1
|
Tasaki K, Satoda Y, Chiba S, Shin HW, Katoh Y, Nakayama K. Mutually independent and cilia-independent assembly of IFT-A and IFT-B complexes at mother centriole. Mol Biol Cell 2025; 36:ar48. [PMID: 40020180 PMCID: PMC12005097 DOI: 10.1091/mbc.e24-11-0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
The intraflagellar transport (IFT) machinery, containing the IFT-A and IFT-B complexes and powered by dynein-2 and kinesin-2 motors, is crucial for bidirectional trafficking of ciliary proteins and their import/export across the transition zone (TZ). Stepwise assembly of anterograde IFT trains was proposed previously; that is, the IFT-B complex first forms a TZ-tethered scaffold with sequential incorporation of IFT-A, dynein-2, and finally kinesin-2. However, IFT-A and IFT-B complexes also demonstrate distinct localization to the basal body/mother centriole. We show that IFT-A, IFT-B, and dynein-2 complexes are recruited to the mother centriole independently of ciliogenesis. Furthermore, mother centriole recruitment of IFT-A and IFT-B can occur in the absence of IFT-B and IFT-A, respectively, and dynein-2 recruitment is independent of IFT-A and IFT-B. Expansion microscopy revealed that the IFT-A/IFT-B pool at the basal body is distinct from that at the TZ. We conclude that IFT-A and IFT-B are recruited to the mother centriole in a mutually independent and ciliogenesis-independent manner before IFT train assembly.
Collapse
Affiliation(s)
- Koshi Tasaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yuuki Satoda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shuhei Chiba
- Laboratory of Molecular and Cellular Biology, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Takahashi K, Sudharsan R, Beltran WA. Mapping Protein Distribution in the Canine Photoreceptor Sensory Cilium and Calyceal Processes by Ultrastructure Expansion Microscopy. Invest Ophthalmol Vis Sci 2025; 66:1. [PMID: 39898911 PMCID: PMC11798334 DOI: 10.1167/iovs.66.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
Purpose Photoreceptors are highly polarized sensory neurons, possessing a unique ciliary structure known as the photoreceptor sensory cilium (PSC). Vertebrates have two subtypes of photoreceptors: rods, which are responsible for night vision, and cones, which enable daylight vision and color perception. Despite the identification of functional and morphological differences between these subtypes, ultrastructural analysis of the PSC molecular architecture between rods and cones is still lacking. This study employed ultrastructure expansion microscopy (U-ExM) to characterize the PSC molecular architecture in canine retina. Methods Canine neuroretinas (5-mm punches) were fixed in paraformaldehyde solution for either short or long durations. Additionally, 20-µm-thick cryosections from frozen archival retinal tissues fixed using the longer protocol were analyzed. A U-ExM protocol previously developed for mouse retina was adapted to these canine tissues with a battery of specific antibodies that label the various compartments of the PSC. Results We demonstrated that U-ExM is applicable to both non-frozen and cryopreserved retinal tissues processed with standard paraformaldehyde fixation. Using this validated U-ExM protocol, we revealed the molecular localization of numerous ciliopathy-related proteins in canine photoreceptors. Furthermore, we identified significant architectural differences in the PSC, ciliary rootlet, and calyceal processes between canine rods and cones. Conclusions U-ExM is a powerful tool for studying the PSC molecular architecture using frozen archival retinas that are processed following standard paraformaldehyde fixation and embedding protocols. The findings gained from this study pave the way for a better understanding of alterations in the molecular architecture of the PSC in canine models of retinal ciliopathies.
Collapse
Affiliation(s)
- Kei Takahashi
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Raghavi Sudharsan
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - William A. Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Yamazaki S, Fujii T, Chiba S, Shin HW, Nakayama K, Katoh Y. TXNDC15, an ER-localized thioredoxin-like transmembrane protein, contributes to ciliary transition zone integrity. J Cell Sci 2024; 137:jcs262123. [PMID: 39679447 DOI: 10.1242/jcs.262123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Primary cilia have specific proteins on their membrane to fulfill their sensory functions. Preservation of the specific protein composition of cilia relies on the barrier function of the transition zone (TZ) located at the ciliary base. Defects in cilia and the TZ cause ciliopathies, which have diverse clinical manifestations, including Meckel syndrome (MKS). Many of the proteins mutated in individuals with MKS are known to constitute the MKS module of the TZ. Although TXNDC15 (also known as MKS14) is a thioredoxin-related transmembrane protein that is localized mainly in the endoplasmic reticulum (ER) and is mutated in individuals with MKS, its role at the TZ or within cilia has not been characterized. Here, we show that TXNDC15-knockout cells have defects in MKS module assembly and in ciliary membrane protein localization. These defects in TXNDC15-knockout cells were not rescued by exogenous expression of any of the TXNDC15 constructs with MKS variations in the thioredoxin domain. Furthermore, TXNDC15 with mutations of two cysteine residues within the thioredoxin domain failed to rescue defects in TXNDC15-knockout cells, suggesting that TXNDC15 controls the TZ integrity from outside the TZ via its thioredoxin domain.
Collapse
Affiliation(s)
- Shingo Yamazaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Taiju Fujii
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuhei Chiba
- Laboratory of Molecular and Cellular Biology, Tohoku University, Aobayama, Sendai, Miyagi 980-8578, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Legal T, Joachimiak E, Parra M, Peng W, Tam A, Black C, Valente-Paterno M, Brouhard G, Gaertig J, Wloga D, Bui KH. Structure of the ciliary tip central pair reveals the unique role of the microtubule-seam binding protein SPEF1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626492. [PMID: 39677611 PMCID: PMC11642885 DOI: 10.1101/2024.12.02.626492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Motile cilia are unique organelles with the ability to autonomously move. Force generated by beating cilia propels cells and moves fluids. The ciliary skeleton is made of peripheral doublet microtubules and a central pair (CP) with a distinct structure at the tip. In this study, we present a high-resolution structure of the CP in the ciliary tip of the ciliate Tetrahymena thermophila and identify several tip proteins that bind and form unique patterns on both microtubules of the tip CP. Two of those proteins that contain tubulin polymerization-promoting protein (TPPP)-like domains, TLP1 and TLP2, bind to high curvature regions of the microtubule. TLP2, which contains two TPPP-like domains, is an unusually long protein that wraps laterally around half a microtubule and forms the bridge between the two microtubules. Moreover, we found that the conserved protein SPEF1 binds to both microtubule seams. In vitro, human SPEF1 not only binds to the microtubule seam but also crosslinks two parallel microtubules. Single-molecule microtubule dynamics assays indicate that SPEF1 stabilizes microtubules in vitro. Together, these data show that the proteins in the tip CP maintain stable microtubule structure and probably play important roles in maintaining the integrity of the axoneme.
Collapse
Affiliation(s)
- Thibault Legal
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, 02-093 Warsaw, Poland
| | - Mireya Parra
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Wang Peng
- Department of Biology, McGill University, Montreal, Québec, Canada
| | - Amanda Tam
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | - Corbin Black
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
| | | | - Gary Brouhard
- Department of Biology, McGill University, Montreal, Québec, Canada
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, 02-093 Warsaw, Poland
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill University, Montreal, Québec, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Montreal, Québec, Canada
| |
Collapse
|
5
|
Caenen-Braz C, Bouzhir L, Dupuis-Williams P. New functions of B9D2 in tight junctions and epithelial polarity. Sci Rep 2024; 14:25293. [PMID: 39455645 PMCID: PMC11512030 DOI: 10.1038/s41598-024-75577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Ciliopathies are a diverse group of disorders resulting from abnormalities in the development or function of multiple organs. While significant research has clarified the role of the primary cilium in transducing numerous signalling pathways, elucidating causes of neuronal and skeletal development disorders, the origins of other ciliopathy-related conditions, such as hepatic fibrocystic diseases, remain elusive. Additionally, attempts to correlate specific ciliary proteins with distinct phenotypes have been largely unsuccessful due to the variable and overlapping symptoms of ciliopathies. This study aims to elucidate the extraciliary roles of the protein B9D2 in the development of biliary dysgenesis, a condition present in Meckel-Gruber and Joubert syndromes caused by mutations in this protein. Traditionally, B9D2 is known for its role at the transition zone of the primary cilium in the transduction of signalling pathways notably Wingless and Hedgehog. Our work demonstrates that before ciliogenesis occurs, B9D2 is crucial for the maturation and maintenance of tight junctions ensuring epithelial barrier tightness and appropriate biliary lumen formation. This study provides new insights into the mechanisms underlying biliary dysgenesis in hepatic ciliopathies, suggesting that further exploration of the non-ciliary functions of proteins involved in ciliopathies could lead to a better understanding and treatment of these complex disorders.
Collapse
Affiliation(s)
- Chloe Caenen-Braz
- Université Paris-Saclay, Inserm, physiopathogenèse et traitement des maladies du foie, 94800, Villejuif, France
| | - Latifa Bouzhir
- Université Paris-Saclay, Inserm, physiopathogenèse et traitement des maladies du foie, 94800, Villejuif, France
| | - Pascale Dupuis-Williams
- Université Paris-Saclay, Inserm, physiopathogenèse et traitement des maladies du foie, 94800, Villejuif, France.
- ESPCI Paris, Université PSL, 75005, Paris, France.
| |
Collapse
|
6
|
Lu Y, Ying Y, Huang C, Li X, Cheng J, Yu R, Ma L, Shuai J, Zhou X, Zhong J. STORM image denoising and information extraction. Biomed Phys Eng Express 2024; 10:065028. [PMID: 39265585 DOI: 10.1088/2057-1976/ad7a02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/12/2024] [Indexed: 09/14/2024]
Abstract
Stochastic optical reconstruction microscopy (STORM) is extensively utilized in the fields of cell and molecular biology as a super-resolution imaging technique for visualizing cells and molecules. Nonetheless, the imaging process of STORM is frequently susceptible to noise, which can significantly impact the subsequent image analysis. Moreover, there is currently a lack of a comprehensive automated processing approach for analyzing protein aggregation states from a large number of STORM images. This paper initially applies our previously proposed denoising algorithm, UNet-Att, in STORM image denoising. This algorithm was constructed based on attention mechanism and multi-scale features, showcasing a remarkably efficient performance in denoising. Subsequently, we propose a collection of automated image processing algorithms for the ultimate feature extractions and data analyses of the STORM images. The information extraction workflow effectively integrates automated methods of image denoising, objective image segmentation and binarization, and object information extraction, and a novel image information clustering algorithm specifically developed for the morphological analysis of the objects in the STORM images. This automated workflow significantly improves the efficiency of the effective data analysis for large-scale original STORM images.
Collapse
Affiliation(s)
- Yuer Lu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, People's Republic of China
| | - Yongfa Ying
- Department of Physics, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Chengliang Huang
- Academy of Artificial Intelligence, Zhejiang Dongfang Polytechnic, Wenzhou, 325025, People's Republic of China
| | - Xiang Li
- Department of Physics, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Jinyan Cheng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, People's Republic of China
| | - Rongwen Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, People's Republic of China
| | - Lixiang Ma
- Department of Anatomy, Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jianwei Shuai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, People's Republic of China
| | - Xuejin Zhou
- College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Jinjin Zhong
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, People's Republic of China
| |
Collapse
|
7
|
Takahashi K, Sudharsan R, Beltran WA. Mapping protein distribution in the canine photoreceptor sensory cilium and calyceal processes by ultrastructure expansion microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600953. [PMID: 38979372 PMCID: PMC11230445 DOI: 10.1101/2024.06.27.600953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Photoreceptors are highly polarized sensory neurons, possessing a unique ciliary structure known as the photoreceptor sensory cilium (PSC). Vertebrates have two subtypes of photoreceptors: rods, which are responsible for night vision, and cones, which support daylight vision and color perception. Despite identifying functional and morphological differences between these subtypes, ultrastructural analyses of the PSC molecular architecture in rods and cones are still lacking. In this study, we employed ultrastructure expansion microscopy (U-ExM) to characterize the molecular architecture of the PSC in canine retina. We demonstrated that U-ExM is applicable to both non-frozen and cryopreserved retinal tissues with standard paraformaldehyde fixation. Using this validated U-ExM protocol, we revealed the molecular localization of numerous ciliopathy-related proteins in canine photoreceptors. Furthermore, we identified significant architectural differences in the PSC, ciliary rootlet, and calyceal processes between canine rods and cones. These findings pave the way for a better understanding of alterations in the molecular architecture of the PSC in canine models of retinal ciliopathies.
Collapse
Affiliation(s)
- Kei Takahashi
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Raghavi Sudharsan
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - William A. Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
8
|
Fujii T, Liang L, Nakayama K, Katoh Y. Defects in diffusion barrier function of ciliary transition zone caused by ciliopathy variations of TMEM218. Hum Mol Genet 2024; 33:1442-1453. [PMID: 38751342 DOI: 10.1093/hmg/ddae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 08/09/2024] Open
Abstract
Primary cilia are antenna-like structures protruding from the surface of various eukaryotic cells, and have distinct protein compositions in their membranes. This distinct protein composition is maintained by the presence of the transition zone (TZ) at the ciliary base, which acts as a diffusion barrier between the ciliary and plasma membranes. Defects in cilia and the TZ are known to cause a group of disorders collectively called the ciliopathies, which demonstrate a broad spectrum of clinical features, such as perinatally lethal Meckel syndrome (MKS), relatively mild Joubert syndrome (JBTS), and nonsyndromic nephronophthisis (NPHP). Proteins constituting the TZ can be grouped into the MKS and NPHP modules. The MKS module is composed of several transmembrane proteins and three soluble proteins. TMEM218 was recently reported to be mutated in individuals diagnosed as MKS and JBTS. However, little is known about how TMEM218 mutations found in MKS and JBTS affect the functions of cilia. In this study, we found that ciliary membrane proteins were not localized to cilia in TMEM218-knockout cells, indicating impaired barrier function of the TZ. Furthermore, the exogenous expression of JBTS-associated TMEM218 variants but not MKS-associated variants in TMEM218-knockout cells restored the localization of ciliary membrane proteins. In particular, when expressed in TMEM218-knockout cells, the TMEM218(R115H) variant found in JBTS was able to restore the barrier function of cells, whereas the MKS variant TMEM218(R115C) could not. Thus, the severity of symptoms of MKS and JBTS individuals appears to correlate with the degree of their ciliary defects at the cellular level.
Collapse
Affiliation(s)
- Taiju Fujii
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Luxiaoxue Liang
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Tingey M, Ruba A, Jiang Z, Yang W. Deciphering vesicle-assisted transport mechanisms in cytoplasm to cilium trafficking. Front Cell Neurosci 2024; 18:1379976. [PMID: 38860265 PMCID: PMC11163138 DOI: 10.3389/fncel.2024.1379976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
The cilium, a pivotal organelle crucial for cell signaling and proper cell function, relies on meticulous macromolecular transport from the cytoplasm for its formation and maintenance. While the intraflagellar transport (IFT) pathway has traditionally been the focus of extensive study concerning ciliogenesis and ciliary maintenance, recent research highlights a complementary and alternative mechanism-vesicle-assisted transport (VAT) in cytoplasm to cilium trafficking. Despite its potential significance, the VAT pathway remains largely uncharacterized. This review explores recent studies providing evidence for the dynamics of vesicle-related diffusion and transport within the live primary cilium, employing high-speed super-resolution light microscopy. Additionally, we analyze the spatial distribution of vesicles in the cilium, mainly relying on electron microscopy data. By scrutinizing the VAT pathways that facilitate cargo transport into the cilium, with a specific emphasis on recent advancements and imaging data, our objective is to synthesize a comprehensive model of ciliary transport through the integration of IFT-VAT mechanisms.
Collapse
Affiliation(s)
| | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
10
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Hibbard JVK, Vázquez N, Wallingford JB. Cilia proteins getting to work - how do they commute from the cytoplasm to the base of cilia? J Cell Sci 2022; 135:jcs259444. [PMID: 36073764 PMCID: PMC9482345 DOI: 10.1242/jcs.259444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cilia are multifunctional organelles that originated with the last eukaryotic common ancestor and play central roles in the life cycles of diverse organisms. The motile flagella that move single cells like sperm or unicellular organisms, the motile cilia on animal multiciliated cells that generate fluid flow in organs, and the immotile primary cilia that decorate nearly all cells in animals share many protein components in common, yet each also requires specialized proteins to perform their specialized functions. Despite a now-advanced understanding of how such proteins are transported within cilia, we still know very little about how they are transported from their sites of synthesis through the cytoplasm to the ciliary base. Here, we review the literature concerning this underappreciated topic in ciliary cell biology. We discuss both general mechanisms, as well as specific examples of motor-driven active transport and passive transport via diffusion-and-capture. We then provide deeper discussion of specific, illustrative examples, such as the diverse array of protein subunits that together comprise the intraflagellar transport (IFT) system and the multi-protein axonemal dynein motors that drive beating of motile cilia. We hope this Review will spur further work, shedding light not only on ciliogenesis and ciliary signaling, but also on intracellular transport in general.
Collapse
Affiliation(s)
| | | | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78751, USA
| |
Collapse
|
12
|
van den Hoek H, Klena N, Jordan MA, Alvarez Viar G, Righetto RD, Schaffer M, Erdmann PS, Wan W, Geimer S, Plitzko JM, Baumeister W, Pigino G, Hamel V, Guichard P, Engel BD. In situ architecture of the ciliary base reveals the stepwise assembly of intraflagellar transport trains. Science 2022; 377:543-548. [PMID: 35901159 DOI: 10.1126/science.abm6704] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cilium is an antenna-like organelle that performs numerous cellular functions, including motility, sensing, and signaling. The base of the cilium contains a selective barrier that regulates the entry of large intraflagellar transport (IFT) trains, which carry cargo proteins required for ciliary assembly and maintenance. However, the native architecture of the ciliary base and the process of IFT train assembly remain unresolved. In this work, we used in situ cryo-electron tomography to reveal native structures of the transition zone region and assembling IFT trains at the ciliary base in Chlamydomonas. We combined this direct cellular visualization with ultrastructure expansion microscopy to describe the front-to-back stepwise assembly of IFT trains: IFT-B forms the backbone, onto which bind IFT-A, dynein-1b, and finally kinesin-2 before entry into the cilium.
Collapse
Affiliation(s)
- Hugo van den Hoek
- Biozentrum, University of Basel, 4056 Basel, Switzerland.,Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany.,Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nikolai Klena
- Department of Molecular and Cellular Biology, Section of Biology, University of Geneva, 1211 Geneva, Switzerland.,Human Technopole, 20157 Milan, Italy
| | - Mareike A Jordan
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Gonzalo Alvarez Viar
- Human Technopole, 20157 Milan, Italy.,Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Ricardo D Righetto
- Biozentrum, University of Basel, 4056 Basel, Switzerland.,Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Miroslava Schaffer
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | - William Wan
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Stefan Geimer
- Cell Biology and Electron Microscopy, University of Bayreuth, 95447 Bayreuth, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Gaia Pigino
- Human Technopole, 20157 Milan, Italy.,Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, Section of Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Paul Guichard
- Department of Molecular and Cellular Biology, Section of Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Benjamin D Engel
- Biozentrum, University of Basel, 4056 Basel, Switzerland.,Helmholtz Pioneer Campus, Helmholtz Munich, 85764 Neuherberg, Germany
| |
Collapse
|
13
|
Pan J. Cilia are not created equal-restriction of IFT on microtubule tracks for cilia diversification. Bioessays 2022; 44:e2200082. [PMID: 35595681 DOI: 10.1002/bies.202200082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China
| |
Collapse
|
14
|
Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022; 23:ijms23031749. [PMID: 35163666 PMCID: PMC8836003 DOI: 10.3390/ijms23031749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.
Collapse
Affiliation(s)
- Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Marta Bicka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Zuzanna Samsel
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Justyna Sekretarska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafal Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| |
Collapse
|
15
|
Frikstad KA, Schink K, Gilani S, Pedersen L, Patzke S. 3D-Structured Illumination Microscopy of Centrosomes in Human Cell Lines. Bio Protoc 2022; 12:e4360. [DOI: 10.21769/bioprotoc.4360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 11/02/2022] Open
|
16
|
Ift88, but not Kif3a, is required for establishment of the periciliary membrane compartment. Biochem Biophys Res Commun 2021; 584:19-25. [PMID: 34753064 DOI: 10.1016/j.bbrc.2021.10.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022]
Abstract
The primary cilium is a sensory organelle at the cell surface with integral functions in cell signaling. It contains a microtubular axoneme that is rooted in the basal body (BB) and serves as a scaffold for the movement of intraflagellar transport (IFT) particles by Kinesin-2 along the cilium. Ift88, a member of the anterograde moving IFT-B1 complex, as well as the Kinesin-2 subunit Kif3a are required for cilia formation. To facilitate signaling, the cilium restricts the access of molecules to its membrane ("ciliary gate"). This is thought to be mediated by cytoskeletal barriers ("subciliary domains") originating from the BB subdistal/distal appendages, the periciliary membrane compartment (PCMC) as well as the transition fibers and zone (TF/TZ). The PCMC is a poorly characterized membrane domain surrounding the ciliary base with exclusion of certain apical membrane proteins. Here we describe that Ift88, but not Kinesin-2, is required for the establishment of the PCMC in MDCK cells. Likewise, in C. elegans mutants of the Ift88 ortholog osm-5 fail to establish the PCMC, while Kinesin-2 deficient osm-3 mutants form PCMCs normally. Furthermore, disruption of IFT-B1 into two subcomplexes, while disrupting ciliogenesis, does not interfere with PCMC formation. Our findings suggest that cilia are not a prerequisite for the formation of the PCMC, and that separate machineries with partially overlapping functions are required for the establishment of each.
Collapse
|