1
|
Liu X, Sun D, Huang H, Zhang J, Zheng H, Jia Q, Zhao M. Rice-fish coculture without phosphorus addition improves paddy soil nitrogen availability by shaping ammonia-oxidizing archaea and bacteria in subtropical regions of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171642. [PMID: 38479518 DOI: 10.1016/j.scitotenv.2024.171642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024]
Abstract
Rice-fish coculture (RFC), as a traditional agricultural strategy in China, can optimally utilize the scarce resource, especially in subtropical regions where phosphorus (P) deficiency limits agricultural production. However, ammonia-oxidizing archaea (AOA) and bacteria (AOB) are involved in the ammonia oxidation, but it remains uncertain whether their community compositions are related to the RFC combined with and without P addition that improves soil nitrogen (N) use efficiency. Here, a microcosm experiment was conducted to assess the impacts of RFC combined with and without inorganic P (0 and 50 mg P kg-1 as KH2PO4) addition on AOA and AOB community diversities, enzyme activities and N availability. The results showed that RFC significantly increased available N content without P addition compared with P addition. Moreover, RFC significantly increased urease activity and AOA shannon diversity, and reduced NAG activity and AOB shannon diversity without P addition, respectively. Higher diversity of AOA compared with that of AOB causes greater competition for resources and energy within their habitats, thereby resulting in lower network complexity. Our findings indicated that the abundances of AOA and AOB are influenced through the introduction of fish and/or P availability, of which AOB is linked to N availability. Overall, RFC could improve paddy soil N availability without P addition in subtropical region, which provides a scientific reference for promoting the practices that reduce N fertilizer application in RFC.
Collapse
Affiliation(s)
- Xing Liu
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Daolin Sun
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huaqiao Huang
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Hongjun Zheng
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qi Jia
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Min Zhao
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Sun K, Cui Y, Sun L, Wei B, Wang Y, Li S, Zhou C, Wang Y, Zhang W. Optimizing the manure substitution rate based on phosphorus fertilizer to enhance soil phosphorus turnover and root uptake in pepper ( Capsicum). FRONTIERS IN PLANT SCIENCE 2024; 15:1356861. [PMID: 38504886 PMCID: PMC10948398 DOI: 10.3389/fpls.2024.1356861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Introduction In contemporary agriculture, the substitution of manure for chemical fertilizer based on phosphorus (P) input in vegetable production has led to a significant reduction in P fertilizer application rates, while, the effect of manure substitution rates on soil P transformation and uptake by root remain unclear. Methods This research conducts a pot experiment with varying manure substitution rates (0%, 10%, 20%, 30%, 40%, 50%, 75% and 100%) based on P nutrient content to elucidate the mechanisms through which manure substitution affects P uptake in pepper. Results and discussion The result showed that shoot and root biomass of pepper gradually increased as manure substitution rate from 10% to 40%, and then gradually decreased with further increases in the substitution rate. Soil alkaline phosphatase activity and arbuscular mycorrhizal (AM) colonization gradually increased with manure substitution rates improvement. Specifically, when the substitution rate reached 30%-40%, the alkaline phosphatase activity increased by 24.5%-33.8% compared to the fertilizer treatment. In contrast, phytase activity and the relative expression of phosphate transporter protein genes in the root system was declined after peaking at 30% manure substitution. Additionally, soil available P remained moderate under 30%-40% substitution rate, which was reduced by 8.6%-10.2% compared to that in chemical fertilizer treatment, while microbial biomass P was comparable. In the current study, soil labile P similar to or even higher than that in chemical fertilizer treatment when the substitution rate was ≤40%. Correlation heatmaps demonstrated a significant and positive relationship between soil available P and factors related to labile P and moderately labile P. Conclusion This finding suggested that substituting 30%-40% of chemical P with manure can effectively enhance root length, AM colonization, soil enzyme activity, soil labile P, and consequently improve P uptake in pepper. These findings provide valuable insights for future organic agricultural practices that prioritize P supply, aiming to standardize organic P management in farmland and achieve high crop yields and maintain soil health.
Collapse
Affiliation(s)
- Kai Sun
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
- Key Laboratory of Green and Low-carbon Agriculture in Southwest Mountain, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Yutao Cui
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
| | - Linglulu Sun
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
| | - Bingli Wei
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
- Key Laboratory of Green and Low-carbon Agriculture in Southwest Mountain, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Yuan Wang
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
- Key Laboratory of Green and Low-carbon Agriculture in Southwest Mountain, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Shunjin Li
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
- Key Laboratory of Green and Low-carbon Agriculture in Southwest Mountain, Ministry of Agriculture and Rural Affairs, Chongqing, China
| | - Chengxiang Zhou
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yixia Wang
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
| | - Wei Zhang
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Academy of Agricultural Sciences, Institute of Innovation and Entrepreneurship Hanhong College, Southwest University, Chongqing, China
- Key Laboratory of Green and Low-carbon Agriculture in Southwest Mountain, Ministry of Agriculture and Rural Affairs, Chongqing, China
| |
Collapse
|
3
|
Anthonio CK, Jing H, Jin C, Khan MN, Jiangxue D, Garba HN, Dongchu L, Guangrong L, Shujun L, Lisheng L, Huimin Z. Impact of long-term fertilization on phosphorus fractions and manganese oxide with their interactions in paddy soil aggregates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117440. [PMID: 36758407 DOI: 10.1016/j.jenvman.2023.117440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
One under-studied microelement, manganese (Mn), due to its potential to considerably interact, and limit labile, and moderately-labile soil phosphorus (P) pools, was studied in Nanchang (NC), and Qiyang (QY) under paddy conditions. The Hedley's P sequential fractionation procedure was utilized to extract, and quantify various P fractions at both surface (0-20 cm) and subsurface (20-40 cm) layers. Unfertilized control (CK), nitrogen, phosphorus, and potassium (NPK), and NPK amended with animal manure (NPKM) were used as treatments. From both sites, the manure amended fertilizer (NPKM) compared to chemical NPK formed higher proportions of macro-aggregates (>2 and 2-0.25 mm) in both layers. Total P (TP) values of 842.1 (>2 mm), and 744.4 mg kg-1 (2-0.25 mm) from NC, and QY, respectively were accumulated by NPKM compared to NPK, and CK. Total P values of 806.4, and 350.4 mg kg-1 in the >2 mm aggregate size, respectively for NC, and QY were observed in the subsurface layer. Inorganic moderately labile P (NaOH-Pi) was the dominant fraction under all fertilizer treatments. Concentrations of 232.3 (<0.053 mm), and 202.1 mg kg-1 (0.25-0.053 mm) of NaOH-Pi were accumulated by NPKM, respectively for NC, and QY in the surface layer. In the subsurface layer, concentrations of NaOH-Pi (217.5 mg kg-1; <0.053 mm) from NC, and residual-P (57.3 mg kg-1; >2 mm) from QY were accumulated by NPKM. Similarly, NPKM in contrast to NPK contributed higher Mehlich-3 manganese (M3-Mn) oxide in all aggregate sizes from both sites. Generally, macro-aggregates contributed higher TP, fractions of P, and M3-Mn oxide than micro-aggregates. There was a positive relationship between P pools and M3-Mn oxide at both sites. Additions of animal manure were associated with increased P fractions, and Mn oxides in the paddy soil aggregates, which raises environmental concern.
Collapse
Affiliation(s)
- Christian Kofi Anthonio
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China; Council for Scientific and Industrial Research-Oil Palm Research Institute-Coconut Programme, P. O. Box 245, Sekondi, Ghana
| | - Huang Jing
- National Observation Station of Qiyang Agri-ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, Hunan, 426182, China
| | - Chen Jin
- Soil and Fertilizer & Resources and Environmental Institute Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Muhammad Numan Khan
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Du Jiangxue
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hayatu Nafiu Garba
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China; Department of Soil Science and Agricultural Engineering, Faculty of Agriculture, Usmanu Danfodiyo University, Sokoto, 2346, Nigeria
| | - Li Dongchu
- National Observation Station of Qiyang Agri-ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, Hunan, 426182, China
| | - Liu Guangrong
- Soil and Fertilizer & Resources and Environmental Institute Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Liu Shujun
- National Observation Station of Qiyang Agri-ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, Hunan, 426182, China
| | - Liu Lisheng
- National Observation Station of Qiyang Agri-ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, Hunan, 426182, China
| | - Zhang Huimin
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China; National Observation Station of Qiyang Agri-ecology System, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, Hunan, 426182, China.
| |
Collapse
|
4
|
Li HP, Han QQ, Liu QM, Gan YN, Rensing C, Rivera WL, Zhao Q, Zhang JL. Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiol Res 2023; 272:127375. [PMID: 37058784 DOI: 10.1016/j.micres.2023.127375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Phosphorus (P), an essential macronutrient for all life on Earth, has been shown to be a vital limiting nutrient element for plant growth and yield. P deficiency is a common phenomenon in terrestrial ecosystems across the world. Chemical phosphate fertilizer has traditionally been employed to solve the problem of P deficiency in agricultural production, but its application has been limited by the non-renewability of raw materials and the adverse influence on the ecological health of the environment. Therefore, it is imperative to develop efficient, economical, environmentally friendly and highly stable alternative strategies to meet the plant P demand. Phosphate-solubilizing bacteria (PSB) are able to improve plant productivity by increasing P nutrition. Pathways to fully and effectively use PSB to mobilize unavailable forms of soil P for plants has become a hot research topic in the fields of plant nutrition and ecology. Here, the biogeochemical P cycling in soil systems are summarized, how to make full use of soil legacy P via PSB to alleviate the global P resource shortage are reviewed. We highlight the advances in multi-omics technologies that are helpful for exploring the dynamics of nutrient turnover and the genetic potential of PSB-centered microbial communities. Furthermore, the multiple roles of PSB inoculants in sustainable agricultural practices are analyzed. Finally, we project that new ideas and techniques will be continuously infused into fundamental and applied research to achieve a more integrated understanding of the interactive mechanisms of PSB and rhizosphere microbiota/plant to maximize the efficacy of PSB as P activators.
Collapse
Affiliation(s)
- Hui-Ping Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qing-Qing Han
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qiong-Mei Liu
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ya-Nan Gan
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Windell L Rivera
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, The Philippines
| | - Qi Zhao
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Jin-Lin Zhang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Su N, Xie G, Mao Z, Li Q, Chang T, Zhang Y, Peng J, Rong X, Luo G. The effectiveness of eight-years phosphorus reducing inputs on double cropping paddy: Insights into productivity and soil-plant phosphorus trade-off. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161429. [PMID: 36623670 DOI: 10.1016/j.scitotenv.2023.161429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Abundant evidence has demonstrated the feasibility of reducing phosphorus (P) input to face diminishing phosphate rock resources and deteriorating environmental quality in double-cropping paddy. However, the sustainability of reduced P input in the context of maintaining productivity and P efficient utilization is not yet clear. Herein, an 8-year (2013-2021) field-based database was built to explore the effects of reduced P input on rice productivity and the soil-plant P trade-off in double-cropping paddy. In the early and late rice seasons, compared with conventional P fertilization (early rice, 90 kg hm-2; late rice, 60 kg hm-2), the average yield of reduced 10 % P treatment increased by 4.3 % and 2.1 %, respectively; reduced 10-30 % P treatments increased average P use efficiency by 17.1-18.4 % and 14.0-17.2 %, decreased average total P runoff loss by 14.9-33.2 % and 20.8-36.4 %, and decreased average total P leaching loss by 18.5-49.0 % and 24.0-46.1 %, respectively. Compared with conventional fertilization, reduced P fertilizer input by 10 % significantly increased the content of the soil labile-P fraction while reducing that of the soil stable-P fraction. Soil ligand-P and exchangeable-P content decreased with the gradient reduction of P fertilizer input (10-30 %). The main predictors of the change in rice yield and plant P uptake were soil ligand-P and exchangeable-P content, respectively. The dominant predictor of both the P runoff loss and the P activation coefficient was the inorganic P content extracted by NaHCO3. These findings suggest that reduced P input by 10 % could maintain rice productivity and P use efficiency in the double-cropping paddy, and the transformations between soil P components and increases in P bioavailability may be the key drivers maintaining rice productivity and P utilization under the context of reduced P loading.
Collapse
Affiliation(s)
- Ning Su
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Guixian Xie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China.
| | - Zhiwei Mao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Qiaorong Li
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Tian Chang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Yuping Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Jianwei Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Xiangmin Rong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Gongwen Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China.
| |
Collapse
|
6
|
Lee J, Jo NY, Shim SY, Linh LTY, Kim SR, Lee MG, Hwang SG. Effects of Hanwoo (Korean cattle) manure as organic fertilizer on plant growth, feed quality, and soil bacterial community. FRONTIERS IN PLANT SCIENCE 2023; 14:1135947. [PMID: 37025145 PMCID: PMC10070840 DOI: 10.3389/fpls.2023.1135947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION The development of organic manure from livestock excreta is a useful source for sustainable crop production in environment-friendly agriculture. Organic manure increases soil microbial activity and organic matter (OM) supply. The excessive use of chemical fertilizers (CFs) leads to air and water pollution caused by toxic chemicals and gases, and soil quality degradation via nutrient imbalance due to supplying specific chemical components. Thus, the use of organic manure will serve as a long-term supply of various nutrients in soil via OM decomposition reaction as well as the maintenance of environment. METHODS In this study, we aimed to analyze the diverse effects of Hanwoo manure (HM) on plant growth, feed quality, and soil bacterial communities in comparison with CFs, commercial poultry manure (CM), and the combined use of chemical fertilizer and Hanwoo manure (HM+CF). We analyzed the contents of crude matter (protein, fat, fiber, and ash), P, acid detergent fiber (ADF), and neutral detergent fiber (NDF) through feed quality analysis, and the contents or activities of total phenol, total flavonoid, ABTS, nitrite scavenging, and reducing power via the antioxidant assay. Furthermore, the soil microbial communities were determined using 16S rRNA sequencing. We compared the soil bacteria among different soil samples by using amplicon sequence variant (ASV) analysis. RESULTS AND DISCUSSION We observed increased OM in the soil of the HM group compared to that of the CF and non-treated groups over a period of two years. Moreover, HM+CF treatment enormously improved plant growth. Organic manure, especially HM, caused an increase in the content of crude ash and phosphorus in plants. There were no significant differences in total polyphenol, total flavonoid, ABTS, nitrite scavenging, and reducing power in plants between HM and CF groups. Finally, we detected 13 soil bacteria (Acidibacter, Algisphaera, Cystobacter, Microvirga, Ohtaekwangia, Panacagrimonas, Pseudarthrobacter, Reryanella, Rhodoligotrophos, Solirubrobacter, Stenotrophobacter, Tellurimicrobium, and Thermomarinilinea) that were considerably correlated with OM and available phosphorus, and three considerably correlated bacteria were specifically distributed in CF or organic manure. The results suggest that HM is a valuable source of organic manure that can replace CF for sustainable crop production.
Collapse
Affiliation(s)
- Junkyung Lee
- College of Life and Environment Science, Sangji University, Wonju-si, Republic of Korea
| | - Na-Yeon Jo
- College of Life and Environment Science, Sangji University, Wonju-si, Republic of Korea
| | - Su-Yeon Shim
- College of Life and Environment Science, Sangji University, Wonju-si, Republic of Korea
| | - Le Tran Yen Linh
- Department of Smart-Farm, Sangji University, Wonju-si, Republic of Korea
| | - Soo-Ryang Kim
- Department of Earth Environment Engineering, Sangji University, Wonju-si, Republic of Korea
| | - Myung-Gyu Lee
- Department of Earth Environment Engineering, Sangji University, Wonju-si, Republic of Korea
| | - Sun-Goo Hwang
- College of Life and Environment Science, Sangji University, Wonju-si, Republic of Korea
| |
Collapse
|