO.0182-24.2024. [PMID: 39788732 PMCID: PMC11842038 DOI: 10.1523/eneuro.0182-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Speech intelligibility declines with age and sensorineural hearing damage (SNHL). However, it remains unclear whether cochlear synaptopathy (CS), a recently discovered form of SNHL, significantly contributes to this issue. CS refers to damaged auditory-nerve synapses that innervate the inner hair cells and there is currently no go-to diagnostic test available. Furthermore, age-related hearing damage can comprise various aspects (e.g., hair cell damage, CS) that each can play a role in impaired sound perception. To explore the link between cochlear damage and speech intelligibility deficits, this study examines the role of CS for word recognition among older listeners. We first validated an envelope-following response (EFR) marker for CS using a Budgerigar model. We then applied this marker in human experiments, while restricting the speech material's frequency content to ensure that both the EFR and the behavioral tasks engaged similar cochlear frequency regions. Following this approach, we identified the relative contribution of hearing sensitivity and CS to speech intelligibility in two age-matched (65-year-old) groups with clinically normal (n = 15, 8 females) or impaired audiograms (n = 13, 8 females). Compared to a young normal-hearing control group (n = 13, 7 females), the older groups demonstrated lower EFR responses and impaired speech reception thresholds. We conclude that age-related CS reduces supra-threshold temporal envelope coding with subsequent speech coding deficits in noise that cannot be explained based on hearing sensitivity alone.
Collapse
Affiliation(s)
- Markus Garrett
- Medizinische Physik and Cluster of Excellence "Hearing4all", Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Viacheslav Vasilkov
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Zwijnaarde 9052, Belgium
| | - Manfred Mauermann
- Medizinische Physik and Cluster of Excellence "Hearing4all", Department of Medical Physics and Acoustics, Carl von Ossietzky University of Oldenburg, Oldenburg 26129, Germany
| | - Pauline Devolder
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Zwijnaarde 9052, Belgium
| | - John L Wilson
- Department of Otolaryngology, University of Rochester, Rochester, New York 14642
- Department of Neuroscience, University of Rochester, Rochester, New York 14642
| | - Leslie Gonzales
- Department of Neuroscience, University of Rochester, Rochester, New York 14642
| | - Kenneth S Henry
- Department of Otolaryngology, University of Rochester, Rochester, New York 14642
- Department of Neuroscience, University of Rochester, Rochester, New York 14642
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627
| | - Sarah Verhulst
- Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Zwijnaarde 9052, Belgium
| |
Collapse
|
2
|
McHaney JR, Hancock KE, Polley DB, Parthasarathy A. Sensory representations and pupil-indexed listening effort provide complementary contributions to multi-talker speech intelligibility. Sci Rep 2024; 14:30882. [PMID: 39730737 DOI: 10.1038/s41598-024-81673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/28/2024] [Indexed: 12/29/2024] Open
Abstract
Multi-talker speech intelligibility requires successful separation of the target speech from background speech. Successful speech segregation relies on bottom-up neural coding fidelity of sensory information and top-down effortful listening. Here, we studied the interaction between temporal processing measured using Envelope Following Responses (EFRs) to amplitude modulated tones, and pupil-indexed listening effort, as it related to performance on the Quick Speech-in-Noise (QuickSIN) test in normal-hearing adults. Listening effort increased at the more difficult signal-to-noise ratios, but speech intelligibility only decreased at the hardest signal-to-noise ratio. Pupil-indexed listening effort and EFRs did not independently relate to QuickSIN performance. However, the combined effects of both EFRs and listening effort explained significant variance in QuickSIN performance. Our results suggest a synergistic interaction between sensory coding and listening effort as it relates to multi-talker speech intelligibility. These findings can inform the development of next-generation multi-dimensional approaches for testing speech intelligibility deficits in listeners with normal-hearing.
Collapse
Affiliation(s)
- Jacie R McHaney
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208, USA
| | - Kenneth E Hancock
- Deparment of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Daniel B Polley
- Deparment of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Aravindakshan Parthasarathy
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
3
|
Sergeeva A, Bech Christensen C, Kidmose P. Effect of Stimulus Bandwidth on the Auditory Steady-State Response in Scalp- and Ear-EEG. Ear Hear 2024; 45:626-635. [PMID: 38178314 DOI: 10.1097/aud.0000000000001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
OBJECTIVES The auditory steady-state response (ASSR) enables hearing threshold estimation based on electroencephalography (EEG) recordings. The choice of stimulus type has an impact on both the detectability and the frequency specificity of the ASSR. Amplitude modulated pure tones provide the most frequency-specific ASSR, but responses to pure tones are weak. The ASSR can be enhanced by increasing the bandwidth of the stimulus, but this comes at the cost of a decrease in the frequency specificity of the measured response. The objective of the present study is to investigate the relationship between stimulus bandwidth and ASSR amplitude. DESIGN The amplitude of ASSR was measured for five types of stimuli: 1 kHz pure tone and band-pass noise with 1/3, 1/2, 1, and 2 octave bandwidths centered at 1 kHz. All stimuli were amplitude modulated with a 40 Hz sinusoid. Responses to all stimulus types were measured at 30, 40, and 50 dB SL. ASSRs were measured concurrently using both conventional scalp-EEG and ear-EEG. RESULTS Stimulus bandwidth and sound intensity were both found to have a significant effect on the ASSR amplitude for scalp- and ear-EEG recordings. In scalp-EEG ASSRs to all bandwidth stimuli were found to be significantly larger than ASSRs to pure tone at low sound intensity. At higher sound intensities, however, significantly larger responses were only obtained for 1- and 2-octave bandwidth stimuli. In ear-EEG, only the ASSR to 2 octave bandwidth stimulus was significantly larger than the ASSR to amplitude modulated pure tones. CONCLUSIONS At low presentation levels, even small increases in stimulus bandwidth (1/3 and 1/2 octave) improve the detectability of ASSR in scalp-EEG with little or no impact on the frequency specificity. In comparison, a larger increase in stimulus bandwidth was needed to improve the ASSR detectability in the ear-EEG recordings.
Collapse
Affiliation(s)
- Anna Sergeeva
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
4
|
Temboury-Gutierrez M, Encina-Llamas G, Dau T. Predicting early auditory evoked potentials using a computational model of auditory-nerve processing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:1799-1812. [PMID: 38445986 DOI: 10.1121/10.0025136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
Non-invasive electrophysiological measures, such as auditory evoked potentials (AEPs), play a crucial role in diagnosing auditory pathology. However, the relationship between AEP morphology and cochlear degeneration remains complex and not well understood. Dau [J. Acoust. Soc. Am. 113, 936-950 (2003)] proposed a computational framework for modeling AEPs that utilized a nonlinear auditory-nerve (AN) model followed by a linear unitary response function. While the model captured some important features of the measured AEPs, it also exhibited several discrepancies in response patterns compared to the actual measurements. In this study, an enhanced AEP modeling framework is presented, incorporating an improved AN model, and the conclusions from the original study were reevaluated. Simulation results with transient and sustained stimuli demonstrated accurate auditory brainstem responses (ABRs) and frequency-following responses (FFRs) as a function of stimulation level, although wave-V latencies remained too short, similar to the original study. When compared to physiological responses in animals, the revised model framework showed a more accurate balance between the contributions of auditory-nerve fibers (ANFs) at on- and off-frequency regions to the predicted FFRs. These findings emphasize the importance of cochlear processing in brainstem potentials. This framework may provide a valuable tool for assessing human AN models and simulating AEPs for various subtypes of peripheral pathologies, offering opportunities for research and clinical applications.
Collapse
Affiliation(s)
- Miguel Temboury-Gutierrez
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Gerard Encina-Llamas
- Copenhagen Hearing and Balance Center, Ear, Nose and Throat (ENT) and Audiology Clinic, Rigshospitalet, Copenhagen University Hospital, Copenhagen, DK-2100, Denmark
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, 08500, Catalonia, Spain
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
- Copenhagen Hearing and Balance Center, Ear, Nose and Throat (ENT) and Audiology Clinic, Rigshospitalet, Copenhagen University Hospital, Copenhagen, DK-2100, Denmark
| |
Collapse
|
5
|
Binder M, Papiernik J, Griskova-Bulanova I, Frycz S, Chojnacki B, Górska-Klimowska U. Diagnosing awareness in disorders of consciousness with gamma-band auditory responses. Front Hum Neurosci 2024; 17:1243051. [PMID: 38249572 PMCID: PMC10796678 DOI: 10.3389/fnhum.2023.1243051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction The prolonged disorders of consciousness (pDOC) describe a group of neurological conditions characterized by severe impairment of consciousness resulting from the injury of the central nervous system. As the behavioral diagnosis of pDOC remains challenging, the methods based on observing brain activity appear as promising alternatives. One of these methods is electroencephalography, which allows for noninvasive assessment of brain function. Methods In this study, we evaluated evoked auditory responses to the chirp-modulated auditory stimulation as a potential biomarker of awareness in pDOC. Chirp-modulated stimulation is based on the repetitive presentation of auditory stimuli with a changing frequency over time. Two protocols were tested: amplitude-modulated narrow-band chirps (frequency range 25-55 Hz) and click-based wide-band chirps (30-100 Hz). The studied pDOC patient group included 62 patients (19 females and 43 males, mean age 40.72 years) diagnosed with Coma Recovery Scale-Revised. Envelope-following responses to stimulation were examined using the intertrial phase clustering coefficient. Results For both types of stimulation, the strength of the response in the low-gamma range (around 40 Hz) was related to the diagnosis of pDOC. Patients diagnosed with unresponsive wakefulness syndrome exhibited diminished responses, while more favorable diagnoses, suggesting awareness (minimally conscious state or emergence from the minimally conscious state), showed elevated responses. The variations in the integrity of the auditory pathway and the etiology of brain injury altered the observed response strength. Narrow-band stimulation yielded a more systematic relationship between low-gamma response and pDOC diagnosis. Discussion The results suggest the potential role of low gamma-band responses to chirp-modulated stimulation as the supportive diagnostic tool to detect awareness in the pDOC patient group.
Collapse
Affiliation(s)
- Marek Binder
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Julia Papiernik
- Institute of Psychology, Jagiellonian University, Kraków, Poland
- Doctoral School in the Social Sciences, Jagiellonian University, Kraków, Poland
| | | | - Sandra Frycz
- Institute of Psychology, Jagiellonian University, Kraków, Poland
- Doctoral School in the Social Sciences, Jagiellonian University, Kraków, Poland
| | - Bartłomiej Chojnacki
- Department of Mechanics and Vibroacoustics, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, Kraków, Poland
| | | |
Collapse
|
6
|
McHaney JR, Hancock KE, Polley DB, Parthasarathy A. Sensory representations and pupil-indexed listening effort provide complementary contributions to multi-talker speech intelligibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553131. [PMID: 37645975 PMCID: PMC10462058 DOI: 10.1101/2023.08.13.553131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Optimal speech perception in noise requires successful separation of the target speech stream from multiple competing background speech streams. The ability to segregate these competing speech streams depends on the fidelity of bottom-up neural representations of sensory information in the auditory system and top-down influences of effortful listening. Here, we use objective neurophysiological measures of bottom-up temporal processing using envelope-following responses (EFRs) to amplitude modulated tones and investigate their interactions with pupil-indexed listening effort, as it relates to performance on the Quick speech in noise (QuickSIN) test in young adult listeners with clinically normal hearing thresholds. We developed an approach using ear-canal electrodes and adjusting electrode montages for modulation rate ranges, which extended the rage of reliable EFR measurements as high as 1024Hz. Pupillary responses revealed changes in listening effort at the two most difficult signal-to-noise ratios (SNR), but behavioral deficits at the hardest SNR only. Neither pupil-indexed listening effort nor the slope of the EFR decay function independently related to QuickSIN performance. However, a linear model using the combination of EFRs and pupil metrics significantly explained variance in QuickSIN performance. These results suggest a synergistic interaction between bottom-up sensory coding and top-down measures of listening effort as it relates to speech perception in noise. These findings can inform the development of next-generation tests for hearing deficits in listeners with normal-hearing thresholds that incorporates a multi-dimensional approach to understanding speech intelligibility deficits.
Collapse
Affiliation(s)
- Jacie R. McHaney
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA
| | - Kenneth E. Hancock
- Deparment of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA
| | - Daniel B. Polley
- Deparment of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston MA
| | - Aravindakshan Parthasarathy
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh PA
| |
Collapse
|
7
|
Van Der Biest H, Keshishzadeh S, Keppler H, Dhooge I, Verhulst S. Envelope following responses for hearing diagnosis: Robustness and methodological considerations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 153:191. [PMID: 36732231 DOI: 10.1121/10.0016807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Recent studies have found that envelope following responses (EFRs) are a marker of age-related and noise- or ototoxic-induced cochlear synaptopathy (CS) in research animals. Whereas the cochlear injury can be well controlled in animal research studies, humans may have an unknown mixture of sensorineural hearing loss [SNHL; e.g., inner- or outer-hair-cell (OHC) damage or CS] that cannot be teased apart in a standard hearing evaluation. Hence, a direct translation of EFR markers of CS to a differential CS diagnosis in humans might be compromised by the influence of SNHL subtypes and differences in recording modalities between research animals and humans. To quantify the robustness of EFR markers for use in human studies, this study investigates the impact of methodological considerations related to electrode montage, stimulus characteristics, and presentation, as well as analysis method on human-recorded EFR markers. The main focus is on rectangularly modulated pure-tone stimuli to evoke the EFR based on a recent auditory modelling study that showed that the EFR was least affected by OHC damage and most sensitive to CS in this stimulus configuration. The outcomes of this study can help guide future clinical implementations of electroencephalography-based SNHL diagnostic tests.
Collapse
Affiliation(s)
- Heleen Van Der Biest
- Hearing Technology at Wireless, Acoustics, Environment and Expert Systems, Department of Information Technology, Ghent, Belgium
| | - Sarineh Keshishzadeh
- Hearing Technology at Wireless, Acoustics, Environment and Expert Systems, Department of Information Technology, Ghent, Belgium
| | - Hannah Keppler
- Department of Rehabilitation Sciences-Audiology, Ghent University, Ghent, Belgium
| | - Ingeborg Dhooge
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Sarah Verhulst
- Hearing Technology at Wireless, Acoustics, Environment and Expert Systems, Department of Information Technology, Ghent, Belgium
| |
Collapse
|
8
|
Stoll TJ, Maddox RK. Enhanced Place Specificity of the Parallel Auditory Brainstem Response: A Modeling Study. Trends Hear 2023; 27:23312165231205719. [PMID: 37807857 PMCID: PMC10563492 DOI: 10.1177/23312165231205719] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023] Open
Abstract
While each place on the cochlea is most sensitive to a specific frequency, it will generally respond to a sufficiently high-level stimulus over a wide range of frequencies. This spread of excitation can introduce errors in clinical threshold estimation during a diagnostic auditory brainstem response (ABR) exam. Off-frequency cochlear excitation can be mitigated through the addition of masking noise to the test stimuli, but introducing a masker increases the already long test times of the typical ABR exam. Our lab has recently developed the parallel ABR (pABR) paradigm to speed up test times by utilizing randomized stimulus timing to estimate the thresholds for multiple frequencies simultaneously. There is reason to believe parallel presentation of multiple frequencies provides masking effects and improves place specificity while decreasing test times. Here, we use two computational models of the auditory periphery to characterize the predicted effect of parallel presentation on place specificity in the auditory nerve. We additionally examine the effect of stimulus rate and level. Both models show the pABR is at least as place specific as standard methods, with an improvement in place specificity for parallel presentation (vs. serial) at high levels, especially at high stimulus rates. When simulating hearing impairment in one of the models, place specificity was also improved near threshold. Rather than a tradeoff, this improved place specificity would represent a secondary benefit to the pABR's faster test times.
Collapse
Affiliation(s)
- Thomas J. Stoll
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
| | - Ross K. Maddox
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| |
Collapse
|
9
|
Boothalingam S, Easwar V, Bross A. External and middle ear influence on envelope following responses. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:2794. [PMID: 36456277 DOI: 10.1121/10.0015004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
Considerable between-subject variability in envelope following response (EFR) amplitude limits its clinical translation. Based on a pattern of lower amplitude and larger variability in the low (<1.2 kHz) and high (>8 kHz), relative to mid (1-3 kHz) frequency carriers, we hypothesized that the between-subject variability in external and middle ear (EM) contribute to between-subject variability in EFR amplitude. It is predicted that equalizing the stimulus reaching the cochlea by accounting for EM differences using forward pressure level (FPL) calibration would at least partially improve response amplitude and reduce between-subject variability. In 21 young normal hearing adults, EFRs of four modulation rates (91, 96, 101, and 106 Hz) were measured concurrently from four frequency bands [low (0.091-1.2 kHz), mid (1-3 kHz), high (4-5.4 kHz), and very high (vHigh; 8-9.4 kHz)], respectively, with 12 harmonics each. The results indicate that FPL calibration in-ear and in a coupler leads to larger EFR amplitudes in the low and vHigh frequency bands relative to conventional coupler root-mean-square calibration. However, improvement in variability was modest with FPL calibration. This lack of a statistically significant improvement in variability suggests that the dominant source of variability in EFR amplitude may arise from cochlear and/or neural processing.
Collapse
Affiliation(s)
- Sriram Boothalingam
- Department of Communication Sciences and Disorders, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Vijayalakshmi Easwar
- Department of Communication Sciences and Disorders, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Abigail Bross
- Department of Communication Sciences and Disorders, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
10
|
Märcher-Rørsted J, Encina-Llamas G, Dau T, Liberman MC, Wu PZ, Hjortkjær J. Age-related reduction in frequency-following responses as a potential marker of cochlear neural degeneration. Hear Res 2021; 414:108411. [PMID: 34929535 DOI: 10.1016/j.heares.2021.108411] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 11/28/2022]
Abstract
Healthy aging may be associated with neural degeneration in the cochlea even before clinical hearing loss emerges. Reduction in frequency-following responses (FFRs) to tonal carriers in older clinically normal-hearing listeners has previously been reported, and has been argued to reflect an age-dependent decline in temporal processing in the central auditory system. Alternatively, age-dependent loss of auditory nerve fibers (ANFs) may have little effect on audiometric sensitivity and yet compromise the precision of neural phase-locking relying on joint activity across populations of fibers. This peripheral loss may, in turn, contribute to reduced neural synchrony in the brainstem as reflected in the FFR. Here, we combined human electrophysiology and auditory nerve (AN) modeling to investigate whether age-related changes in the FFR would be consistent with peripheral neural degeneration. FFRs elicited by pure tones and frequency sweeps at carrier frequencies between 200 and 1200 Hz were obtained in older (ages 48-76) and younger (ages 20-30) listeners, both groups having clinically normal audiometric thresholds up to 6 kHz. The same stimuli were presented to a computational model of the AN in which age-related loss of hair cells or ANFs was modelled using human histopathological data. In the older human listeners, the measured FFRs to both sweeps and pure tones were found to be reduced across the carrier frequencies examined. These FFR reductions were consistent with model simulations of age-related ANF loss. In model simulations, the phase-locked response produced by the population of remaining fibers decreased proportionally with increasing loss of the ANFs. Basal-turn loss of inner hair cells also reduced synchronous activity at lower frequencies, albeit to a lesser degree. Model simulations of age-related threshold elevation further indicated that outer hair cell dysfunction had no negative effect on phase-locked AN responses. These results are consistent with a peripheral source of the FFR reductions observed in older normal-hearing listeners, and indicate that FFRs at lower carrier frequencies may potentially be a sensitive marker of peripheral neural degeneration.
Collapse
Affiliation(s)
- Jonatan Märcher-Rørsted
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark
| | - Gerard Encina-Llamas
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark
| | - M Charles Liberman
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02114 USA
| | - Pei-Zhe Wu
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02114 USA
| | - Jens Hjortkjær
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark, Ørsteds Plads, Building 352, DK-2800 Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegård Allé 30, DK-2650 Hvidovre, Denmark.
| |
Collapse
|
11
|
Encina-Llamas G, Dau T, Epp B. On the use of envelope following responses to estimate peripheral level compression in the auditory system. Sci Rep 2021; 11:6962. [PMID: 33772043 PMCID: PMC7997911 DOI: 10.1038/s41598-021-85850-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
Individual estimates of cochlear compression may provide complementary information to traditional audiometric hearing thresholds in disentangling different types of peripheral cochlear damage. Here we investigated the use of the slope of envelope following response (EFR) magnitude-level functions obtained from four simultaneously presented amplitude modulated tones with modulation frequencies of 80-100 Hz as a proxy of peripheral level compression. Compression estimates in individual normal hearing (NH) listeners were consistent with previously reported group-averaged compression estimates based on psychoacoustical and distortion-product oto-acoustic emission (DPOAE) measures in human listeners. They were also similar to basilar membrane (BM) compression values measured invasively in non-human mammals. EFR-based compression estimates in hearing-impaired listeners were less compressive than those for the NH listeners, consistent with a reduction of BM compression. Cochlear compression was also estimated using DPOAEs in the same NH listeners. DPOAE estimates were larger (less compressive) than EFRs estimates, showing no correlation. Despite the numerical concordance between EFR-based compression estimates and group-averaged estimates from other methods, simulations using an auditory nerve (AN) model revealed that compression estimates based on EFRs might be highly influenced by contributions from off-characteristic frequency (CF) neural populations. This compromises the possibility to estimate on-CF (i.e., frequency-specific or "local") peripheral level compression with EFRs.
Collapse
Affiliation(s)
- Gerard Encina-Llamas
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark.
| | - Torsten Dau
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| | - Bastian Epp
- Hearing Systems Section, Department of Health Technology, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| |
Collapse
|