1
|
Yang J, Gao F, Pan H. Essential roles of nodule cysteine-rich peptides in maintaining the viability of terminally differentiated bacteroids in legume-rhizobia symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1077-1085. [PMID: 40105505 DOI: 10.1111/jipb.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/13/2025] [Indexed: 03/20/2025]
Abstract
Investigations into the nitrogen-fixing symbiosis between legumes and rhizobia can yield innovative strategies for sustainable agriculture. Legume species of the Inverted Repeat-Lacking Clade (IRLC) and the Dalbergioids, can utilize nodule cysteine-rich (NCR) peptides, a diverse family of peptides characterized by four or six highly conserved cysteine residues, to communicate with their microbial symbionts. These peptides, many of which exhibit antimicrobial properties, induce profound differentiation of bacteroids (semi-autonomous forms of bacteria) within nodule cells. This terminal differentiation endows the bacteroids with the ability to fix nitrogen, at the expense of their reproductive capacity. Notably, a significant number of NCR peptides is expressed in the nodule fixation zone, where the bacteroids have already reached terminal differentiation. Recent discoveries, through forward genetics approaches, have revealed that the functions of NCR peptides extend beyond antimicrobial effects and the promotion of differentiation. They also play a critical role in sustaining the viability of terminally differentiated bacteroids within nodule cells. These findings underscore the multifaceted functions of NCR peptides and highlight the importance of these peptides in mediating communications between host cells and the terminally differentiated bacteroids.
Collapse
Affiliation(s)
- Jian Yang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Fengzhan Gao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Huairong Pan
- College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Mamaeva A, Makeeva A, Ganaeva D. The Small Key to the Treasure Chest: Endogenous Plant Peptides Involved in Symbiotic Interactions. PLANTS (BASEL, SWITZERLAND) 2025; 14:378. [PMID: 39942939 PMCID: PMC11820598 DOI: 10.3390/plants14030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/25/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Plant growth and development are inextricably connected with rhizosphere organisms. Plants have to balance between strong defenses against pathogens while modulating their immune responses to recruit beneficial organisms such as bacteria and fungi. In recent years, there has been increasing evidence that regulatory peptides are essential in establishing these symbiotic relationships, orchestrating processes that include nutrient acquisition, root architecture modification, and immune modulation. In this review, we provide a comprehensive summary of the peptide families that facilitate beneficial relationships between plants and rhizosphere organisms.
Collapse
Affiliation(s)
- Anna Mamaeva
- Laboratory of System Analysis of Proteins and Peptides, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (A.M.)
| | | | | |
Collapse
|
3
|
Ghanbarzadeh Z, Mohagheghzadeh A, Hemmati S. The Roadmap of Plant Antimicrobial Peptides Under Environmental Stress: From Farm to Bedside. Probiotics Antimicrob Proteins 2024; 16:2269-2304. [PMID: 39225894 DOI: 10.1007/s12602-024-10354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) are the most favorable alternatives in overcoming multidrug resistance, alone or synergistically with conventional antibiotics. Plant-derived AMPs, as cysteine-rich peptides, widely compensate the pharmacokinetic drawbacks of peptide therapeutics. Compared to the putative genes encrypted in the genome, AMPs that are produced under stress are active forms with the ability to combat resistant microbial species. Within this study, plant-derived AMPs, namely, defensins, nodule-specific cysteine-rich peptides, snakins, lipid transfer proteins, hevein-like proteins, α-hairpinins, and aracins, expressed under biotic and abiotic stresses, are classified. We could observe that while α-hairpinins and snakins display a helix-turn-helix structure, conserved motif patterns such as β1αβ2β3 and β1β2β3 exist in plant defensins and hevein-like proteins, respectively. According to the co-expression data, several plant AMPs are expressed together to trigger synergistic effects with membrane disruption mechanisms such as toroidal pore, barrel-stave, and carpet models. The application of AMPs as an eco-friendly strategy in maintaining agricultural productivity through the development of transgenes and bio-pesticides is discussed. These AMPs can be consumed in packaging material, wound-dressing products, coating catheters, implants, and allergology. AMPs with cell-penetrating properties are verified for the clearance of intracellular pathogens. Finally, the dominant pharmacological activities of bioactive peptides derived from the gastrointestinal digestion of plant AMPs, namely, inhibitors of renin and angiotensin-converting enzymes, dipeptidyl peptidase IV and α-glucosidase inhibitors, antioxidants, anti-inflammatory, immunomodulating, and hypolipidemic peptides, are analyzed. Conclusively, as phytopathogens and human pathogens can be affected by plant-derived AMPs, they provide a bright perspective in agriculture, breeding, food, cosmetics, and pharmaceutical industries, translated as farm to bedside.
Collapse
Affiliation(s)
- Zohreh Ghanbarzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolali Mohagheghzadeh
- Department of Phytopharmaceuticals, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Hemmati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Godwin J, Djami-Tchatchou AT, Velivelli SLS, Tetorya M, Kalunke R, Pokhrel A, Zhou M, Buchko GW, Czymmek KJ, Shah DM. Chickpea NCR13 disulfide cross-linking variants exhibit profound differences in antifungal activity and modes of action. PLoS Pathog 2024; 20:e1012745. [PMID: 39621770 PMCID: PMC11637438 DOI: 10.1371/journal.ppat.1012745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/12/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Small cysteine-rich antifungal peptides with multi-site modes of action (MoA) have potential for development as biofungicides. In particular, legumes of the inverted repeat-lacking clade express a large family of nodule-specific cysteine-rich (NCR) peptides that orchestrate differentiation of nitrogen-fixing bacteria into bacteroids. These NCRs can form two or three intramolecular disulfide bonds and a subset of these peptides with high cationicity exhibits antifungal activity. However, the importance of intramolecular disulfide pairing and MoA against fungal pathogens for most of these plant peptides remains to be elucidated. Our study focused on a highly cationic chickpea NCR13, which has a net charge of +8 and contains six cysteines capable of forming three disulfide bonds. NCR13 expression in Pichia pastoris resulted in formation of two peptide folding variants, NCR13_PFV1 and NCR13_PFV2, that differed in the pairing of two out of three disulfide bonds despite having an identical amino acid sequence. The NMR structure of each PFV revealed a unique three-dimensional fold with the PFV1 structure being more compact but less dynamic. Surprisingly, PFV1 and PFV2 differed profoundly in the potency of antifungal activity against several fungal plant pathogens and their multi-faceted MoA. PFV1 showed significantly faster fungal cell-permeabilizing and cell entry capabilities as well as greater stability once inside the fungal cells. Additionally, PFV1 was more effective in binding fungal ribosomal RNA and inhibiting protein translation in vitro. Furthermore, when sprayed on pepper and tomato plants, PFV1 was more effective in reducing disease symptoms caused by Botrytis cinerea, causal agent of gray mold disease in fruits, vegetables, and flowers. In conclusion, our work highlights the significant impact of disulfide pairing on the antifungal activity and MoA of NCR13 and provides a structural framework for design of novel, potent antifungal peptides for agricultural use.
Collapse
Affiliation(s)
- James Godwin
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | | | - Siva L. S. Velivelli
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Meenakshi Tetorya
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Raviraj Kalunke
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Ambika Pokhrel
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Mowei Zhou
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Garry W. Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - Kirk J. Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Dilip M. Shah
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| |
Collapse
|
5
|
Chekan JR, Mydy LS, Pasquale MA, Kersten RD. Plant peptides - redefining an area of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2024; 41:1020-1059. [PMID: 38411572 PMCID: PMC11253845 DOI: 10.1039/d3np00042g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 02/28/2024]
Abstract
Covering 1965 to February 2024Plants are prolific peptide chemists and are known to make thousands of different peptidic molecules. These peptides vary dramatically in their size, chemistry, and bioactivity. Despite their differences, all plant peptides to date are biosynthesized as ribosomally synthesized and post-translationally modified peptides (RiPPs). Decades of research in plant RiPP biosynthesis have extended the definition and scope of RiPPs from microbial sources, establishing paradigms and discovering new families of biosynthetic enzymes. The discovery and elucidation of plant peptide pathways is challenging due to repurposing and evolution of housekeeping genes as both precursor peptides and biosynthetic enzymes and due to the low rates of gene clustering in plants. In this review, we highlight the chemistry, biosynthesis, and function of the known RiPP classes from plants and recommend a nomenclature for the recent addition of BURP-domain-derived RiPPs termed burpitides. Burpitides are an emerging family of cyclic plant RiPPs characterized by macrocyclic crosslinks between tyrosine or tryptophan side chains and other amino acid side chains or their peptide backbone that are formed by copper-dependent BURP-domain-containing proteins termed burpitide cyclases. Finally, we review the discovery of plant RiPPs through bioactivity-guided, structure-guided, and gene-guided approaches.
Collapse
Affiliation(s)
- Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Michael A Pasquale
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Nazeer N, Kooner N, Ghimire A, Rainey JK, Lubell WD, Meneksedag-Erol D, Ahmed M. Secondary Structure Stabilization of Macrocyclic Antimicrobial Peptides via Cross-Link Swapping. J Med Chem 2024; 67:8693-8707. [PMID: 38771638 DOI: 10.1021/acs.jmedchem.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Lactam cross-links have been employed to stabilize the helical secondary structure and enhance the activity and physiological stability of antimicrobial peptides; however, stabilization of β-sheets via lactamization has not been observed. In the present study, lactams between the side chains of C- and N-terminal residues have been used to stabilize the β-sheet conformation in a short ten-residue analogue of chicken angiogenin-4. Designed using a combination of molecular dynamics simulations and Markov state models, the lactam cross-linked peptides are shown to adopt stabilized β-sheet conformations consistent with simulated structures. Replacement of the peptide side-chain Cys-Cys disulfide by a lactam cross-link enhanced the broad-spectrum antibacterial activity compared to the parent peptide and exhibited greater propensity to induce proinflammatory activity in macrophages. The combination of molecular simulations and conformational and biological analyses of the synthetic peptides provides a useful paradigm for the rational design of therapeutically active peptides with constrained β-sheet structures.
Collapse
Affiliation(s)
- Nauman Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
| | - Navjote Kooner
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Quebec, Canada
| | - Anupama Ghimire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - Jan K Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- Department of Chemistry, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax B3H 4R2, Nova Scotia, Canada
| | - William D Lubell
- Département de Chimie, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montréal H2 V 0B3, Québec, Canada
| | - Deniz Meneksedag-Erol
- Department of Chemistry and Biochemistry, Concordia University, Montreal H4B 1R6, Quebec, Canada
- Department of Chemical and Materials Engineering, Concordia University, Montreal H4B 1R6, Quebec, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown C1A 4P3, Prince Edward Island, Canada
| |
Collapse
|
7
|
Gourion B. NCRs make the difference. NATURE PLANTS 2023; 9:199-200. [PMID: 36690787 DOI: 10.1038/s41477-023-01346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Benjamin Gourion
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
8
|
Howan DHO, Jenei S, Szolomajer J, Endre G, Kondorosi É, Tóth GK. Enhanced Antibacterial Activity of Substituted Derivatives of NCR169C Peptide. Int J Mol Sci 2023; 24:ijms24032694. [PMID: 36769017 PMCID: PMC9917201 DOI: 10.3390/ijms24032694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Medicago truncatula in symbiosis with its rhizobial bacterium partner produces more than 700 nodule-specific cysteine-rich (NCR) peptides with diverse physicochemical properties. Most of the cationic NCR peptides have antimicrobial activity and the potential to tackle antimicrobial resistance with their novel modes of action. This work focuses on the antibacterial activity of the NCR169 peptide derivatives as we previously demonstrated that the C-terminal sequence of NCR169 (NCR169C17-38) has antifungal activity, affecting the viability, morphology, and biofilm formation of various Candida species. Here, we show that NCR169C17-38 and its various substituted derivatives are also able to kill ESKAPE pathogens such as Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. The replacement of the two cysteines with serines enhanced the antimicrobial activity against most of the tested bacteria, indicating that the formation of a disulfide bridge is not required. As tryptophan can play role in the interaction with bacterial membranes and thus in antibacterial activity, we replaced the tryptophans in the NCR169C17-38C12,17/S sequence with various modified tryptophans, namely 5-methyl tryptophan, 5-fluoro tryptophan, 6-fluoro tryptophan, 7-aza tryptophan, and 5-methoxy tryptophan, in the synthesis of NCR169C17-38C12,17/S analogs. The results demonstrate that the presence of modified fluorotryptophans can significantly enhance the antimicrobial activity without notable hemolytic effect, and this finding could be beneficial for the further development of new AMPs from the members of the NCR peptide family.
Collapse
Affiliation(s)
- Dian H. O. Howan
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Sándor Jenei
- Biological Research Centre, Institute of Plant Biology, H-6726 Szeged, Hungary
| | - János Szolomajer
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
| | - Gabriella Endre
- Biological Research Centre, Institute of Plant Biology, H-6726 Szeged, Hungary
| | - Éva Kondorosi
- Biological Research Centre, Institute of Plant Biology, H-6726 Szeged, Hungary
| | - Gábor K. Tóth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- MTA-SZTE Biomimetic Systems Research Group, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
9
|
Zorin EA, Kliukova MS, Afonin AM, Gribchenko ES, Gordon ML, Sulima AS, Zhernakov AI, Kulaeva OA, Romanyuk DA, Kusakin PG, Tsyganova AV, Tsyganov VE, Tikhonovich IA, Zhukov VA. A variable gene family encoding nodule-specific cysteine-rich peptides in pea ( Pisum sativum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:884726. [PMID: 36186063 PMCID: PMC9515463 DOI: 10.3389/fpls.2022.884726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Various legume plants form root nodules in which symbiotic bacteria (rhizobia) fix atmospheric nitrogen after differentiation into a symbiotic form named bacteroids. In some legume species, bacteroid differentiation is promoted by defensin-like nodule-specific cysteine-rich (NCR) peptides. NCR peptides have best been studied in the model legume Medicago truncatula Gaertn., while in many other legumes relevant information is still fragmentary. Here, we characterize the NCR gene family in pea (Pisum sativum L.) using genomic and transcriptomic data. We found 360 genes encoding NCR peptides that are expressed in nodules. The sequences of pea NCR genes and putative peptides are highly variable and differ significantly from NCR sequences of M. truncatula. Indeed, only one pair of orthologs (PsNCR47-MtNCR312) has been identified. The NCR genes in the pea genome are located in clusters, and the expression patterns of NCR genes from one cluster tend to be similar. These data support the idea of independent evolution of NCR genes by duplication and diversification in related legume species. We also described spatiotemporal expression profiles of NCRs and identified specific transcription factor (TF) binding sites in promoters of "early" and "late" NCR genes. Further, we studied the expression of NCR genes in nodules of Fix- mutants and predicted potential regulators of NCR gene expression, one among them being the TF ERN1 involved in the early steps of nodule organogenesis. In general, this study contributes to understanding the functions of NCRs in legume nodules and contributes to understanding the diversity and potential antibiotic properties of pea nodule-specific antimicrobial molecules.
Collapse
Affiliation(s)
- Evgeny A. Zorin
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Marina S. Kliukova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Alexey M. Afonin
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Emma S. Gribchenko
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Mikhail L. Gordon
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Anton S. Sulima
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | | | - Olga A. Kulaeva
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Daria A. Romanyuk
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Pyotr G. Kusakin
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Anna V. Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Viktor E. Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| |
Collapse
|
10
|
Maximiano MR, Rios TB, Campos ML, Prado GS, Dias SC, Franco OL. Nanoparticles in association with antimicrobial peptides (NanoAMPs) as a promising combination for agriculture development. Front Mol Biosci 2022; 9:890654. [PMID: 36081849 PMCID: PMC9447862 DOI: 10.3389/fmolb.2022.890654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides are small molecules, up to 10 kDa, present in all kingdoms of life, including in plants. Several studies report that these molecules have a broad spectrum of activity, including antibacterial, antifungal, antiviral, and insecticidal activity. Thus, they can be employed in agriculture as alternative tools for phytopathogen and pest control. However, the application of peptides in agriculture can present challenges, such as loss of activity due to degradation of these molecules, off-target effects, and others. In this context, nanotechnology can offer versatile structures, including metallic nanoparticles, liposomes, polymeric nanoparticles, nanofibers, and others, which might act both in protection and in release of AMPs. Several polymers and biomaterials can be employed for the development of nanostructures, such as inorganic metals, natural or synthetic lipids, synthetic and hybrid polymers, and others. This review addresses the versatility of NanoAMPs (Nanoparticles in association with antimicrobial peptides), and their potential applications in agribusiness, as an alternative for the control of phytopathogens in crops.
Collapse
Affiliation(s)
- Mariana Rocha Maximiano
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Thuanny Borba Rios
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Marcelo Lattarulo Campos
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de MT, Cuiabá, Brazil
| | | | - Simoni Campos Dias
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Pós-graduação em Biologia Animal, Instituto de Biologia, Universidade de Brasília, Brasília, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- *Correspondence: Octávio Luiz Franco,
| |
Collapse
|
11
|
Slezina MP, Istomina EA, Kulakovskaya EV, Korostyleva TV, Odintsova TI. The γ-Core Motif Peptides of AMPs from Grasses Display Inhibitory Activity against Human and Plant Pathogens. Int J Mol Sci 2022; 23:ijms23158383. [PMID: 35955519 PMCID: PMC9368981 DOI: 10.3390/ijms23158383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial peptides (AMPs) constitute an essential part of the plant immune system. They are regarded as alternatives to conventional antibiotics and pesticides. In this study, we have identified the γ-core motifs, which are associated with antimicrobial activity, in 18 AMPs from grasses and assayed their antimicrobial properties against nine pathogens, including yeasts affecting humans, as well as plant pathogenic bacteria and fungi. All the tested peptides displayed antimicrobial properties. We discovered a number of short AMP-derived peptides with high antimicrobial activity both against human and plant pathogens. For the first time, antimicrobial activity was revealed in the peptides designed from the 4-Cys-containing defensin-like peptides, whose role in plant immunity has remained unknown, as well as the knottin-like peptide and the C-terminal prodomain of the thionin, which points to the direct involvement of these peptides in defense mechanisms. Studies of the mode of action of the eight most active γ-core motif peptides on yeast cells using staining with propidium iodide showed that all of them induced membrane permeabilization leading to cell lysis. In addition to identification of the antimicrobial determinants in plant AMPs, this work provides short candidate peptide molecules for the development of novel drugs effective against opportunistic fungal infections and biopesticides to control plant pathogens.
Collapse
Affiliation(s)
- Marina P. Slezina
- Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.)
| | - Ekaterina A. Istomina
- Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.)
| | - Ekaterina V. Kulakovskaya
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, 142290 Pushchino, Russia;
| | - Tatyana V. Korostyleva
- Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.)
| | - Tatyana I. Odintsova
- Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia; (M.P.S.); (E.A.I.); (T.V.K.)
- Correspondence:
| |
Collapse
|
12
|
Lima RM, Rathod BB, Tiricz H, Howan DHO, Al Bouni MA, Jenei S, Tímár E, Endre G, Tóth GK, Kondorosi É. Legume Plant Peptides as Sources of Novel Antimicrobial Molecules Against Human Pathogens. Front Mol Biosci 2022; 9:870460. [PMID: 35755814 PMCID: PMC9218685 DOI: 10.3389/fmolb.2022.870460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/18/2022] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides are prominent components of the plant immune system acting against a wide variety of pathogens. Legume plants from the inverted repeat lacking clade (IRLC) have evolved a unique gene family encoding nodule-specific cysteine-rich NCR peptides acting in the symbiotic cells of root nodules, where they convert their bacterial endosymbionts into non-cultivable, polyploid nitrogen-fixing cells. NCRs are usually 30–50 amino acids long peptides having a characteristic pattern of 4 or 6 cysteines and highly divergent amino acid composition. While the function of NCRs is largely unknown, antimicrobial activity has been demonstrated for a few cationic Medicago truncatula NCR peptides against bacterial and fungal pathogens. The advantages of these plant peptides are their broad antimicrobial spectrum, fast killing modes of actions, multiple bacterial targets, and low propensity to develop resistance to them and no or low cytotoxicity to human cells. In the IRLC legumes, the number of NCR genes varies from a few to several hundred and it is possible that altogether hundreds of thousands of different NCR peptides exist. Due to the need for new antimicrobial agents, we investigated the antimicrobial potential of 104 synthetic NCR peptides from M. truncatula, M. sativa, Pisum sativum, Galega orientalis and Cicer arietinum against eight human pathogens, including ESKAPE bacteria. 50 NCRs showed antimicrobial activity with differences in the antimicrobial spectrum and effectivity. The most active peptides eliminated bacteria at concentrations from 0.8 to 3.1 μM. High isoelectric point and positive net charge were important but not the only determinants of their antimicrobial activity. Testing the activity of shorter peptide derivatives against Acinetobacter baumannii and Candida albicans led to identification of regions responsible for the antimicrobial activity and provided insight into their potential modes of action. This work provides highly potent lead molecules without hemolytic activity on human blood cells for novel antimicrobial drugs to fight against pathogens.
Collapse
Affiliation(s)
- Rui M Lima
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | | | - Hilda Tiricz
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Dian H O Howan
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | | | - Sándor Jenei
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Edit Tímár
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Gabriella Endre
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Éva Kondorosi
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| |
Collapse
|
13
|
Váradi G, Galgóczy L, Tóth GK. Rationally Designed Antimicrobial Peptides Are Potential Tools to Combat Devastating Bacteria and Fungi. Int J Mol Sci 2022; 23:6244. [PMID: 35682921 PMCID: PMC9181708 DOI: 10.3390/ijms23116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
The introduction of the first antibiotic (penicillin) by Sir Alexander Fleming in 1928 was a huge milestone in the treatment of infectious diseases [...].
Collapse
Affiliation(s)
- Györgyi Váradi
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary;
| | - László Galgóczy
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary;
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Gábor K. Tóth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary;
- MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary
| |
Collapse
|
14
|
Zhang R, Isozumi N, Mori M, Okuta R, Singkaravanit-Ogawa S, Imamura T, Kurita JI, Gan P, Shirasu K, Ohki S, Takano Y. Fungal effector SIB1 of Colletotrichum orbiculare has unique structural features and can suppress plant immunity in Nicotiana benthamiana. J Biol Chem 2021; 297:101370. [PMID: 34756891 PMCID: PMC8633582 DOI: 10.1016/j.jbc.2021.101370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Fungal plant pathogens secrete virulence-related proteins, called effectors, to establish host infection; however, the details are not fully understood yet. Functional screening of effector candidates using Agrobacterium-mediated transient expression assay in Nicotiana benthamiana identified two virulence-related effectors, named SIB1 and SIB2 (Suppression of Immunity in N. benthamiana), of an anthracnose fungus Colletotrichum orbiculare, which infects both cucurbits and N. benthamiana. The Agrobacterium-mediated transient expression of SIB1 or SIB2 increased the susceptibility of N. benthamiana to C. orbiculare, which suggested these effectors can suppress immune responses in N. benthamiana. The presence of SIB1 and SIB2 homologs was found to be limited to the genus Colletotrichum. SIB1 suppressed both (i) the generation of reactive oxygen species triggered by two different pathogen-associated molecular patterns, chitin and flg22, and (ii) the cell death response triggered by the Phytophthora infestans INF1 elicitin in N. benthamiana. We determined the NMR-based structure of SIB1 to obtain its structural insights. The three-dimensional structure of SIB1 comprises five β-strands, each containing three disulfide bonds. The overall conformation was found to be a cylindrical shape, such as the well-known antiparallel β-barrel structure. However, the β-strands were found to display a unique topology, one pair of these β-strands formed a parallel β-sheet. These results suggest that the effector SIB1 present in Colletotrichum fungi has unique structural features and can suppress pathogen-associated molecular pattern-triggered immunity in N. benthamiana.
Collapse
Affiliation(s)
- Ru Zhang
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Noriyoshi Isozumi
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan.
| | - Ryuta Okuta
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Tomohiro Imamura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan
| | - Jun-Ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Pamela Gan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan.
| | | |
Collapse
|