1
|
Mallozzi A, Fusco V, Ragazzini F, di Bernardo D. A Biomolecular Circuit for Automatic Gene Regulation in Mammalian Cells with CRISPR Technology. ACS Synth Biol 2024; 13:3917-3925. [PMID: 39622625 DOI: 10.1021/acssynbio.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
We introduce a biomolecular circuit for precise control of gene expression in mammalian cells. The circuit leverages the stochiometric interaction between the artificial transcription factor VPR-dCas9 and the anti-CRISPR protein AcrIIA4, enhanced with synthetic coiled-coil domains to boost their interaction, to maintain the expression of a reporter protein constant across diverse experimental conditions, including fluctuations in protein degradation rates and plasmid concentrations, by automatically adjusting its mRNA level. This capability, known as robust perfect adaptation (RPA), is crucial for the stable functioning of biological systems and has wide-ranging implications for biotechnological applications. This system belongs to a class of biomolecular circuits named antithetic integral controllers, and it can be easily adapted to regulate any endogenous transcription factor thanks to the versatility of the CRISPR-Cas system. Finally, we show that RPA also holds in cells genomically integrated with the circuit, thus paving the way for practical applications in biotechnology that require stable cell lines.
Collapse
Affiliation(s)
- Alessio Mallozzi
- Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
| | - Virginia Fusco
- Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, 80121 Naples, Italy
| | - Francesco Ragazzini
- Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- School for Advanced Studies, Scuola Superiore Meridionale, 80138 Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, 80078 Naples, Italy
- Department of Chemical Materials and Industrial Engineering, University of Naples Federico II, 80125 Naples, Italy
| |
Collapse
|
2
|
Perez AR, Adewole A, Sihwa D, Colvin ME, Merg AD. Coiled Coil Peptide Tiles (CCPTs): Expanding the Peptide Building Block Design with Multivalent Peptide Macrocycles. J Am Chem Soc 2024; 146:30252-30261. [PMID: 39454098 PMCID: PMC11544620 DOI: 10.1021/jacs.4c09531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Owing to their synthetic accessibility and protein-mimetic features, peptides represent an attractive biomolecular building block for the fabrication of artificial biomimetic materials with emergent properties and functions. Here, we expand the peptide building block design space through unveiling the design, synthesis, and characterization of novel, multivalent peptide macrocycles (96mers), termed coiled coil peptide tiles (CCPTs). CCPTs comprise multiple orthogonal coiled coil peptide domains that are separated by flexible linkers. The constraints, imposed by cyclization, confer CCPTs with the ability to direct programmable, multidirectional interactions between coiled coil-forming "edge" domains of CCPTs and their free peptide binding partners. These fully synthetic constructs are assembled using a convergent synthetic strategy via a combination of native chemical ligation and Sortase A-mediated cyclization. Circular dichroism (CD) studies reveal the increased helical stability associated with cyclization and subsequent coiled coil formation along the CCPT edges. Size-exclusion chromatography (SEC), analytical high-performance liquid chromatography (HPLC), and fluorescence quenching assays provide a comprehensive biophysical characterization of various assembled CCPT complexes and confirm the orthogonal colocalization between coiled coil domains within CCPTs and their designed on-target free peptide partners. Lastly, we employ molecular dynamics (MD) simulations, which provide molecular-level insights into experimental results, as a supporting method for understanding the structural dynamics of CCPTs and their complexes. MD analysis of the simulated CCPT architectures reveals the rigidification and expansion of CCPTs upon complexation, i.e., coiled coil formation with their designed binding partners, and provides insights for guiding the designs of future generations of CCPTs. The addition of CCPTs into the repertoire of coiled coil-based building blocks has the potential for expanding the coiled coil assembly landscape by unlocking new topologies having designable intermolecular interfaces.
Collapse
Affiliation(s)
- Anthony R Perez
- Department of Chemistry and Biochemistry, University of California - Merced, 5200 N. Lake Road, Merced, California 95343, United States
| | - Adekunle Adewole
- Department of Chemistry and Biochemistry, University of California - Merced, 5200 N. Lake Road, Merced, California 95343, United States
| | - Daphney Sihwa
- Quantitative and Systems Biology Graduate Program, University of California - Merced, 5200 N. Lake Road, Merced, California 95343, United States
| | - Michael E Colvin
- Department of Chemistry and Biochemistry, University of California - Merced, 5200 N. Lake Road, Merced, California 95343, United States
| | - Andrea D Merg
- Department of Chemistry and Biochemistry, University of California - Merced, 5200 N. Lake Road, Merced, California 95343, United States
| |
Collapse
|
3
|
Baryshev A, La Fleur A, Groves B, Michel C, Baker D, Ljubetič A, Seelig G. Massively parallel measurement of protein-protein interactions by sequencing using MP3-seq. Nat Chem Biol 2024; 20:1514-1523. [PMID: 39192093 PMCID: PMC11511666 DOI: 10.1038/s41589-024-01718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Protein-protein interactions (PPIs) regulate many cellular processes and engineered PPIs have cell and gene therapy applications. Here, we introduce massively parallel PPI measurement by sequencing (MP3-seq), an easy-to-use and highly scalable yeast two-hybrid approach for measuring PPIs. In MP3-seq, DNA barcodes are associated with specific protein pairs and barcode enrichment can be read by sequencing to provide a direct measure of interaction strength. We show that MP3-seq is highly quantitative and scales to over 100,000 interactions. We apply MP3-seq to characterize interactions between families of rationally designed heterodimers and to investigate elements conferring specificity to coiled-coil interactions. Lastly, we predict coiled heterodimer structures using AlphaFold-Multimer (AF-M) and train linear models on physics-based energy terms to predict MP3-seq values. We find that AF-M-based models could be valuable for prescreening interactions but experimentally measuring interactions remains necessary to rank their strengths quantitatively.
Collapse
Affiliation(s)
- Alexandr Baryshev
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA
| | - Alyssa La Fleur
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Benjamin Groves
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA
| | - Cirstyn Michel
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - David Baker
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Ajasja Ljubetič
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department for Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Plaper T, Rihtar E, Železnik Ramuta T, Forstnerič V, Jazbec V, Ivanovski F, Benčina M, Jerala R. The art of designed coiled-coils for the regulation of mammalian cells. Cell Chem Biol 2024; 31:1460-1472. [PMID: 38971158 PMCID: PMC11335187 DOI: 10.1016/j.chembiol.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/04/2024] [Accepted: 06/11/2024] [Indexed: 07/08/2024]
Abstract
Synthetic biology aims to engineer complex biological systems using modular elements, with coiled-coil (CC) dimer-forming modules are emerging as highly useful building blocks in the regulation of protein assemblies and biological processes. Those small modules facilitate highly specific and orthogonal protein-protein interactions, offering versatility for the regulation of diverse biological functions. Additionally, their design rules enable precise control and tunability over these interactions, which are crucial for specific applications. Recent advancements showcase their potential for use in innovative therapeutic interventions and biomedical applications. In this review, we discuss the potential of CCs, exploring their diverse applications in mammalian cells, such as synthetic biological circuit design, transcriptional and allosteric regulation, cellular assemblies, chimeric antigen receptor (CAR) T cell regulation, and genome editing and their role in advancing the understanding and regulation of cellular processes.
Collapse
Affiliation(s)
- Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Erik Rihtar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Vid Jazbec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Filip Ivanovski
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Ferreira da Silva J, Tou CJ, King EM, Eller ML, Rufino-Ramos D, Ma L, Cromwell CR, Metovic J, Benning FMC, Chao LH, Eichler FS, Kleinstiver BP. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. Nat Biotechnol 2024:10.1038/s41587-024-02324-x. [PMID: 39039307 PMCID: PMC11751136 DOI: 10.1038/s41587-024-02324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/24/2024] [Indexed: 07/24/2024]
Abstract
Genome editing technologies based on DNA-dependent polymerases (DDPs) could offer several benefits compared with other types of editors to install diverse edits. Here, we develop click editing, a genome writing platform that couples the advantageous properties of DDPs with RNA-programmable nickases to permit the installation of a range of edits, including substitutions, insertions and deletions. Click editors (CEs) leverage the 'click'-like bioconjugation ability of HUH endonucleases with single-stranded DNA substrates to covalently tether 'click DNA' (clkDNA) templates encoding user-specifiable edits at targeted genomic loci. Through iterative optimization of the modular components of CEs and their clkDNAs, we demonstrate the ability to install precise genome edits with minimal indels in diverse immortalized human cell types and primary fibroblasts with precise editing efficiencies of up to ~30%. Editing efficiency can be improved by rapidly screening clkDNA oligonucleotides with various modifications, including repair-evading substitutions. Click editing is a precise and versatile genome editing approach for diverse biological applications.
Collapse
Affiliation(s)
- Joana Ferreira da Silva
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Connor J Tou
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Biological Engineering Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily M King
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Boston, MA, USA
| | - Madeline L Eller
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - David Rufino-Ramos
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Linyuan Ma
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Christopher R Cromwell
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Jasna Metovic
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Friederike M C Benning
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Florian S Eichler
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Xiao F, Luo L, Liu X, Ljubetič A, Jin N, Jerala R, Hu G. Comparative Simulative Analysis and Design of Single-Chain Self-Assembled Protein Cages. J Phys Chem B 2024; 128:6272-6282. [PMID: 38904939 DOI: 10.1021/acs.jpcb.4c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Coiled-coil protein origami (CCPO) is a modular strategy for the de novo design of polypeptide nanostructures. It represents a type of modular design based on pairwise-interacting coiled-coil (CC) units with a single-chain protein programmed to fold into a polyhedral cage. However, the mechanisms underlying the self-assembly of the protein tetrahedron are still not fully understood. In the present study, 18 CCPO cages with three different topologies were modeled in silico. Then, molecular dynamics simulations and CC parameters were calculated to characterize the dynamic properties of protein tetrahedral cages at both the local and global levels. Furthermore, a deformed CC unit was redesigned, and the stability of the new cage was significantly improved.
Collapse
Affiliation(s)
- Fei Xiao
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Longfei Luo
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China
| | - Xin Liu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou 215123, China
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, SI-1000 Ljubljana, Slovenia
| | - Nengzhi Jin
- Key Laboratory of Advanced Computing of Gansu Province, Gansu Computing Center, Lanzhou 730030, China
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Mu S, Chen H, Li Q, Gou S, Liu X, Wang J, Zheng W, Chen M, Jin Q, Lai L, Wang K, Shi H. Enhancing prime editor flexibility with coiled-coil heterodimers. Genome Biol 2024; 25:108. [PMID: 38671524 PMCID: PMC11046888 DOI: 10.1186/s13059-024-03257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Prime editing enables precise base substitutions, insertions, and deletions at targeted sites without the involvement of double-strand DNA breaks or exogenous donor DNA templates. However, the large size of prime editors (PEs) hampers their delivery in vivo via adeno-associated virus (AAV) due to the viral packaging limit. Previously reported split PE versions provide a size reduction, but they require intricate engineering and potentially compromise editing efficiency. RESULTS Herein, we present a simplified split PE named as CC-PE, created through non-covalent recruitment of reverse transcriptase to the Cas9 nickase via coiled-coil heterodimers, which are widely used in protein design due to their modularity and well-understood sequence-structure relationship. We demonstrate that the CC-PE maintains or even surpasses the efficiency of unsplit PE in installing intended edits, with no increase in the levels of undesired byproducts within tested loci amongst a variety of cell types (HEK293T, A549, HCT116, and U2OS). Furthermore, coiled-coil heterodimers are used to engineer SpCas9-NG-PE and SpRY-PE, two Cas9 variants with more flexible editing scope. Similarly, the resulting NG-CC-PE and SpRY-CC-PE also achieve equivalent or enhanced efficiency of precise editing compared to the intact PE. When the dual AAV vectors carrying CC-PE are delivered into mice to target the Pcsk9 gene in the liver, CC-PE enables highly efficient precise editing, resulting in a significant reduction of plasma low-density lipoprotein cholesterol and total cholesterol. CONCLUSIONS Our innovative, modular system enhances flexibility, thus potentially facilitating the in vivo applicability of prime editing.
Collapse
Affiliation(s)
- Shuangshuang Mu
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huangyao Chen
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianru Li
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Shixue Gou
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Hainan Provincial Research Centre of Laboratory Animals, Sanya Institute of Swine Resource, Sanya, 572000, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Xiaoyi Liu
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junwei Wang
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Menglong Chen
- Department of Neurology and Stroke Centre, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Qin Jin
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Hainan Provincial Research Centre of Laboratory Animals, Sanya Institute of Swine Resource, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
| | - Liangxue Lai
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Hainan Provincial Research Centre of Laboratory Animals, Sanya Institute of Swine Resource, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| | - Kepin Wang
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Hainan Provincial Research Centre of Laboratory Animals, Sanya Institute of Swine Resource, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| | - Hui Shi
- China-New Zealand Joint Laboratory On Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Hainan Provincial Research Centre of Laboratory Animals, Sanya Institute of Swine Resource, Sanya, 572000, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
| |
Collapse
|
8
|
Govednik T, Lainšček D, Kuhar U, Lachish M, Janežič S, Štrbenc M, Krapež U, Jerala R, Atlas D, Manček-Keber M. TXM peptides inhibit SARS-CoV-2 infection, syncytia formation, and lower inflammatory consequences. Antiviral Res 2024; 222:105806. [PMID: 38211737 DOI: 10.1016/j.antiviral.2024.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
After three years of the SARS-CoV-2 pandemic, the search and availability of relatively low-cost benchtop therapeutics for people not at high risk for a severe disease are still ongoing. Although vaccines and new SARS-CoV-2 variants reduce the death toll, the long COVID-19 along with neurologic symptoms can develop and persist even after a mild initial infection. Reinfections, which further increase the risk of sequelae in multiple organ systems as well as the risk of death, continue to require caution. The spike protein of SARS-CoV-2 is an important target for both vaccines and therapeutics. The presence of disulfide bonds in the receptor binding domain (RBD) of the spike protein is essential for its binding to the human ACE2 receptor and cell entry. Here, we demonstrate that thiol-reducing peptides based on the active site of oxidoreductase thioredoxin 1, called thioredoxin mimetic (TXM) peptides, can prevent syncytia formation, SARS-CoV-2 entry into cells, and infection in a mouse model. We also show that TXM peptides inhibit the redox-sensitive HIV pseudotyped viral cell entry. These results support disulfide targeting as a common therapeutic strategy for treating infections caused by viruses using redox-sensitive fusion. Furthermore, TXM peptides exert anti-inflammatory properties by lowering the activation of NF-κB and IRF signaling pathways, mitogen-activated protein kinases (MAPKs) and lipopolysaccharide (LPS)-induced cytokines in mice. The antioxidant and anti-inflammatory effects of the TXM peptides, which also cross the blood-brain barrier, in combination with prevention of viral infections, may provide a beneficial clinical strategy to lower viral infections and mitigate severe consequences of COVID-19.
Collapse
Affiliation(s)
- Tea Govednik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute for Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Marva Lachish
- Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Sandra Janežič
- National Laboratory of Health, Environment and Food, 2000, Maribor, Slovenia
| | - Malan Štrbenc
- Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Institute of Poultry, Birds, Small Mammals and Reptiles, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia
| | - Daphne Atlas
- Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Plaper T, Merljak E, Fink T, Satler T, Ljubetič A, Lainšček D, Jazbec V, Benčina M, Stevanoska S, Džeroski S, Jerala R. Designed allosteric protein logic. Cell Discov 2024; 10:8. [PMID: 38228615 DOI: 10.1038/s41421-023-00635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
The regulation of protein function by external or internal signals is one of the key features of living organisms. The ability to directly control the function of a selected protein would represent a valuable tool for regulating biological processes. Here, we present a generally applicable regulation of proteins called INSRTR, based on inserting a peptide into a loop of a target protein that retains its function. We demonstrate the versatility and robustness of coiled-coil-mediated regulation, which enables designs for either inactivation or activation of selected protein functions, and implementation of two-input logic functions with rapid response in mammalian cells. The selection of insertion positions in tested proteins was facilitated by using a predictive machine learning model. We showcase the robustness of the INSRTR strategy on proteins with diverse folds and biological functions, including enzymes, signaling mediators, DNA binders, transcriptional regulators, reporters, and antibody domains implemented as chimeric antigen receptors in T cells. Our findings highlight the potential of INSRTR as a powerful tool for precise control of protein function, advancing our understanding of biological processes and developing biotechnological and therapeutic interventions.
Collapse
Affiliation(s)
- Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Estera Merljak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Tina Fink
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Tadej Satler
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Vid Jazbec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
- Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Sintija Stevanoska
- Department of knowledge technologies, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Sašo Džeroski
- Department of knowledge technologies, Jožef Stefan Institute, Jamova cesta 39, 1000, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
- Centre for Technologies of Gene and Cell Therapy, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
10
|
Thamamongood T, Jengarn J, Muangsanit P, Petpiroon N, Srisutthisamphan K, Attasombat K, Wongwanakul R, Aueviriyavit S, Laohathai S, Jongkaewwattana A, Teeravechyan S. Pseudotyped zoonotic thogotoviruses exhibit broad entry range in mammalian cells. Virology 2024; 589:109914. [PMID: 37931589 DOI: 10.1016/j.virol.2023.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/10/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Viruses in the thogotovirus genus of the family Orthomyxoviridae are much less well-understood than influenza viruses despite documented zoonotic transmission and association with human disease. This study therefore developed a cell-cell fusion assay and three pseudotyping tools and used them to assess envelope function and cell tropism. Envelope glycoproteins of Dhori (DHOV), Thogoto (THOV), Bourbon, and Sinu viruses were all revealed to exhibit pH-dependent triggering of membrane fusion. Lentivirus vectors were robustly pseudotyped with these glycoproteins while influenza virus vectors showed pseudotyping compatibility, albeit at lower efficiencies. Replication-competent vesicular stomatitis virus expressing DHOV or THOV glycoproteins were also successfully generated. These pseudotyped viruses mediated entry into a wide range of mammalian cell lines, including human primary cells. The promiscuousness of these viruses suggests the use of a relatively ubiquitous receptor and their entry into numerous mammalian cells emphasize their high potential as veterinary and zoonotic diseases.
Collapse
Affiliation(s)
- Thiprampai Thamamongood
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Juggragarn Jengarn
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Papon Muangsanit
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Nalinrat Petpiroon
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kanjana Srisutthisamphan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Khemphitcha Attasombat
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Ratjika Wongwanakul
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Sasitorn Aueviriyavit
- Nano Safety and Bioactivity Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Sira Laohathai
- Cardiothoracic Surgery Unit, Department of Surgery, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Samaporn Teeravechyan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| |
Collapse
|
11
|
Kim H, Yang I, Lim SI. Streamlined construction of robust heteroprotein complexes by self-induced in-cell disulfide pairing. Int J Biol Macromol 2024; 254:127965. [PMID: 37944724 DOI: 10.1016/j.ijbiomac.2023.127965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Biomolecules and their functional subdomains are essential building blocks in the creation of multifunctional nanocomplexes. Methyl-binding domain protein 2 (MBD2) and p66α stand out as small α-helical motifs with an ability to self-assemble into a heterodimeric coiled-coil, making them promising building units. Yet, their practical use is hindered by rapid dissociation upon dilution. In this study, novel fusion tags, MBD2 and p66α variants, were developed to covalently link during co-expression in E. coli SHuffle. Through strategic placement of cysteine at each α-helix's terminus, intracellular crosslinking occurred with high specificity and yield, facilitated by preserved α-helical interactions. This instant disulfide bonding in the oxidative cytoplasm of E. coli SHuffle efficiently overcame the need for inefficient in vitro oxidation and protein extraction prone to creating non-specific adducts and suboptimal bioprocesses. In contrast to their wild-type counterparts, the GFP-mCherry protein complex cross-linked by the fusion tags maintained the heterodimeric state even under extensive dilution. The fusion tags, when combined with the E. coli SHuffle system, allowed for the streamlined co-expression of a stable protein complex through self-induced intracellular cysteine coupling. The approach demonstrated herein holds great promise for producing multifunctional and robust heteroprotein complexes.
Collapse
Affiliation(s)
- Hyunji Kim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea
| | - Iji Yang
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, Republic of Korea.
| |
Collapse
|
12
|
da Silva JF, Tou CJ, King EM, Eller ML, Ma L, Rufino-Ramos D, Kleinstiver BP. Click editing enables programmable genome writing using DNA polymerases and HUH endonucleases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557440. [PMID: 37745481 PMCID: PMC10515857 DOI: 10.1101/2023.09.12.557440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Genome editing technologies that install diverse edits can widely enable genetic studies and new therapeutics. Here we develop click editing, a genome writing platform that couples the advantageous properties of DNA-dependent DNA polymerases with RNA-programmable nickases (e.g. CRISPR-Cas) to permit the installation of a range of edits including substitutions, insertions, and deletions. Click editors (CEs) leverage the "click"-like bioconjugation ability of HUH endonucleases (HUHes) with single stranded DNA substrates to covalently tether "click DNA" (clkDNA) templates encoding user-specifiable edits at targeted genomic loci. Through iterative optimization of the modular components of CEs (DNA polymerase and HUHe orthologs, architectural modifications, etc.) and their clkDNAs (template configurations, repair evading substitutions, etc.), we demonstrate the ability to install precise genome edits with minimal indels and no unwanted byproduct insertions. Since clkDNAs can be ordered as simple DNA oligonucleotides for cents per base, it is possible to screen many different clkDNA parameters rapidly and inexpensively to maximize edit efficiency. Together, click editing is a precise and highly versatile platform for modifying genomes with a simple workflow and broad utility across diverse biological applications.
Collapse
Affiliation(s)
- Joana Ferreira da Silva
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Connor J. Tou
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Biological Engineering Program, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Emily M. King
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Biological and Biomedical Sciences Program, Harvard University, Boston, MA, 02115, USA
| | - Madeline L. Eller
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Linyuan Ma
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - David Rufino-Ramos
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
13
|
Baryshev A, La Fleur A, Groves B, Michel C, Baker D, Ljubetič A, Seelig G. Massively parallel protein-protein interaction measurement by sequencing (MP3-seq) enables rapid screening of protein heterodimers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527770. [PMID: 36798377 PMCID: PMC9934699 DOI: 10.1101/2023.02.08.527770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Protein-protein interactions (PPIs) regulate many cellular processes, and engineered PPIs have cell and gene therapy applications. Here we introduce massively parallel protein-protein interaction measurement by sequencing (MP3-seq), an easy-to-use and highly scalable yeast-two-hybrid approach for measuring PPIs. In MP3-seq, DNA barcodes are associated with specific protein pairs, and barcode enrichment can be read by sequencing to provide a direct measure of interaction strength. We show that MP3-seq is highly quantitative and scales to over 100,000 interactions. We apply MP3-seq to characterize interactions between families of rationally designed heterodimers and to investigate elements conferring specificity to coiled-coil interactions. Finally, we predict coiled heterodimer structures using AlphaFold-Multimer (AF-M) and train linear models on physics simulation energy terms to predict MP3-seq values. We find that AF-M and AF-M complex prediction-based models could be valuable for pre-screening interactions, but that measuring interactions experimentally remains necessary to rank their strengths quantitatively.
Collapse
Affiliation(s)
- Alexander Baryshev
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Alyssa La Fleur
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Benjamin Groves
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Cirstyn Michel
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Ajasja Ljubetič
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department for Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana SI-1000, Slovenia
| | - Georg Seelig
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Keeble AH, Wood DP, Howarth M. Design and Evolution of Enhanced Peptide-Peptide Ligation for Modular Transglutaminase Assembly. Bioconjug Chem 2023. [PMID: 37289810 DOI: 10.1021/acs.bioconjchem.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Robust and precise tools are needed to enhance the functionality and resilience of synthetic nanoarchitectures. Here, we have employed directed evolution and rational design to build a fast-acting molecular superglue from a bacterial adhesion protein. We have generated the SnoopLigase2 coupling system, a genetically encoded route for efficient transamidation between SnoopTag2 and DogTag2 peptides. Each peptide was selected for rapid reaction by phage display screening. The optimized set allows more than 99% completion and is compatible with diverse buffers, pH values, and temperatures, accelerating the reaction over 1000-fold. SnoopLigase2 directs a specific reaction in the mammalian secretory pathway, allowing covalent display on the plasma membrane. Transglutaminase 2 (TG2) has a network of interactions and substrates amidst the mammalian cell surface and extracellular matrix. We expressed a modified TG2 with resistance to oxidative inactivation and minimal self-reactivity. SnoopLigase2 enables TG2 functionalization with transforming growth factor alpha (TGFα) in routes that would be impossible through genetic fusion. The TG2:TGFα conjugate retained transamidase activity, stably anchored TGFα for signal activation in the extracellular environment, and reprogrammed cell behavior. This modular toolbox should create new opportunities for molecular assembly, both for novel biomaterials and complex cellular environments.
Collapse
Affiliation(s)
- Anthony H Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Dominic P Wood
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| |
Collapse
|
15
|
Suyama A, Devlin KL, Macias-Contreras M, Doh JK, Shinde U, Beatty KE. Orthogonal Versatile Interacting Peptide Tags for Imaging Cellular Proteins. Biochemistry 2023; 62:1735-1743. [PMID: 37167569 PMCID: PMC10249344 DOI: 10.1021/acs.biochem.2c00712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Genetic tags are transformative tools for investigating the function, localization, and interactions of cellular proteins. Most studies today are reliant on selective labeling of more than one protein to obtain comprehensive information on a protein's behavior in situ. Some proteins can be analyzed by fusion to a protein tag, such as green fluorescent protein, HaloTag, or SNAP-Tag. Other proteins benefit from labeling via small peptide tags, such as the recently reported versatile interacting peptide (VIP) tags. VIP tags enable observations of protein localization and trafficking with bright fluorophores or nanoparticles. Here, we expand the VIP toolkit by presenting two new tags: TinyVIPER and PunyVIPER. These two tags were designed for use with MiniVIPER for labeling up to three distinct proteins at once in cells. Labeling is mediated by the formation of a high-affinity, biocompatible heterodimeric coiled coil. Each tag was validated by fluorescence microscopy, including observation of transferrin receptor 1 trafficking in live cells. We verified that labeling via each tag is highly specific for one- or two-color imaging. Last, the self-sorting tags were used for simultaneous labeling of three protein targets (i.e., TOMM20, histone 2B, and actin) in fixed cells, highlighting their utility for multicolor microscopy. MiniVIPER, TinyVIPER, and PunyVIPER are small and robust peptide tags for selective labeling of cellular proteins.
Collapse
Affiliation(s)
| | | | - Miguel Macias-Contreras
- Department of Chemical Physiology and
Biochemistry, Oregon Health & Science
University, Portland, Oregon 97239, United States
| | - Julia K. Doh
- Department of Chemical Physiology and
Biochemistry, Oregon Health & Science
University, Portland, Oregon 97239, United States
| | - Ujwal Shinde
- Department of Chemical Physiology and
Biochemistry, Oregon Health & Science
University, Portland, Oregon 97239, United States
| | - Kimberly E. Beatty
- Department of Chemical Physiology and
Biochemistry, Oregon Health & Science
University, Portland, Oregon 97239, United States
| |
Collapse
|
16
|
Merljak E, Malovrh B, Jerala R. Segmentation strategy of de novo designed four-helical bundles expands protein oligomerization modalities for cell regulation. Nat Commun 2023; 14:1995. [PMID: 37031229 PMCID: PMC10082849 DOI: 10.1038/s41467-023-37765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/30/2023] [Indexed: 04/10/2023] Open
Abstract
Protein-protein interactions govern most biological processes. New protein assemblies can be introduced through the fusion of selected proteins with di/oligomerization domains, which interact specifically with their partners but not with other cellular proteins. While four-helical bundle proteins (4HB) have typically been assembled from two segments, each comprising two helices, here we show that they can be efficiently segmented in various ways, expanding the number of combinations generated from a single 4HB. We implement a segmentation strategy of 4HB to design two-, three-, or four-chain combinations for the recruitment of multiple protein components. Different segmentations provide new insight into the role of individual helices for 4HB assembly. We evaluate 4HB segmentations for potential use in mammalian cells for the reconstitution of a protein reporter, transcriptional activation, and inducible 4HB assembly. Furthermore, the implementation of trimerization is demonstrated as a modular chimeric antigen receptor for the recognition of multiple cancer antigens.
Collapse
Affiliation(s)
- Estera Merljak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary Doctoral Programme of Biomedicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Benjamin Malovrh
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Chan SW. Fusion assays for screening of fusion inhibitors targeting SARS-CoV-2 entry and syncytia formation. Front Pharmacol 2022; 13:1007527. [PMID: 36438831 PMCID: PMC9691968 DOI: 10.3389/fphar.2022.1007527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/19/2022] [Indexed: 08/30/2023] Open
Abstract
Virus fusion process is evolutionarily conserved and provides a promising pan-viral target. Cell-cell fusion leads to syncytial formation and has implications in pathogenesis, virus spread and immune evasion. Drugs that target these processes can be developed into anti-virals. Here, we have developed sensitive, rapid, adaptable fusion reporter gene assays as models for plasma membrane and alternative fusion pathways as well as syncytial fusion in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and have confirmed their specificity using neutralizing antibodies and specific protease inhibitors. The fusion report gene assays are more sensitive and unbiased than morphological fusion assay. The fusion assays can differentiate between transmembrane serine protease 2 (TMPRSS2)-dependency in TMPRSS2(+) cells and trypsin-dependency in angiotensin-converting enzyme 2 (ACE2)(+)TMPRSS2(-) cells. Moreover, we have identified putative novel fusion processes that are triggered by an acidic pH with and without trypsin. Coupled with morphological fusion criteria, we have found that syncytia formation is enhanced by TMPRSS2 or trypsin. By testing against our top drug hits previously shown to inhibit SARS-CoV-2 pseudovirus infection, we have identified several fusion inhibitors including structurally related lopsided kite-shaped molecules. Our results have important implications in the development of universal blockers and synergistic therapeutics and the small molecule inhibitors can provide important tools in elucidating the fusion process.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Abdul F, Ribaux P, Caillon A, Malézieux-Picard A, Prendki V, Vernaz N, Zhukovsky N, Delhaes F, Krause KH, Preynat-Seauve O. A Cellular Assay for Spike/ACE2 Fusion: Quantification of Fusion-Inhibitory Antibodies after COVID-19 and Vaccination. Viruses 2022; 14:v14102118. [PMID: 36298674 PMCID: PMC9609042 DOI: 10.3390/v14102118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Not all antibodies against SARS-CoV-2 inhibit viral entry, and hence, infection. Neutralizing antibodies are more likely to reflect real immunity; however, certain tests investigate protein/protein interaction rather than the fusion event. Viral and pseudoviral entry assays detect functionally active antibodies but are limited by biosafety and standardization issues. We have developed a Spike/ACE2-dependent fusion assay, based on a split luciferase. Hela cells stably transduced with Spike and a large fragment of luciferase were co-cultured with Hela cells transduced with ACE2 and the complementary small fragment of luciferase. Cell fusion occurred rapidly allowing the measurement of luminescence. Light emission was abolished in the absence of Spike and reduced in the presence of proteases. Sera from COVID-19-negative, non-vaccinated individuals or from patients at the moment of first symptoms did not lead to a significant reduction of fusion. Sera from COVID-19-positive patients as well as from vaccinated individuals reduced the fusion. This assay was more correlated to pseudotyped-based entry assay rather than serology or competitive ELISA. In conclusion, we report a new method measuring fusion-inhibitory antibodies in serum, combining the advantage of a complete Spike/ACE2 interaction active on entry with a high degree of standardization, easily allowing automation in a standard bio-safety environment.
Collapse
Affiliation(s)
- Fabien Abdul
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Pascale Ribaux
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Aurélie Caillon
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Astrid Malézieux-Picard
- Division of Internal Medicine for the Aged, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Chemin du Pont Bochet 3, 1226 Thônex, Switzerland
| | - Virginie Prendki
- Division of Internal Medicine for the Aged, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Chemin du Pont Bochet 3, 1226 Thônex, Switzerland
| | - Nathalie Vernaz
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
- Medical Directorate, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | | | - Flavien Delhaes
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Olivier Preynat-Seauve
- Department of Medicine, Faculty of Medicine, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
19
|
Stamoula E, Sarantidi E, Dimakopoulos V, Ainatzoglou A, Dardalas I, Papazisis G, Kontopoulou K, Anagnostopoulos AK. Serum Proteome Signatures of Anti-SARS-CoV-2 Vaccinated Healthcare Workers in Greece Associated with Their Prior Infection Status. Int J Mol Sci 2022; 23:ijms231710153. [PMID: 36077551 PMCID: PMC9456361 DOI: 10.3390/ijms231710153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Over the course of the pandemic, proteomics, being in the frontline of anti-COVID-19 research, has massively contributed to the investigation of molecular pathogenic properties of the virus. However, data on the proteome on anti-SARS-CoV-2 vaccinated individuals remain scarce. This study aimed to identify the serum proteome characteristics of anti-SARS-CoV-2 vaccinated individuals who had previously contracted the virus and comparatively assess them against those of virus-naïve vaccine recipients. Blood samples of n = 252 individuals, out of whom n = 35 had been previously infected, were collected in the "G. Gennimatas" General Hospital of Thessaloniki, from 4 January 2021 to 31 August 2021. All participants received the BNT162b2 mRNA COVID-19 vaccine (Pfizer/BioNTech). A label-free quantitative proteomics LC-MS/MS approach was undertaken, and the identified proteins were analyzed using the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes) databases as well as processed by bioinformatics tools. Titers of total RBD-specific IgGs against SARS-CoV-2 were also determined using the SARS-CoV-2 IgG II Quant assay. A total of 47 proteins were significantly differentially expressed, the majority of which were down-regulated in sera of previously infected patients compared to virus-naïve controls. Several pathways were affected supporting the crucial role of the humoral immune response in the protection against SARS-CoV-2 infection provided by COVID-19 vaccination. Overall, our comprehensive proteome profiling analysis contributes novel knowledge of the mechanisms of immune response induced by anti-SARS-CoV-2 vaccination and identified protein signatures reflecting the immune status of vaccine recipients.
Collapse
Affiliation(s)
- Eleni Stamoula
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleana Sarantidi
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Vasilis Dimakopoulos
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Alexandra Ainatzoglou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Papazisis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Clinical Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Athanasios K. Anagnostopoulos
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
20
|
Jazbec V, Jerala R, Benčina M. Proteolytically Activated CRAC Effectors through Designed Intramolecular Inhibition. ACS Synth Biol 2022; 11:2756-2765. [PMID: 35802180 PMCID: PMC9396659 DOI: 10.1021/acssynbio.2c00151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Highly regulated intracellular calcium entry affects
numerous cellular
physiological events. External regulation of intracellular calcium
signaling presents a great opportunity for the artificial regulation
of cellular activity. Calcium entry can be mediated by STIM proteins
interacting with Orai calcium channels; therefore, the STIM1–Orai1
pair has become a tool for artificially modulating calcium entry.
We report on an innovative genetically engineered protease-activated
Orai activator called PACE. CAD self-dimerization and activation were
inhibited with a coiled-coil forming peptide pair linked to CAD via
a protease cleavage site. PACE generated sustained calcium entry after
its activation with a reconstituted split protease. We also generated
PACE, whose transcriptional activation of NFAT was triggered by PPV
or TEV protease. Using PACE, we successfully activated the native
NFAT signaling pathway and the production of cytokines in a T-cell
line. PACE represents a useful tool for generating sustained calcium
entry to initiate calcium-dependent protein translation. PACE provides
a promising template for the construction of links between various
protease activation pathways and calcium signaling.
Collapse
Affiliation(s)
- Vid Jazbec
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Interfaculty Doctoral Study of Biomedicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Lainšček D, Forstnerič V, Mikolič V, Malenšek Š, Pečan P, Benčina M, Sever M, Podgornik H, Jerala R. Coiled-coil heterodimer-based recruitment of an exonuclease to CRISPR/Cas for enhanced gene editing. Nat Commun 2022; 13:3604. [PMID: 35739111 PMCID: PMC9226073 DOI: 10.1038/s41467-022-31386-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
The CRISPR/Cas system has emerged as a powerful and versatile genome engineering tool, revolutionizing biological and biomedical sciences, where an improvement of efficiency could have a strong impact. Here we present a strategy to enhance gene editing based on the concerted action of Cas9 and an exonuclease. Non-covalent recruitment of exonuclease to Cas9/gRNA complex via genetically encoded coiled-coil based domains, termed CCExo, recruited the exonuclease to the cleavage site and robustly increased gene knock-out due to progressive DNA strand recession at the cleavage site, causing decreased re-ligation of the nonedited DNA. CCExo exhibited increased deletion size and enhanced gene inactivation efficiency in the context of several DNA targets, gRNA selection, Cas variants, tested cell lines and type of delivery. Targeting a sequence-specific oncogenic chromosomal translocation using CCExo in cells of chronic myelogenous leukemia patients and in an animal model led to the reduction or elimination of cancer, establishing it as a highly specific tool for treating CML and potentially other appropriate diseases with genetic etiology.
Collapse
Affiliation(s)
- Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana, 1000, Slovenia
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
| | - Veronika Mikolič
- Department of Hematology, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška 7, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Špela Malenšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Peter Pečan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, 1000, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana, 1000, Slovenia
| | - Matjaž Sever
- Department of Hematology, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška 7, Ljubljana, 1000, Slovenia
- Faculty of Medicine, University of Ljubljana, Korytkova 2, Ljubljana, 1000, Slovenia
| | - Helena Podgornik
- Department of Hematology, Division of Internal Medicine, University Medical Centre Ljubljana, Zaloška 7, Ljubljana, 1000, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, Ljubljana, 1000, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, 1000, Slovenia.
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana, 1000, Slovenia.
| |
Collapse
|
22
|
Farhadi SA, Restuccia A, Sorrentino A, Cruz-Sánchez A, Hudalla GA. Heterogeneous protein co-assemblies with tunable functional domain stoichiometry. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2022; 7:44-57. [PMID: 35495737 PMCID: PMC9053397 DOI: 10.1039/d1me00083g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In nature, the precise heterogeneous co-assembly of different protein domains gives rise to supramolecular machines that perform complex functions through the co-integrated activity of the individual protein subunits. A synthetic approach capable of mimicking this process would afford access to supramolecular machines with new or improved functional capabilities. Here we show that the distinct peptide strands of a heterotrimeric α-helical coiled-coil (i.e., peptides "A", "B", and "C") can be used as fusion tags for heterogeneous co-assembly of proteins into supramolecular structures with tunable subunit stoichiometry. In particular, we demonstrate that recombinant fusion of A with NanoLuc luciferase (NL-A), B with superfolder green fluorescent protein (sfGFP-B), and C with mRuby (mRuby-C) enables formation of ternary complexes capable of simultaneously emitting blue, green, and red light via sequential bioluminescence and fluorescence resonance energy transfer (BRET/FRET). Fusion of galectin-3 onto the C-terminus of NL-A, sfGFP-B, and mRuby-C endows the ternary complexes with lactose-binding affinity that can be tuned by varying the number of galectin-3 domains integrated into the complex from one to three, while maintaining BRET/FRET function. The modular nature of the fusion protein design, the precise control of domain stoichiometry, and the multiplicity afforded by the three-stranded coiled-coil scaffold provides access to a greater range of subunit combinations than what is possible with heterodimeric coiled-coils used previously. We envision that access to this expanded range of co-integrated protein domain diversity will be advantageous for future development of designer supramolecular machines for therapeutic, diagnostic, and biotechnology applications.
Collapse
Affiliation(s)
- Shaheen A. Farhadi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Antonietta Restuccia
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Anthony Sorrentino
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Andrés Cruz-Sánchez
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Gregory A. Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
23
|
Manček‐Keber M, Hafner‐Bratkovič I, Lainšček D, Benčina M, Govednik T, Orehek S, Plaper T, Jazbec V, Bergant V, Grass V, Pichlmair A, Jerala R. Disruption of disulfides within RBD of SARS-CoV-2 spike protein prevents fusion and represents a target for viral entry inhibition by registered drugs. FASEB J 2021; 35:e21651. [PMID: 34004056 PMCID: PMC8206760 DOI: 10.1096/fj.202100560r] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022]
Abstract
The SARS-CoV-2 pandemic imposed a large burden on health and society. Therapeutics targeting different components and processes of the viral infection replication cycle are being investigated, particularly to repurpose already approved drugs. Spike protein is an important target for both vaccines and therapeutics. Insights into the mechanisms of spike-ACE2 binding and cell fusion could support the identification of compounds with inhibitory effects. Here, we demonstrate that the integrity of disulfide bonds within the receptor-binding domain (RBD) plays an important role in the membrane fusion process although their disruption does not prevent binding of spike protein to ACE2. Several reducing agents and thiol-reactive compounds are able to inhibit viral entry. N-acetyl cysteine amide, L-ascorbic acid, JTT-705, and auranofin prevented syncytia formation, viral entry into cells, and infection in a mouse model, supporting disulfides of the RBD as a therapeutically relevant target.
Collapse
Affiliation(s)
- Mateja Manček‐Keber
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Centre of Excellence EN‐FISTLjubljanaSlovenia
| | - Iva Hafner‐Bratkovič
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Centre of Excellence EN‐FISTLjubljanaSlovenia
| | - Duško Lainšček
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Centre of Excellence EN‐FISTLjubljanaSlovenia
| | - Mojca Benčina
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Centre of Excellence EN‐FISTLjubljanaSlovenia
| | - Tea Govednik
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Graduate School of BiomedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sara Orehek
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Graduate School of BiomedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Tjaša Plaper
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Graduate School of BiomedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Vid Jazbec
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Graduate School of BiomedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Valter Bergant
- Immunopathology of Virus Infections LaboratoryInstitute of VirologyTechnical University of MunichMunichGermany
| | - Vincent Grass
- Immunopathology of Virus Infections LaboratoryInstitute of VirologyTechnical University of MunichMunichGermany
| | - Andreas Pichlmair
- Immunopathology of Virus Infections LaboratoryInstitute of VirologyTechnical University of MunichMunichGermany
| | - Roman Jerala
- Department of Synthetic Biology and ImmunologyNational Institute of ChemistryLjubljanaSlovenia
- Centre of Excellence EN‐FISTLjubljanaSlovenia
| |
Collapse
|