1
|
Zhu H, Wen B, Xu J, Xu L, Huang Y. Wnt5a in keratinocytes contributes to complex regional pain syndrome through the activation of NR2B and MMP9 in rats. Reg Anesth Pain Med 2025:rapm-2024-106139. [PMID: 40081928 DOI: 10.1136/rapm-2024-106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by inflammatory features, though the underlying mechanisms remain partly understood. Our study examined whether Wnt5a in skin keratinocytes contributes to CRPS-related pain hypersensitivity by activating downstream N-methyl-D-aspartate receptor subunit 2B (NR2B) and matrix metalloproteinase-9 (MMP9) signaling in rats. METHODS We developed a cell-culture model to mimic the local inflammation of CRPS and a rat model to mimic the chronic post-ischemia pain experienced by CRPS patients. Mechanical and heat pain thresholds in the hind paw were measured using an electronic von Frey apparatus and a radiant heat device. Western blotting and immunofluorescence were used to examine the expressions of NR2B and MMP9 in the skin and dorsal root ganglion (DRG), and immunofluorescence staining of connexin 43 (Cx43) and protein gene product 9.5 (PGP9.5) were conducted to explore the interaction between keratinocytes and nerve fibers in the skin. RESULTS In cell culture, Wnt5a was expressed in keratinocytes and contributed to cellular injury by increasing the levels of NR2B and MMP9. The mechanical and heat pain thresholds measured in the hind paw were decreased in CRPS rats, indicating increased pain sensitivity. The inhibition of Wnt5a alleviated these CRPS-related pain hypersensitivities. High levels of Cx43 and PGP9.5 staining were observed in the epidermis of CRPS rats, suggesting an interaction between keratinocytes and nerve fibers that may contribute to CRPS. Additionally, upregulations of NR2B and MMP9 in the DRG may further exacerbate pain. CONCLUSIONS Skin keratinocytes may play an essential role in the pathophysiology of CRPS. Wnt5a signaling may increase pain sensitivity by upregulating downstream NR2B and MMP9, thereby contributing to CRPS.
Collapse
Affiliation(s)
- He Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bei Wen
- Department of Anesthesiology, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jijun Xu
- Department of Pain Management, Cleveland Clinic, Cleveland, Ohio, USA
| | - Li Xu
- Department of Anesthesiology, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuguang Huang
- Department of Anesthesiology, Peking Union Medical College Hospital,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Wan C, Song X, Zhang Z, Hu W, Chen Y, Sun W, Liu Z, Wang S, Meng W. Voluntary exercise during puberty promotes spatial memory and hippocampal DG/CA3 synaptic transmission in mice. Cereb Cortex 2024; 34:bhad497. [PMID: 38124544 DOI: 10.1093/cercor/bhad497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Physical exercise has been shown to have an impact on memory and hippocampal function across different age groups. Nevertheless, the influence and mechanisms underlying how voluntary exercise during puberty affects memory are still inadequately comprehended. This research aims to examine the impacts of self-initiated physical activity throughout adolescence on spatial memory. Developing mice were exposed to a 4-wk voluntary wheel running exercise protocol, commencing at the age of 30 d. After engaging in voluntary wheel running exercise during development, there was an enhancement in spatial memory. Moreover, hippocampal dentate gyrus and CA3 neurons rather than CA1 neurons exhibited an increase in the miniature excitatory postsynaptic currents and miniature inhibitory postsynaptic currents. In addition, there was an increase in the expression of NR2A/NR2B subunits of N-methyl-D-aspartate receptors and α1GABAA subunit of gamma-aminobutyric acid type A receptors, as well as dendritic spine density, specifically within dentate gyrus and CA3 regions rather than CA1 region. The findings suggest that voluntary exercise during development can enhance spatial memory in mice by increasing synapse numbers and improving synaptic transmission in hippocampal dentate gyrus and CA3 regions, but not in CA1 region. This study sheds light on the neural mechanisms underlying how early-life exercise improves cognitive function.
Collapse
Affiliation(s)
- Changjian Wan
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| | - Xueqing Song
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| | - Zhuyu Zhang
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| | - Wenxiang Hu
- School of Life Sciences, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 33001, China
| | - Yanhua Chen
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| | - Wei Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| | - Zhibin Liu
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| | - Wei Meng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
- School of Physical Education and Health, Jiangxi Science and Technology Normal University, 605 Fenglin Rd, Nanchang, Jiangxi Province 330013, China
| |
Collapse
|
3
|
Shrestha P, Jaganathan A, Huilgol D, Ballon C, Hwangbo Y, Mills AA. Chd5 Regulates the Transcription Factor Six3 to Promote Neuronal Differentiation. Stem Cells 2023; 41:242-251. [PMID: 36636025 PMCID: PMC10020979 DOI: 10.1093/stmcls/sxad002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023]
Abstract
Chromodomain helicase DNA-binding protein 5 (Chd5) is an ATP-dependent chromatin remodeler that promotes neuronal differentiation. However, the mechanism behind the action of Chd5 during neurogenesis is not clearly understood. Here we use transcriptional profiling of cells obtained from Chd5 deficient mice at early and late stages of neuronal differentiation to show that Chd5 regulates neurogenesis by directing stepwise transcriptional changes. During early stages of neurogenesis, Chd5 promotes expression of the proneural transcription factor Six3 to repress Wnt5a, a non-canonical Wnt ligand essential for the maturation of neurons. This previously unappreciated ability of Chd5 to transcriptionally repress neuronal maturation factors is critical for both lineage specification and maturation. Thus, Chd5 facilitates early transcriptional changes in neural stem cells, thereby initiating transcriptional programs essential for neuronal fate specification.
Collapse
Affiliation(s)
- Padmina Shrestha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Molecular and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | | | - Dhananjay Huilgol
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Carlos Ballon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yon Hwangbo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
4
|
Oliva CA, Rivera DS, Torres AK, Lindsay CB, Tapia-Rojas C, Bozinovic F, Inestrosa NC. Age-Dependent Behavioral and Synaptic Dysfunction Impairment Are Improved with Long-Term Andrographolide Administration in Long-Lived Female Degus ( Octodon degus). Int J Mol Sci 2023; 24:ijms24021105. [PMID: 36674622 PMCID: PMC9866633 DOI: 10.3390/ijms24021105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023] Open
Abstract
In Octodon degus, the aging process is not equivalent between sexes and worsens for females. To determine the beginning of detrimental features in females and the ways in which to improve them, we compared adult females (36 months old) and aged females (72 months old) treated with Andrographolide (ANDRO), the primary ingredient in Andrographis paniculata. Our behavioral data demonstrated that age does not affect recognition memory and preference for novel experiences, but ANDRO increases these at both ages. Sociability was also not affected by age; however, social recognition and long-term memory were lower in the aged females than adults but were restored with ANDRO. The synaptic physiology data from brain slices showed that adults have more basal synaptic efficiency than aged degus; however, ANDRO reduced basal activity in adults, while it increased long-term potentiation (LTP). Instead, ANDRO increased the basal synaptic activity and LTP in aged females. Age-dependent changes were also observed in synaptic proteins, where aged females have higher synaptotagmin (SYT) and lower postsynaptic density protein-95 (PSD95) levels than adults. ANDRO increased the N-methyl D-aspartate receptor subtype 2B (NR2B) at both ages and the PSD95 and Homer1 only in the aged. Thus, females exposed to long-term ANDRO administration show improved complex behaviors related to age-detrimental effects, modulating mechanisms of synaptic transmission, and proteins.
Collapse
Affiliation(s)
- Carolina A. Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile
- Facultad de Educación, Universidad de Las Américas, República 71, Santiago 8370040, Chile
- Correspondence: (C.A.O.); (N.C.I.)
| | - Daniela S. Rivera
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile
- GEMA Center for Genomics, Ecology and Environment, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile
| | - Angie K. Torres
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6210005, Chile
| | - Carolina B. Lindsay
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile
- Laboratorio de Neurosistemas, Departamento de Neurociencias e Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Avda. Zanartu 1482, Nunoa, Santiago 7780272, Chile
| | - Francisco Bozinovic
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile
| | - Nibaldo C. Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6210005, Chile
- Correspondence: (C.A.O.); (N.C.I.)
| |
Collapse
|
5
|
Yao W, Zhou P, Yan Q, Wu X, Xia Y, Li W, Li X, Zhu F. ERVWE1 Reduces Hippocampal Neuron Density and Impairs Dendritic Spine Morphology through Inhibiting Wnt/JNK Non-Canonical Pathway via miR-141-3p in Schizophrenia. Viruses 2023; 15:168. [PMID: 36680208 PMCID: PMC9863209 DOI: 10.3390/v15010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancestral germline infections by exogenous retroviruses. Human endogenous retroviruses W family envelope gene (HERV-W env, also called ERVWE1), located on chromosome 7q21-22, encodes an envelope glycoprotein from the HERV-W family. Mounting evidence suggests that aberrant expression of ERVWE1 involves the etiology of schizophrenia. Moreover, the genetic and morphological studies indicate that dendritic spine deficits may contribute to the onset of schizophrenia. Here, we reported that ERVWE1 changed the density and morphology of the dendritic spine through inhibiting Wingless-type (Wnt)/c-Jun N-terminal kinases (JNK) non-canonical pathway via miR-141-3p in schizophrenia. In this paper, we found elevated levels of miR-141-3p and a significant positive correlation with ERVWE1 in schizophrenia. Moreover, serum Wnt5a and actin-related protein 2 (Arp2) levels decreased and demonstrated a significant negative correlation with ERVWE1 in schizophrenia. In vitro experiments disclosed that ERVWE1 up-regulated miR-141-3p expression by interacting with transcription factor (TF) Yin Yang 1 (YY1). YY1 modulated miR-141-3p expression by binding to its promoter. The luciferase assay revealed that YY1 enhanced the promoter activity of miR-141-3p. Using the miRNA target prediction databases and luciferase reporter assays, we demonstrated that miR-141-3p targeted Wnt5a at its 3' untranslated region (3' UTR). Furthermore, ERVWE1 suppressed the expression of Arp2 through non-canonical pathway, Wnt5a/JNK signaling pathway. In addition, ERVWE1 inhibited Wnt5a/JNK/Arp2 signal pathway through miR-141-3p. Finally, functional assays showed that ERVWE1 induced the abnormalities in hippocampal neuron morphology and spine density through inhibiting Wnt/JNK non-canonical pathway via miR-141-3p in schizophrenia. Our findings indicated that miR-141-3p, Wnt5a, and Arp2 might be potential clinical blood-based biomarkers or therapeutic targets for schizophrenia. Our work also provided new insight into the role of ERVWE1 in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
6
|
Yeh H, Woodbury ME, Ingraham Dixie KL, Ikezu T, Ikezu S. Microglial WNT5A supports dendritic spines maturation and neuronal firing. Brain Behav Immun 2023; 107:403-413. [PMID: 36395958 PMCID: PMC10588768 DOI: 10.1016/j.bbi.2022.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/13/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
There is increasing evidence showing that microglia play a critical role in mediating synapse formation and spine growth, although the molecular mechanism remains elusive. Here, we demonstrate that the secreted morphogen WNT family member 5A (WNT5A) is the most abundant WNT expressed in microglia and that it promotes neuronal maturation. Co-culture of microglia with Thy1-YFP+ differentiated neurons significantly increased neuronal spine density and reduced dendritic spine turnover rate, which was diminished by silencing microglial Wnt5a in vitro. Co-cultured microglia increased post-synaptic marker PSD95 and synaptic density as determined by the co-localization of PSD95 with pre-synaptic marker VGLUT2 in vitro. The silencing of Wnt5a expression in microglia partially reduced both PSD95 and synaptic densities. Co-culture of differentiated neurons with microglia significantly enhanced neuronal firing rate as measured by multiple electrode array, which was significantly reduced by silencing microglial Wnt5a at 23 days differentiation in vitro. These findings demonstrate that microglia can mediate spine maturation and regulate neuronal excitability via WNT5A secretion indicating possible pathological roles of dysfunctional microglia in developmental disorders.
Collapse
Affiliation(s)
- Hana Yeh
- Graduate Program in Neuroscience, Boston University, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Maya E Woodbury
- Graduate Program in Neuroscience, Boston University, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Kaitlin L Ingraham Dixie
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States; Center for Education Innovation and Learning in the Sciences, University of California, Los Angeles, CA, United States
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States; Department of Neuroscience, Molecular Neurotherapeutics Laboratory, Mayo Clinic, Jacksonville, FL, United States.
| | - Seiko Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States; Department of Neuroscience, Molecular Neurotherapeutics Laboratory, Mayo Clinic, Jacksonville, FL, United States.
| |
Collapse
|
7
|
Bonansco C, Cerpa W, Inestrosa NC. How Are Synapses Born? A Functional and Molecular View of the Role of the Wnt Signaling Pathway. Int J Mol Sci 2022; 24:ijms24010708. [PMID: 36614149 PMCID: PMC9821221 DOI: 10.3390/ijms24010708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023] Open
Abstract
Synaptic transmission is a dynamic process that requires precise regulation. Early in life, we must be able to forge appropriate connections (add and remove) to control our behavior. Neurons must recognize appropriate targets, and external soluble factors that activate specific signaling cascades provide the regulation needed to achieve this goal. Wnt signaling has been implicated in several forms of synaptic plasticity, including functional and structural changes associated with brain development. The analysis of synapses from an electrophysiological perspective allows us to characterize the functional role of cellular signaling pathways involved in brain development. The application of quantal theory to principles of developmental plasticity offers the possibility of dissecting the function of structural changes associated with the birth of new synapses as well as the maturation of immature silent synapses. Here, we focus on electrophysiological and molecular evidence that the Wnt signaling pathway regulates glutamatergic synaptic transmission, specifically N-methyl-d-aspartate receptors (NMDARs), to control the birth of new synapses. We also focus on the role of Wnts in the conversion of silent synapses into functional synapses.
Collapse
Affiliation(s)
- Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: (C.B.); (N.C.I.)
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Nibaldo C. Inestrosa
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (C.B.); (N.C.I.)
| |
Collapse
|
8
|
Gawliński D, Gawlińska K, Frankowska M, Filip M. Cocaine and Its Abstinence Condition Modulate Striatal and Hippocampal Wnt Signaling in a Male Rat Model of Drug Self-Administration. Int J Mol Sci 2022; 23:ijms232214011. [PMID: 36430488 PMCID: PMC9693497 DOI: 10.3390/ijms232214011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Recent years have provided more and more evidence confirming the important role of Wnt/β-catenin signaling in the pathophysiology of mental illnesses, including cocaine use disorder. High relapse rates, which is a hallmark of drug addiction, prompt the study of changes in Wnt signaling elements (Wnt5a, Wnt7b, and Ctnnb1) in the motivational aspects of cocaine use and early drug-free period (3 days after the last exposure to cocaine). For this purpose, an animal model of intravenous cocaine self-administration and two types of drug-free period (extinction training and abstinence in the home cage) were used. The studies showed that chronic cocaine self-administration mainly disturbs the expression of Wnt5a and Ctnnb1 (the gene encoding β-catenin) in the examined brain structures (striatum and hippocampus), and the examined types of early abstinence are characterized by a different pattern of changes in the expression of these genes. At the same time, in cocaine self-administrated animals, there were no changes in the level of Wnt5a and β-catenin proteins at the tested time points. Moreover, exposure to cocaine induces a significant reduction in the striatal and hippocampal expression of miR-374 and miR-544, which can regulate Wnt5a levels post-transcriptionally. In summary, previous observations from experimenter-administered cocaine have not been fully validated in the cocaine self-administration model. Yoked cocaine administration appears to disrupt Wnt signaling more than cocaine self-administration. The condition of the cocaine-free period, the routes of drug administration, and the motivational aspect of drug administration play an important role in the type of drug-induced molecular changes observed. Furthermore, in-depth research involving additional brain regions is needed to determine the exact role of Wnt signaling in short-term and long-lasting plasticity as well as in the motivational aspects of cocaine use, and thus to assess its potential as a target for new drug therapy for cocaine use disorder.
Collapse
|
9
|
Yerlikaya A. Heme-regulated inhibitor: an overlooked eIF2α kinase in cancer investigations. Med Oncol 2022; 39:73. [PMID: 35568791 DOI: 10.1007/s12032-022-01668-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 10/18/2022]
Abstract
Heme-regulated inhibitor (HRI) kinase is a serine-threonine kinase, controlling the initiation of protein synthesis via phosphorylating α subunit of eIF2 on serine 51 residue, mainly in response to heme deprivation in erythroid cells. However, recent studies showed that HRI is also activated by several diverse signals, causing dysregulations in intracellular homeostatic mechanisms in non-erythroid cells. For instance, it was reported that the decrease in protein synthesis upon the 26S proteasomal inhibition by MG132 or bortezomib is mediated by increased eIF2α phosphorylation in an HRI-dependent manner in mouse embryonic fibroblast cells. The increase in eIF2α phosphorylation level through the activation of HRI upon 26S proteasomal inhibition is believed to protect cells against the buildup of misfolded and ubiquitinated proteins, having the potential to trigger the apoptotic response. In contrast, prolonged and sustained HRI-mediated eIF2α phosphorylation can induce cell death, which may involve ATF4 and CHOP expression. Altogether, these studies suggest that HRI-mediated eIF2α phosphorylation may be cytoprotective or cytotoxic depending on the cells, type, and duration of pharmacological agents used. It is thus hypothesized that both HRI activators, inducing eIF2α phosphorylation or HRI inhibitors causing disturbances in eIF2α phosphorylation, may be effective as novel strategies in cancer treatment if the balance in eIF2α phosphorylation is shifted in favor of autophagic or apoptotic response in cancer cells. It is here aimed to review the role of HRI in various biological mechanisms as well as the therapeutic potentials of recently developed HRI activators and inhibitors, targeting eIF2α phosphorylation in cancer cells.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey.
| |
Collapse
|