1
|
D’Amario D, Arcudi A, Narducci ML, Novelli V, Canonico F, Parodi A, Dell’Era G, Di Francesco M, Laborante R, Borovac JA, Galli M, Mercuri EM, Vergaro G, Russo AD, D’Amico AT, Bisignani A, Adorisio R, Pompilio G, Patti G. Arrhythmic Risk Stratification and Sudden Cardiac Death Prevention in Duchenne Muscular Dystrophy: A Critical Appraisal. Rev Cardiovasc Med 2025; 26:27089. [PMID: 40160579 PMCID: PMC11951492 DOI: 10.31083/rcm27089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/30/2024] [Accepted: 12/26/2024] [Indexed: 04/02/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic progressive neuromuscular disorder characterized by early-onset proximal muscle weakness and significant long-term pulmonary and cardiac involvement. Due to the early pharmacological treatments and the wider adoption of non-invasive ventilation, life expectancy has significantly increased in recent years, highlighting the relevance of DMD-related cardiomyopathy and fatal arrhythmias, especially in the late stage of the disease. Current guideline-derived evaluation of sudden cardiac death (SCD) in DMD lacks accuracy, leading to inadequate arrhythmic risk stratification and jeopardized SCD prevention strategies. This review aims to outline these critical issues, proposing an integrative approach encompassing manifold tools such as an imaging-derived systematic and comprehensive evaluation (speckle-tracking echocardiography and magnetic resonance imaging), the electrophysiological study, the 3-dimensional electroanatomic mapping, and a multidimensional clinical examination. This approach might lead to more personalized management along with an effective arrhythmia-prevention strategy aiming to balance clinical care goals, patient expectations, and ethical considerations.
Collapse
Affiliation(s)
- Domenico D’Amario
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
- Thoraco-Cardio-Vascular Department, Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Alessandra Arcudi
- Thoraco-Cardio-Vascular Department, Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Maria Lucia Narducci
- Department of Cardiovascular Science, Fondazione Policlinico Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Valeria Novelli
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy
| | - Francesco Canonico
- Thoraco-Cardio-Vascular Department, Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
| | - Alessandro Parodi
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Gabriele Dell’Era
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Marco Di Francesco
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Renzo Laborante
- Department of Cardiovascular Science, Fondazione Policlinico Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Josip Andelo Borovac
- Clinic for Heart and Vascular Diseases, University Hospital of Split, 21000 Split, Croatia
| | - Mattia Galli
- Maria Cecilia Hospital, GVM Care and Research, 48033 Cotignola, Italy
| | - Eugenio Maria Mercuri
- Department of Cardiovascular Science, Fondazione Policlinico Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Cardiovascular Science, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | | | - Antonio Dello Russo
- Cardiology and Arrhythmology Clinic, University Hospital “Ospedali Riuniti Umberto I-Lancisi-Salesi”, 60126 Ancona, Italy
| | - Anthea Tonia D’Amico
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Antonio Bisignani
- Center of Excellence in Cardiovascular Sciences, Ospedale Isola Tiberina-Gemelli Isola, 00153 Rome, Italy
| | - Rachele Adorisio
- Advanced Cardiovascular Therapy Unit, Bambino Gesù Pediatric Hospital and Research Institute, 00165, Rome, Italy
| | - Giulio Pompilio
- Department of Cardiac Surgery, Centro Cardiologico Monzino-IRCCS, 20138 Milan, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
- Thoraco-Cardio-Vascular Department, Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy
| |
Collapse
|
2
|
Nasilli G, de Waal TM, Marchal GA, Bertoli G, Veldkamp MW, Rothenberg E, Casini S, Remme CA. Decreasing microtubule detyrosination modulates Nav1.5 subcellular distribution and restores sodium current in mdx cardiomyocytes. Cardiovasc Res 2024; 120:723-734. [PMID: 38395031 PMCID: PMC11135645 DOI: 10.1093/cvr/cvae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 02/25/2024] Open
Abstract
AIMS The microtubule (MT) network plays a major role in the transport of the cardiac sodium channel Nav1.5 to the membrane, where the latter associates with interacting proteins such as dystrophin. Alterations in MT dynamics are known to impact on ion channel trafficking. Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, is associated with an increase in MT detyrosination, decreased sodium current (INa), and arrhythmias. Parthenolide (PTL), a compound that decreases MT detyrosination, has shown beneficial effects on cardiac function in DMD. We here investigated its impact on INa and Nav1.5 subcellular distribution. METHODS AND RESULTS Ventricular cardiomyocytes (CMs) from wild-type (WT) and mdx (DMD) mice were incubated with either 10 µM PTL, 20 µM EpoY, or dimethylsulfoxide (DMSO) for 3-5 h, followed by patch-clamp analysis to assess INa and action potential (AP) characteristics in addition to immunofluorescence and stochastic optical reconstruction microscopy (STORM) to investigate MT detyrosination and Nav1.5 cluster size and density, respectively. In accordance with previous studies, we observed increased MT detyrosination, decreased INa and reduced AP upstroke velocity (Vmax) in mdx CMs compared to WT. PTL decreased MT detyrosination and significantly increased INa magnitude (without affecting INa gating properties) and AP Vmax in mdx CMs, but had no effect in WT CMs. Moreover, STORM analysis showed that in mdx CMs, Nav1.5 clusters were decreased not only in the grooves of the lateral membrane (LM; where dystrophin is localized) but also at the LM crests. PTL restored Nav1.5 clusters at the LM crests (but not at the grooves), indicating a dystrophin-independent trafficking route to this subcellular domain. Interestingly, Nav1.5 cluster density was also reduced at the intercalated disc (ID) region of mdx CMs, which was restored to WT levels by PTL. Treatment of mdx CMs with EpoY, a specific MT detyrosination inhibitor, also increased INa density, while decreasing the amount of detyrosinated MTs, confirming a direct mechanistic link. CONCLUSION Attenuating MT detyrosination in mdx CMs restored INa and enhanced Nav1.5 localization at the LM crest and ID. Hence, the reduced whole-cell INa density characteristic of mdx CMs is not only the consequence of the lack of dystrophin within the LM grooves but is also due to reduced Nav1.5 at the LM crest and ID secondary to increased baseline MT detyrosination. Overall, our findings identify MT detyrosination as a potential therapeutic target for modulating INa and subcellular Nav1.5 distribution in pathophysiological conditions.
Collapse
Affiliation(s)
- Giovanna Nasilli
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Division of Cardiology, NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Tanja M de Waal
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Gerard A Marchal
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Giorgia Bertoli
- Division of Cardiology, NYU Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Marieke W Veldkamp
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Eli Rothenberg
- Department of Biochemistry and Pharmacology, NYU Grossman School of Medicine, 450 E 29TH ST Alexandria Center for Life Science, New York, NY 10016, USA
| | - Simona Casini
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam University Medical Center, University of Amsterdam, Heart Centre, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Sauer J, Marksteiner J, Lilliu E, Hackl B, Todt H, Kubista H, Dostal C, Podesser BK, Kiss A, Koenig X, Hilber K. Empagliflozin treatment rescues abnormally reduced Na + currents in ventricular cardiomyocytes from dystrophin-deficient mdx mice. Am J Physiol Heart Circ Physiol 2024; 326:H418-H425. [PMID: 38099845 PMCID: PMC11219046 DOI: 10.1152/ajpheart.00729.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Cardiac arrhythmias significantly contribute to mortality in Duchenne muscular dystrophy (DMD), a severe muscle illness caused by mutations in the gene encoding for the intracellular protein dystrophin. A major source for arrhythmia vulnerability in patients with DMD is impaired ventricular impulse conduction, which predisposes for ventricular asynchrony, decreased cardiac output, and the development of reentrant circuits. Using the dystrophin-deficient mdx mouse model for human DMD, we previously reported that the lack of dystrophin causes a significant loss of peak Na+ current (INa) in ventricular cardiomyocytes. This finding provided a mechanistic explanation for ventricular conduction defects and concomitant arrhythmias in the dystrophic heart. In the present study, we explored the hypothesis that empagliflozin (EMPA), an inhibitor of sodium/glucose cotransporter 2 in clinical use to treat type II diabetes and nondiabetic heart failure, rescues peak INa loss in dystrophin-deficient ventricular cardiomyocytes. We found that INa of cardiomyocytes derived from mdx mice, which had received clinically relevant doses of EMPA for 4 wk, was restored to wild-type level. Moreover, incubation of isolated mdx ventricular cardiomyocytes with 1 µM EMPA for 24 h significantly increased their peak INa. This effect was independent of Na+-H+ exchanger 1 inhibition by the drug. Our findings imply that EMPA treatment can rescue abnormally reduced peak INa of dystrophin-deficient ventricular cardiomyocytes. Long-term EMPA administration may diminish arrhythmia vulnerability in patients with DMD.NEW & NOTEWORTHY Dystrophin deficiency in cardiomyocytes leads to abnormally reduced Na+ currents. These can be rescued by long-term empagliflozin treatment.
Collapse
Affiliation(s)
- Jakob Sauer
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jessica Marksteiner
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Elena Lilliu
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Hackl
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christopher Dostal
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Cataldi MP, Vannoy CH, Blaeser A, Tucker JD, Leroy V, Rawls R, Killilee J, Holbrook MC, Lu QL. Improved efficacy of FKRP AAV gene therapy by combination with ribitol treatment for LGMD2I. Mol Ther 2023; 31:3478-3489. [PMID: 37919902 PMCID: PMC10727973 DOI: 10.1016/j.ymthe.2023.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Mutations in the fukutin-related protein (FKRP) gene cause dystroglycanopathy, with disease severity ranging from mild LGMD2I to severe congenital muscular dystrophy. Recently, considerable progress has been made in developing experimental therapies, with adeno-associated virus (AAV) gene therapy and ribitol treatment demonstrating significant therapeutic effect. However, each treatment has its strengths and weaknesses. AAV gene therapy can achieve normal levels of transgene expression, but it requires high doses, with toxicity concerns and variable distribution. Ribitol relies on residual FKRP function and restores limited levels of matriglycan. We hypothesized that these two treatments can work synergistically to offer an optimized therapy with efficacy and safety unmatched by each treatment alone. The most effective treatment is the combination of high-dose (5e-13 vg/kg) AAV-FKRP with ribitol, whereas low dose (1e-13 vg/kg) AAV-FKRP combined with ribitol showed a 22.6% increase in positive matriglycan fibers and the greater improvement in pathology when compared to low-dose AAV-FKRP alone. Together, our results support the potential benefits of combining ribitol with AAV gene therapy for treating FKRP-related muscular dystrophy. The fact that ribitol is a metabolite in nature and has already been tested in animal models and clinical trials in humans without severe side effects provides a safety profile for it to be trialed in combination with AAV gene therapy.
Collapse
Affiliation(s)
- Marcela P Cataldi
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA.
| | - Charles H Vannoy
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Anthony Blaeser
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Jason D Tucker
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Victoria Leroy
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Raegan Rawls
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Jessalyn Killilee
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Molly C Holbrook
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA
| | - Qi Long Lu
- McColl-Lockwood Laboratory for Muscular Dystrophy Research, Cannon Research Center, Carolinas Medical Center, Atrium Health, Charlotte, NC 28203, USA.
| |
Collapse
|
5
|
Cai S, Chang J, Su M, Wei Y, Sun H, Chen C, Yiu KH. miR-455-5p promotes pathological cardiac remodeling via suppression of PRMT1-mediated Notch signaling pathway. Cell Mol Life Sci 2023; 80:359. [PMID: 37951845 PMCID: PMC10640488 DOI: 10.1007/s00018-023-04987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
Pathological cardiac remodeling plays an essential role in the progression of cardiovascular diseases, and numerous microRNAs have been reported to participate in pathological cardiac remodeling. However, the potential role of microRNA-455-5p (miR-455-5p) in this process remains to be elucidated. In the present study, we focused on clarifying the function and searching the direct target of miR-455-5p, as well as exploring its underlying mechanisms in pathological cardiac remodeling. We found that overexpression of miR-455-5p by transfection of miR-455-5p mimic in vitro or tail vain injection of miR-455-5p agomir in vivo provoked cardiac remodeling, whereas genetic knockdown of miR-455-5p attenuated the isoprenaline-induced cardiac remodeling. Besides, miR-455-5p directly targeted to 3'-untranslated region of protein arginine methyltransferase 1 (PRMT1) and subsequently downregulated PRMT1 level. Furthermore, we found that PRMT1 protected against cardiac hypertrophy and fibrosis in vitro. Mechanistically, miR-455-5p induced cardiac remodeling by downregulating PRMT1-induced asymmetric di-methylation on R1748, R1750, R1751 and R1752 of Notch1, resulting in suppression of recruitment of Presenilin, Notch1 cleavage, NICD releasing and Notch signaling pathway. Finally, circulating miR-455-5p was positively correlated with parameters of left ventricular wall thickening. Taken together, miR-455-5p plays a provocative role in cardiac remodeling via inactivation of the PRMT1-mediated Notch signaling pathway, suggesting miR-455-5p/PRMT1/Notch1 signaling axis as potential therapeutic targets for pathological cardiac remodeling.
Collapse
Affiliation(s)
- Sidong Cai
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Mengqi Su
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yinxia Wei
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Haoran Sun
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cong Chen
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Kai-Hang Yiu
- Division of Cardiology, Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
6
|
Remme CA. SCN5A channelopathy: arrhythmia, cardiomyopathy, epilepsy and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220164. [PMID: 37122208 PMCID: PMC10150216 DOI: 10.1098/rstb.2022.0164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/31/2022] [Indexed: 05/02/2023] Open
Abstract
Influx of sodium ions through voltage-gated sodium channels in cardiomyocytes is essential for proper electrical conduction within the heart. Both acquired conditions associated with sodium channel dysfunction (myocardial ischaemia, heart failure) as well as inherited disorders secondary to mutations in the gene SCN5A encoding for the cardiac sodium channel Nav1.5 are associated with life-threatening arrhythmias. Research in the last decade has uncovered the complex nature of Nav1.5 distribution, function, in particular within distinct subcellular subdomains of cardiomyocytes. Nav1.5-based channels furthermore display previously unrecognized non-electrogenic actions and may impact on cardiac structural integrity, leading to cardiomyopathy. Moreover, SCN5A and Nav1.5 are expressed in cell types other than cardiomyocytes as well as various extracardiac tissues, where their functional role in, e.g. epilepsy, gastrointestinal motility, cancer and the innate immune response is increasingly investigated and recognized. This review provides an overview of these novel insights and how they deepen our mechanistic knowledge on SCN5A channelopathies and Nav1.5 (dys)function. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Marchal GA, Remme CA. Subcellular diversity of Nav1.5 in cardiomyocytes: distinct functions, mechanisms and targets. J Physiol 2023; 601:941-960. [PMID: 36469003 DOI: 10.1113/jp283086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/24/2022] [Indexed: 12/11/2022] Open
Abstract
In cardiomyocytes, the rapid depolarisation of the membrane potential is mediated by the α-subunit of the cardiac voltage-gated Na+ channel (NaV 1.5), encoded by the gene SCN5A. This ion channel allows positively charged Na+ ions to enter the cardiomyocyte, resulting in the fast upstroke of the action potential and is therefore crucial for cardiac excitability and electrical propagation. This essential role is underscored by the fact that dysfunctional NaV 1.5 is associated with high risk for arrhythmias and sudden cardiac death. However, development of therapeutic interventions regulating NaV 1.5 has been limited due to the complexity of NaV 1.5 structure and function and its diverse roles within the cardiomyocyte. In particular, research from the last decade has provided us with increased knowledge on the subcellular distribution of NaV 1.5 as well as the proteins which it interacts with in distinct cardiomyocyte microdomains. We here review these insights, detailing the potential role of NaV 1.5 within subcellular domains as well as its dysfunction in the setting of arrhythmia disorders. We furthermore provide an overview of current knowledge on the pathways involved in (microdomain-specific) trafficking of NaV 1.5, and their potential as novel targets. Unravelling the complexity of NaV 1.5 (dys)function may ultimately facilitate the development of therapeutic strategies aimed at preventing lethal arrhythmias. This is not only of importance for pathophysiological conditions where sodium current is specifically decreased within certain subcellular regions, such as in arrhythmogenic cardiomyopathy and Duchenne muscular dystrophy, but also for other acquired and inherited disorders associated with NaV 1.5.
Collapse
Affiliation(s)
- Gerard A Marchal
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands.,National Institute of Optics, National Research Council (CNR-INO), Sesto Fiorentino, Florence, Italy
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|