1
|
Ma B, Zeng Q, Yang F, Yang H, Li W, Fu R, Cai Z, Zhu G, Shu C, Luo M, Zhou Z. MMP19 in vascular smooth muscle cells protects against thoracic aortic aneurysm and dissection via the MMP19/Aggrecan/Wnt/β-catenin axis. J Mol Cell Cardiol 2025; 202:35-49. [PMID: 39954937 DOI: 10.1016/j.yjmcc.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening cardiovascular event characterized by high mortality rates. Previous studies have shown that matrix metalloproteinases 19 (MMP19) was involved in TAAD formation, while the detailed role of MMP19 in TAAD pathogenesis and underlying mechanism remain unclear. METHODS To investigate the role of MMP19 in the progression of TAAD, we generated global Mmp19 knockout mice, as well as VSMCs (vascular smooth muscle cells)-specific Mmp19 knockdown mice, and established a BAPN-induced TAAD model. To elucidate the signaling pathways modulated by Aggrecan, we employed an adeno-associated virus serotype 9 (AAV9) vector encoding Acan short hairpin RNA (shRNA) for VSMC-specific knockdown of Acan. Ultimately, we injected an AAV vector encoding VSMC-specific Mmp19 into BAPN-induced TAAD mice to assess whether MMP19 can mitigate the development of TAAD. RESULTS Our findings revealed elevated mRNA and protein levels of MMP19 in the aortas of both TAAD mice and patients. The systemic ablation of Mmp19, as well as VSMC-specific Mmp19 knockdown, significantly exacerbated BAPN-induced progressive TAAD, and TAAD-related cardiovascular remodeling. Mmp19 deficiency resulted in the accumulation of Acan, but not Vcan, within the aorta, driving the phenotypic switch of VSMCs from contractile to synthetic state through activting Wnt/β-catenin signaling pathway. The selective inhibitor of Wnt/β-catenin signaling, MASB, was effective in reversing the dedifferentiation of VSMCs induced by aggrecan accumulation. Notably, the specific knockdown of Acan in VSMCs restored the contractile phenotype of VSMCs and inhibited Wnt/β-catenin signaling, thereby alleviating BAPN-induced TAAD in Mmp19-/- mice. Additionally, VSMC-specific complementation of MMP19 also alleviated the progressive TAAD phenotype in Mmp19-/- mice. CONCLUSIONS The study underscores that MMP19 deficiency exacerbates TAAD by promoting Acan aggregation and destroying the homeostasis of VSMCs by activating Wnt/β-catenin signaling pathway. These results posit MMP19 as a promising novel therapeutic target for TAAD intervention.
Collapse
MESH Headings
- Humans
- Male
- Female
- Animals
- Mice
- Mice, Knockout
- Matrix Metalloproteinases, Secreted/genetics
- Matrix Metalloproteinases, Secreted/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/surgery
- Mice, Inbred C57BL
- Cells, Cultured
- Wnt Signaling Pathway
- Aggrecans/metabolism
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/surgery
- Myocytes, Smooth Muscle/metabolism
- beta Catenin/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Baihui Ma
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Qingyi Zeng
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fangfang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wenke Li
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Rui Fu
- Emergency Center, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zeyu Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Guoyan Zhu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Chang Shu
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Department of Vascular Surgery, Central-China Branch of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China; Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650102, China.
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
2
|
Goyal A, Jain H, Usman M, Zuhair V, Sulaiman SA, Javed B, Mubbashir A, Abozaid AM, Passey S, Yakkali S. A comprehensive exploration of novel biomarkers for the early diagnosis of aortic dissection. Hellenic J Cardiol 2025; 82:74-85. [PMID: 38909846 DOI: 10.1016/j.hjc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
Aortic dissection (AD) is a catastrophic life-threatening cardiovascular emergency with a 1-2% per hour mortality rate post-diagnosis, characterized physiologically by the separation of aortic wall layers. AD initially presents as intense pain that can then radiate to the back, arms, neck, or jaw along with neurological deficits like difficulty in speaking, and unilateral weakness in some patients. This spectrum of clinical features associated with AD is often confused with acute myocardial infarction, hence leading to a delay in AD diagnosis. Cardiac and vascular biomarkers are structural proteins and microRNAs circulating in the bloodstream that correlate to tissue damage and their levels become detectable even before symptom onset. Timely diagnosis of AD using biomarkers, in combination with advanced imaging diagnostics, will significantly improve prognosis by allowing earlier vascular interventions. This comprehensive review aims to investigate emerging biomarkers in the diagnosis of AD, as well as provide future directives for creating advanced diagnostic tools and imaging techniques.
Collapse
Affiliation(s)
- Aman Goyal
- Department of Internal Medicine, Seth GS Medical College and KEM Hospital, Mumbai, India.
| | - Hritvik Jain
- All India Institute of Medical Sciences (AIIMS), Jodhpur, India.
| | | | | | | | - Binish Javed
- Atal Bihari Vajpayee Institute of Medical Sciences & Dr Ram Manohar Lohia Hospital, New Delhi, India.
| | | | | | - Siddhant Passey
- Department of Internal Medicine, University of Connecticut Health Center, Connecticut, USA.
| | - Shreyas Yakkali
- Department of Internal Medicine, NYC Health+Hospitals / Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Roslik M, Zharikov Y, Vovkogon A, Zharova N, Pontes-Silva A, Zharikova T. Aortic aneurysm: Correlations with phenotypes associated with connective tissue dysplasia. Microvasc Res 2025; 157:104754. [PMID: 39401669 DOI: 10.1016/j.mvr.2024.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/29/2024] [Accepted: 10/09/2024] [Indexed: 10/20/2024]
Abstract
An aortic aneurysm is a localized enlargement that exceeds the normal diameter of the vessel by 50 %, posing a risk due to the likelihood of rupture. The cause of aortic aneurysm, especially in young people, is connective tissue dysplasia, a condition characterized by defects in the assembly of collagen and elastin proteins, leading to changes in elastic properties and disruption of the formation of organs and their systems. The article presents data confirming the relationship between many morphological manifestations of connective tissue dysplasia (e.g., funnel-shaped deformation of the sternum, scoliosis of the thoracic spine, abdominal hernias, arterial tortuosity, striae of atypical localization) and the risk of aortic aneurysm formation. The literature suggests that the identified combinations of some external manifestations of connective tissue dysplasia deserve special attention and may be constitutional markers for the possible development of aortic aneurysm, which is a promising direction for further research in this area.
Collapse
Affiliation(s)
- Maria Roslik
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| | - Yury Zharikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| | - Andzhela Vovkogon
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| | - Nataliya Zharova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.
| | - Tatiana Zharikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Human Anatomy and Histology, Moscow, Russia
| |
Collapse
|
4
|
Cao Y, Wang Q, Han M, Zhang Y, Yuan Z, Zhuo K, Zhang H, Xing Z, Jin H, Zhao C. A smartphone-based multichannel magnetoelastic immunosensor for acute aortic dissection supplementary diagnosis. Talanta 2025; 281:126915. [PMID: 39305762 DOI: 10.1016/j.talanta.2024.126915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Some biomarkers of acute aortic dissection (AAD) can be used for the potential supplementary diagnosis of AAD, such as C-reactive protein (CRP), smooth muscle myosin heavy chain (SmMHC), and D-dimer (D-D). However, the current measurement methods for common markers primarily rely on sophisticated instruments. The operation process is complicated, and the reagents used are expensive. To provide chronic disease monitoring and home self-examination services for potential AAD patients in real time, we developed a smartphone-based multichannel magnetoelastic (ME) immunosensing device to detect protein levels. Our immunosensor reduced the aforementioned restrictions and demonstrated excellent performance for the supplementary diagnosis of AAD. In this paper, we successfully combined the intelligent terminal with the hardware system to sample the resonance frequency shift (RFS) on the multichannel ME immunosensor. According to the target detection objects with their respective antibodies in the immune binding response, multiple experiments were conducted to detect multiple groups of samples, and we found that a CRP concentration, a SmMHC concentration, and a D-D concentration in the range of 0.1-100μg/mL, 1-4ng/mL, and 0.25-5μg/mL were linearly proportional to the RFS of the ME immunosensor, respectively. For CRP, SmMHC, and D-D, the sensitivities were 13.37Hz/μg∙mL-1, 155.19Hz/ng∙mL-1, and 332.72Hz/μg∙mL-1, respectively, and the detection limits were 2.634×10-3μg/mL, 1.155×10-2ng/mL, and 3.687×10-3μg/mL, respectively. The experiments demonstrated that the accuracy and stability of our device were comparable to those of the vector network analyzer (VNA, Calibration instrument).
Collapse
Affiliation(s)
- Yunmei Cao
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Qiannan Wang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Mengshu Han
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yunxuan Zhang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhongyun Yuan
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Kai Zhuo
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hongpeng Zhang
- Department of Vascular Surgery, Chinese PLA General Hospital, 100853, Beijing, China.
| | - Zhijin Xing
- Department of ultrasound medicine, Shenzhen Hospital of the University of Hong Kong, 518053, Shenzhen, China
| | - Hu Jin
- Division of Electrical Engineering, Hanyang University, 15588, Ansan, Republic of Korea
| | - Chun Zhao
- College of Information and Communication Engineering, Sungkyunkwan University, Chunchun-Dong, Changan-Ku, 440746, Suwon, Republic of Korea.
| |
Collapse
|
5
|
Muzammil MA, Chaudhary N, Abbas SM, Ahmad O, Nasir A, Baig E, Fariha F, Afridi AK, Zaveri S. Advancements in Serum Biomarkers for Early Diagnosis and Prognostic Assessment of Aortic Dissection. Crit Pathw Cardiol 2024; 23:207-217. [PMID: 38446088 DOI: 10.1097/hpc.0000000000000355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Aortic dissection (AD) is a potentially fatal cardiovascular issue that needs to be diagnosed and treated very away. Although early detection is essential for bettering patient outcomes, there are substantial obstacles with the diagnostic techniques used today. Promising pathways for improving AD prognosis evaluation and early detection are presented by recent developments in serum biomarkers. The most recent research on serum biomarkers for AD is reviewed here, with an emphasis on the prognostic and diagnostic utility of these indicators. A number of biomarkers, including as matrix metalloproteinases, soluble elastin fragments, smooth muscle myosin heavy chain, and D-dimer, have been identified as putative markers of AD. These indicators are indicative of multiple pathophysiological mechanisms associated with AD, including inflammation, extracellular matrix remodeling, and vascular damage. Research has indicated that they are useful in differentiating AD from other acute cardiovascular diseases, facilitating prompt diagnosis and risk assessment.
Collapse
Affiliation(s)
- Muhammad Ali Muzammil
- From the Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Neeru Chaudhary
- Department of School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Syed Muhammad Abbas
- From the Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Owais Ahmad
- Department of Medicine, Islamic International Medical College, Riphah International University, Islamabad
| | - Aqsa Nasir
- From the Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Eesha Baig
- From the Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Fnu Fariha
- From the Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Azra Khan Afridi
- Department of Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | - Sahil Zaveri
- Department of Medicine, Cell Biology, and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY
- Department of Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY
| |
Collapse
|
6
|
Zhao A, Peng Y, Luo B, Chen Y, Chen L, Lin Y. D-Dimer/Platelet Ratio Predicts in-Hospital Death in Patients with Acute Type a Aortic Dissection. Int J Gen Med 2024; 17:5191-5202. [PMID: 39554871 PMCID: PMC11566588 DOI: 10.2147/ijgm.s490858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose Acute Type A aortic dissection (ATAAD) is a rare and life-threatening aortic disease. This study was aimed at the potential of the D-dimer to platelet count ratio (DPR) as a prognostic indicator of ATAAD. Patients and Methods This study retrospectively analyzed ATAAD patients who were admitted to the Department of Cardiac Surgery, Fujian Medical University Union Hospital from January 2022 to April 2023. Patients were divided into survival (n = 173) and death (n = 24) groups based on whether death occurred. The primary outcome was death, and the secondary outcome was adverse hospitalization, including new postoperative arrhythmias, acute renal insufficiency, acute liver insufficiency, pleural effusion, length of ICU stay, mechanical ventilation length, and length of stay. The logistic regression model was used to analyze the relationship between DPR and in-hospital death, and the receiver operating characteristic curve (ROC) was drawn to analyze the predictive value of DPR for in-hospital death of ATAAD patients. Results Of the 197 patients included, 24 died, and the in-hospital mortality rate was 12.2%. There was a significant difference in diastolic blood pressure (P < 0.05). In terms of laboratory indexes, total bilirubin, direct bilirubin, indirect bilirubin, D-dimer, red blood cell volume distribution width, and DPR in the death group were higher than those in the survival group, with statistical significance (P < 0.05). Operation duration, hospital stay, ICU stay, mechanical ventilation time, and acute renal insufficiency in the death group were higher than those in the survival group (P < 0.05). Univariate analysis and multivariate analysis showed that DPR > 0.0305 ug/mL was an independent risk factor for death in ATAAD patients. Conclusion Increased DPR is independently associated with in-hospital death in patients with ATAAD.
Collapse
Affiliation(s)
- Ani Zhao
- School of Nursing, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Yanchun Peng
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, People’s Republic of China
| | - Baolin Luo
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, People’s Republic of China
| | - Yaqin Chen
- School of Nursing, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, People’s Republic of China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University, Fuzhou, Fujian Province, 350001, People’s Republic of China
| | - Yanjuan Lin
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, People’s Republic of China
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, 350001, People’s Republic of China
| |
Collapse
|
7
|
Kemberi M, Minns AF, Santamaria S. Soluble Proteoglycans and Proteoglycan Fragments as Biomarkers of Pathological Extracellular Matrix Remodeling. PROTEOGLYCAN RESEARCH 2024; 2:e70011. [PMID: 39600538 PMCID: PMC11587194 DOI: 10.1002/pgr2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Proteoglycans and their proteolytic fragments diffuse into biological fluids such as plasma, serum, urine, or synovial fluid, where they can be detected by antibodies or mass-spectrometry. Neopeptides generated by the proteolysis of proteoglycans are recognized by specific neoepitope antibodies and can act as a proxy for the activity of certain proteases. Proteoglycan and proteoglycan fragments can be potentially used as prognostic, diagnostic, or theragnostic biomarkers for several diseases characterized by dysregulated extracellular matrix remodeling such as osteoarthritis, rheumatoid arthritis, atherosclerosis, thoracic aortic aneurysms, central nervous system disorders, viral infections, and cancer. Here, we review the main mechanisms accounting for the presence of soluble proteoglycans and their fragments in biological fluids, their potential application as diagnostic, prognostic, or theragnostic biomarkers, and highlight challenges and opportunities ahead of their clinical translation.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEnglandUK
| | - Alexander F. Minns
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| | - Salvatore Santamaria
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| |
Collapse
|
8
|
Ganizada BH, Veltrop RJA, Akbulut AC, Koenen RR, Accord R, Lorusso R, Maessen JG, Reesink K, Bidar E, Schurgers LJ. Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections. Basic Res Cardiol 2024; 119:371-395. [PMID: 38700707 PMCID: PMC11143007 DOI: 10.1007/s00395-024-01053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Ascending thoracic aortic aneurysm (ATAA) remains a significant medical concern, with its asymptomatic nature posing diagnostic and monitoring challenges, thereby increasing the risk of aortic wall dissection and rupture. Current management of aortic repair relies on an aortic diameter threshold. However, this approach underestimates the complexity of aortic wall disease due to important knowledge gaps in understanding its underlying pathologic mechanisms.Since traditional risk factors cannot explain the initiation and progression of ATAA leading to dissection, local vascular factors such as extracellular matrix (ECM) and vascular smooth muscle cells (VSMCs) might harbor targets for early diagnosis and intervention. Derived from diverse embryonic lineages, VSMCs exhibit varied responses to genetic abnormalities that regulate their contractility. The transition of VSMCs into different phenotypes is an adaptive response to stress stimuli such as hemodynamic changes resulting from cardiovascular disease, aging, lifestyle, and genetic predisposition. Upon longer exposure to stress stimuli, VSMC phenotypic switching can instigate pathologic remodeling that contributes to the pathogenesis of ATAA.This review aims to illuminate the current understanding of cellular and molecular characteristics associated with ATAA and dissection, emphasizing the need for a more nuanced comprehension of the impaired ECM-VSMC network.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Dissection/pathology
- Aortic Dissection/genetics
- Aortic Dissection/metabolism
- Animals
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Vascular Remodeling
- Extracellular Matrix/pathology
- Extracellular Matrix/metabolism
- Phenotype
Collapse
Affiliation(s)
- Berta H Ganizada
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rogier J A Veltrop
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Asim C Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Ryan Accord
- Department of Cardiothoracic Surgery, Center for Congenital Heart Disease, University Medical Center Groningen, Groningen, The Netherlands
| | - Roberto Lorusso
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Koen Reesink
- Department of Biomedical Engineering, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Wang X, Zhu Y, Ma X, Ren J, Yan Y, Liu Y, Gao H, Zhang S, Chen Y, Yang Y, Deng C. Eosinophil Recovery Time Is Associated with Clinical Outcomes in Patients with Type A Acute Aortic Dissection: a Retrospective Cohort Study. J Cardiovasc Transl Res 2024; 17:723-731. [PMID: 38622370 DOI: 10.1007/s12265-023-10468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/23/2023] [Indexed: 04/17/2024]
Abstract
Type A acute aortic dissection (TA-AAD) patients are prone to life-threatening complications and death. This study aimed to analyze the association between eosinophil (EOS) recovery and clinical outcomes in TA-AAD. A total of 274 patients with TA-AAD were eligible for inclusion, and 54 patients died within 1 month. The patients with poor clinical outcomes showed significantly lower EOS count within 8 days after surgery. The time-dependent ROC analysis showed that EOS recovery days predicted 1-month death with an AUC of 0.886 and a cutoff of 6 days. EOS recovery within 6 days was associated with a lower incidence of postoperative infection, a poorer prognosis, and a lower risk of 1-month and 6-month mortality than those requiring more recovery days. Collectively, postoperative early recovery of EOS predicted lower mortality and better prognosis and may be applied as an effective, rapid, and simple tool for the risk stratification and prognostic prediction of patients with TA-AAD.Clinical trial registration number: NCT05409677.
Collapse
Affiliation(s)
- Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, China
| | - Yanli Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Xiaojuan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
| | - Yang Yan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, China
| | - Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Heng Gao
- Department of Emergency Medicine, Shaanxi Provincial People's Hospital, 256 Youyi West Road, Xi'an, Shaanxi, China
| | - Shaofei Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China.
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, China.
| |
Collapse
|
10
|
Moore P, Wolf A, Sathyamoorthy M. An Eye into the Aorta: The Role of Extracellular Matrix Regulatory Genes ZNF469 and PRDM5, from Their Previous Association with Brittle Cornea Syndrome to Their Novel Association with Aortic and Arterial Aneurysmal Diseases. Int J Mol Sci 2024; 25:5848. [PMID: 38892036 PMCID: PMC11172047 DOI: 10.3390/ijms25115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
The extracellular matrix is a complex network of proteins and other molecules that are essential for the support, integrity, and structure of cells and tissues within the human body. The genes ZNF469 and PRDM5 each produce extracellular-matrix-related proteins that, when mutated, have been shown to result in the development of brittle cornea syndrome. This dysfunction results from aberrant protein function resulting in extracellular matrix disruption. Our group recently identified and published the first known associations between variants in these genes and aortic/arterial aneurysms and dissection diseases. This paper delineates the proposed effects of mutated ZNF469 and PRDM5 on various essential extracellular matrix components, including various collagens, TGF-B, clusterin, thrombospondin, and HAPLN-1, and reviews our recent reports associating single-nucleotide variants to these genes' development of aneurysmal and dissection diseases.
Collapse
Affiliation(s)
- Peyton Moore
- Sathyamoorthy Laboratory, Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, TX 76104, USA
| | - Adam Wolf
- Sathyamoorthy Laboratory, Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, TX 76104, USA
| | - Mohanakrishnan Sathyamoorthy
- Sathyamoorthy Laboratory, Department of Medicine, Burnett School of Medicine at TCU, Fort Worth, TX 76104, USA
- Consultants in Cardiovascular Medicine and Science, Fort Worth, TX 76104, USA
- Fort Worth Institute for Molecular Medicine and Genomics Research, Fort Worth, TX 76104, USA
| |
Collapse
|
11
|
Liu D, Billington CJ, Raja N, Wong ZC, Levin MD, Resch W, Alba C, Hupalo DN, Biamino E, Bedeschi MF, Digilio MC, Squeo GM, Villa R, Parrish PCR, Knutsen RH, Osgood S, Freeman JA, Dalgard CL, Merla G, Pober BR, Mervis CB, Roberts AE, Morris CA, Osborne LR, Kozel BA. Matrisome and Immune Pathways Contribute to Extreme Vascular Outcomes in Williams-Beuren Syndrome. J Am Heart Assoc 2024; 13:e031377. [PMID: 38293922 PMCID: PMC11056152 DOI: 10.1161/jaha.123.031377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/28/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Supravalvar aortic stenosis (SVAS) is a characteristic feature of Williams-Beuren syndrome (WBS). Its severity varies: ~20% of people with Williams-Beuren syndrome have SVAS requiring surgical intervention, whereas ~35% have no appreciable SVAS. The remaining individuals have SVAS of intermediate severity. Little is known about genetic modifiers that contribute to this variability. METHODS AND RESULTS We performed genome sequencing on 473 individuals with Williams-Beuren syndrome and developed strategies for modifier discovery in this rare disease population. Approaches include extreme phenotyping and nonsynonymous variant prioritization, followed by gene set enrichment and pathway-level association tests. We next used GTEx v8 and proteomic data sets to verify expression of candidate modifiers in relevant tissues. Finally, we evaluated overlap between the genes/pathways identified here and those ascertained through larger aortic disease/trait genome-wide association studies. We show that SVAS severity in Williams-Beuren syndrome is associated with increased frequency of common and rarer variants in matrisome and immune pathways. Two implicated matrisome genes (ACAN and LTBP4) were uniquely expressed in the aorta. Many genes in the identified pathways were previously reported in genome-wide association studies for aneurysm, bicuspid aortic valve, or aortic size. CONCLUSIONS Smaller sample sizes in rare disease studies necessitate new approaches to detect modifiers. Our strategies identified variation in matrisome and immune pathways that are associated with SVAS severity. These findings suggest that, like other aortopathies, SVAS may be influenced by the balance of synthesis and degradation of matrisome proteins. Leveraging multiomic data and results from larger aorta-focused genome-wide association studies may accelerate modifier discovery for rare aortopathies like SVAS.
Collapse
Affiliation(s)
- Delong Liu
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Charles J. Billington
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
- Department of PediatricsUniversity of MinnesotaMinneapolisMN
| | - Neelam Raja
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Zoe C. Wong
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Mark D. Levin
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Wulfgang Resch
- The High Performance Computing FacilityCenter for Information Technology, National Institutes of HealthBethesdaMD
| | - Camille Alba
- Henry M Jackson Foundation for the Advancement of Military MedicineBethesdaMD
| | - Daniel N. Hupalo
- Henry M Jackson Foundation for the Advancement of Military MedicineBethesdaMD
| | | | | | | | - Gabriella Maria Squeo
- Laboratory of Regulatory and Functional GenomicsFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo (Foggia)Italy
| | - Roberta Villa
- Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico Medical Genetic UnitMilanItaly
| | - Pheobe C. R. Parrish
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
- Department of Genome SciencesUniversity of WashingtonSeattleWA
| | - Russell H. Knutsen
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Sharon Osgood
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Joy A. Freeman
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| | - Clifton L. Dalgard
- Department of Anatomy, Physiology and Genetics, School of Medicinethe Uniformed Services University of the Health SciencesBethesdaMD
| | - Giuseppe Merla
- Laboratory of Regulatory and Functional GenomicsFondazione IRCCS Casa Sollievo della SofferenzaSan Giovanni Rotondo (Foggia)Italy
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico IINaplesItaly
| | - Barbara R. Pober
- Section of Genetics, Department of PediatricsMassachusetts General HospitalBostonMA
| | - Carolyn B. Mervis
- Department of Psychological and Brain SciencesUniversity of LouisvilleLouisvilleKY
| | - Amy E. Roberts
- Department of Cardiology and Division of Genetics and Genomics, Department of PediatricsBoston Children’s HospitalBostonMA
| | - Colleen A. Morris
- Department of PediatricsKirk Kerkorian School of Medicine at UNLVLas VegasNV
| | - Lucy R. Osborne
- Departments of Medicine and Molecular GeneticsUniversity of TorontoCanada
| | - Beth A. Kozel
- National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMD
| |
Collapse
|
12
|
Zhao Y, Fu W, Wang L. Biomarkers in aortic dissection: Diagnostic and prognostic value from clinical research. Chin Med J (Engl) 2024; 137:257-269. [PMID: 37620283 PMCID: PMC10836883 DOI: 10.1097/cm9.0000000000002719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Indexed: 08/26/2023] Open
Abstract
ABSTRACT Aortic dissection is a life-threatening condition for which diagnosis mainly relies on imaging examinations, while reliable biomarkers to detect or monitor are still under investigation. Recent advances in technologies provide an unprecedented opportunity to yield the identification of clinically valuable biomarkers, including proteins, ribonucleic acids (RNAs), and deoxyribonucleic acids (DNAs), for early detection of pathological changes in susceptible patients, rapid diagnosis at the bedside after onset, and a superior therapeutic regimen primarily within the concept of personalized and tailored endovascular therapy for aortic dissection.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Vascular Surgery Institute,Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Vascular Surgery Institute,Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Vascular Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian 361015, China
| | - Lixin Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Vascular Surgery Institute,Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Vascular Surgery, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian 361015, China
| |
Collapse
|
13
|
Ruiz-Rodríguez MJ, Oller J, Martínez-Martínez S, Alarcón-Ruiz I, Toral M, Sun Y, Colmenar Á, Méndez-Olivares MJ, López-Maderuelo D, Kern CB, Nistal JF, Evangelista A, Teixido-Tura G, Campanero MR, Redondo JM. Versican accumulation drives Nos2 induction and aortic disease in Marfan syndrome via Akt activation. EMBO Mol Med 2024; 16:132-157. [PMID: 38177536 PMCID: PMC10897446 DOI: 10.1038/s44321-023-00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening condition associated with Marfan syndrome (MFS), a disease caused by fibrillin-1 gene mutations. While various conditions causing TAAD exhibit aortic accumulation of the proteoglycans versican (Vcan) and aggrecan (Acan), it is unclear whether these ECM proteins are involved in aortic disease. Here, we find that Vcan, but not Acan, accumulated in Fbn1C1041G/+ aortas, a mouse model of MFS. Vcan haploinsufficiency protected MFS mice against aortic dilation, and its silencing reverted aortic disease by reducing Nos2 protein expression. Our results suggest that Acan is not an essential contributor to MFS aortopathy. We further demonstrate that Vcan triggers Akt activation and that pharmacological Akt pathway inhibition rapidly regresses aortic dilation and Nos2 expression in MFS mice. Analysis of aortic tissue from MFS human patients revealed accumulation of VCAN and elevated pAKT-S473 staining. Together, these findings reveal that Vcan plays a causative role in MFS aortic disease in vivo by inducing Nos2 via Akt activation and identify Akt signaling pathway components as candidate therapeutic targets.
Collapse
Affiliation(s)
- María Jesús Ruiz-Rodríguez
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jorge Oller
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratory of Vascular Pathology, Hospital IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - Sara Martínez-Martínez
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Iván Alarcón-Ruiz
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Yilin Sun
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Ángel Colmenar
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María José Méndez-Olivares
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Dolores López-Maderuelo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Christine B Kern
- Medical University of South Carolina (MUSC), Charleston, SC, 29425, USA
| | - J Francisco Nistal
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Surgery, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), Facultad de Medicina, Universidad de Cantabria, Santander, 39005, Spain
| | | | - Gisela Teixido-Tura
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital Universitari Vall d'Hebron (VHIR), Barcelona, 08035, Spain
| | - Miguel R Campanero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| |
Collapse
|
14
|
Rega S, Farina F, Bouhuis S, de Donato S, Chiesa M, Poggio P, Cavallotti L, Bonalumi G, Giambuzzi I, Pompilio G, Perrucci GL. Multi-omics in thoracic aortic aneurysm: the complex road to the simplification. Cell Biosci 2023; 13:131. [PMID: 37475058 DOI: 10.1186/s13578-023-01080-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Thoracic aortic aneurysm (TAA) is a serious condition that affects the aorta, characterized by the dilation of its first segment. The causes of TAA (e.g., age, hypertension, genetic syndromes) are heterogeneous and contribute to the weakening of the aortic wall. This complexity makes treating this life-threatening aortopathy challenging, as there are currently no etiological therapy available, and pharmacological strategies, aimed at avoiding surgical aortic replacement, are merely palliative. Recent studies on novel therapies for TAA have focused on identifying biological targets and etiological mechanisms of the disease by using advanced -omics techniques, including epigenomics, transcriptomics, proteomics, and metabolomics approaches. METHODS This review presents the latest findings from -omics approaches and underscores the importance of integrating multi-omics data to gain more comprehensive understanding of TAA. RESULTS Literature suggests that the alterations in TAA mediators frequently involve members of pro-fibrotic process (i.e., TGF-β signaling pathways) or proteins associated with cell/extracellular structures (e.g., aggrecans). Further analyses often reported the importance in TAA of processes as inflammation (PCR, CD3, leukotriene compounds), oxidative stress (chromatin OXPHOS, fatty acids), mitochondrial respiration and glycolysis/gluconeogenesis (e.g., PPARs and HIF1a). Of note, more recent metabolomics studies added novel molecular markers to the list of TAA-specific detrimental mediators (proteoglycans). CONCLUSION It is increasingly clear that integrating data from different -omics branches, along with clinical data, is essential as well as complicated both to reveal hidden relevant information and to address complex diseases such as TAA. Importantly, recent progresses in metabolomics highlighted novel potential and unprecedented marks in TAA diagnosis and therapy.
Collapse
Affiliation(s)
- Sara Rega
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Floriana Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU) München, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Silvia Bouhuis
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Silvia de Donato
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico Di Milano, Milan, Italy
| | - Paolo Poggio
- Unit for the Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Laura Cavallotti
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giorgia Bonalumi
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Ilaria Giambuzzi
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Gianluca L Perrucci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, Milan, Italy.
| |
Collapse
|
15
|
Rylski B, Schilling O, Czerny M. Acute aortic dissection: evidence, uncertainties, and future therapies. Eur Heart J 2023; 44:813-821. [PMID: 36540036 DOI: 10.1093/eurheartj/ehac757] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/27/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Remarkable progress has become especially apparent in aortic medicine in the last few decades, leading to essential changes in how thoracic aortic dissection is understood and treated. This state-of-the-art review article addresses the mechanisms of acute aortic dissection, explaining the role of its primary entry location, proximal, and distal dissection extension in their clinical presentation and impact on the decision-making process towards the best treatment approach. The latest evidence on novel treatment methods for acute aortic syndromes is presented, and the diverse dissection classification systems that remain uncertain are discussed, which reveals the need for shared terminology and more clarity. Finally, future aspects are discussed in treating acute aortic dissection, such as the endovascular treatment of aortic dissection Type A and biomarkers for acute aortic syndromes.
Collapse
Affiliation(s)
- Bartosz Rylski
- Department of Cardiovascular Surgery, Heart Centre Freiburg University, Hugstetter Str. 55, 79106 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Oliver Schilling
- Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany.,Institute for Surgical Pathology, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Martin Czerny
- Department of Cardiovascular Surgery, Heart Centre Freiburg University, Hugstetter Str. 55, 79106 Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| |
Collapse
|
16
|
Cameron PA, Mitra B, Kelly AM. Zero risk is not possible in emergency medicine. Emerg Med Australas 2023; 35:4-5. [PMID: 36645835 DOI: 10.1111/1742-6723.14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Peter A Cameron
- Emergency and Trauma Centre, Alfred Health, Melbourne, Victoria, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Biswadev Mitra
- Emergency and Trauma Centre, Alfred Health, Melbourne, Victoria, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.,National Trauma Research Institute, Melbourne, Victoria, Australia
| | - Anne-Maree Kelly
- Joseph Epstein Centre for Emergency Medicine Research, Western Health, Melbourne, Victoria, Australia.,Department of Medicine - Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Hao X, Cheng S, Jiang B, Xin S. Applying multi-omics techniques to the discovery of biomarkers for acute aortic dissection. Front Cardiovasc Med 2022; 9:961991. [PMID: 36588568 PMCID: PMC9797526 DOI: 10.3389/fcvm.2022.961991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Acute aortic dissection (AAD) is a cardiovascular disease that manifests suddenly and fatally. Due to the lack of specific early symptoms, many patients with AAD are often overlooked or misdiagnosed, which is undoubtedly catastrophic for patients. The particular pathogenic mechanism of AAD is yet unknown, which makes clinical pharmacological therapy extremely difficult. Therefore, it is necessary and crucial to find and employ unique biomarkers for Acute aortic dissection (AAD) as soon as possible in clinical practice and research. This will aid in the early detection of AAD and give clear guidelines for the creation of focused treatment agents. This goal has been made attainable over the past 20 years by the quick advancement of omics technologies and the development of high-throughput tissue specimen biomarker screening. The primary histology data support and add to one another to create a more thorough and three-dimensional picture of the disease. Based on the introduction of the main histology technologies, in this review, we summarize the current situation and most recent developments in the application of multi-omics technologies to AAD biomarker discovery and emphasize the significance of concentrating on integration concepts for integrating multi-omics data. In this context, we seek to offer fresh concepts and recommendations for fundamental investigation, perspective innovation, and therapeutic development in AAD.
Collapse
Affiliation(s)
- Xinyu Hao
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Shuai Cheng
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Bo Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China,*Correspondence: Shijie Xin,
| |
Collapse
|
18
|
Morello F, Bima P, Castelli M, Nazerian P. Acute aortic syndromes: An internist's guide to the galaxy. Eur J Intern Med 2022; 106:45-53. [PMID: 36229285 DOI: 10.1016/j.ejim.2022.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
Acute aortic syndromes (AASs) are severe conditions defined by dissection, hemorrhage, ulceration or rupture of the thoracic aorta. AASs share etiological and pathophysiological features, including long-term aortic tissue degeneration and mechanisms of acute aortic damage. The clinical signs and symptoms of AASs are unspecific and heterogeneous, requiring large differential diagnosis. When evaluating a patient with AAS-compatible symptoms, physicians need to integrate clinical probability assessment, bedside imaging techniques such as point-of-care ultrasound, and blood test results such as d-dimer. The natural history of AASs is dominated by engagement of ischemic, coagulative and inflammatory pathways at large, causing multiorgan damage. Medical treatment, multiorgan monitoring and outcome prognostication are therefore paramount, with internal medicine playing a key role in non-surgical management of AASs.
Collapse
Affiliation(s)
- Fulvio Morello
- S.C. Medicina d'Urgenza U (MECAU), A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy; Dipartimento di Scienze Mediche, Università degli Studi di Torino, Italy
| | - Paolo Bima
- S.C. Medicina d'Urgenza U (MECAU), A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy; Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matteo Castelli
- Department of Emergency Medicine, Careggi University Hospital, Firenze, Italy
| | - Peiman Nazerian
- Department of Emergency Medicine, Careggi University Hospital, Firenze, Italy.
| |
Collapse
|
19
|
Is There Enough Evidence to Support the Role of Glycosaminoglycans and Proteoglycans in Thoracic Aortic Aneurysm and Dissection?—A Systematic Review. Int J Mol Sci 2022; 23:ijms23169200. [PMID: 36012466 PMCID: PMC9408983 DOI: 10.3390/ijms23169200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Altered proteoglycan (PG) and glycosaminoglycan (GAG) distribution within the aortic wall has been implicated in thoracic aortic aneurysm and dissection (TAAD). This review was conducted to identify literature reporting the presence, distribution and role of PGs and GAGs in the normal aorta and differences associated with sporadic TAAD to address the question; is there enough evidence to establish the role of GAGs/PGs in TAAD? 75 studies were included, divided into normal aorta (n = 51) and TAAD (n = 24). There is contradictory data regarding changes in GAGs upon ageing; most studies reported an increase in GAG sub-types, often followed by a decrease upon further ageing. Fourteen studies reported changes in PG/GAG or associated degradation enzyme levels in TAAD, with most increased in disease tissue or serum. We conclude that despite being present at relatively low abundance in the aortic wall, PGs and GAGs play an important role in extracellular matrix maintenance, with differences observed upon ageing and in association with TAAD. However, there is currently insufficient information to establish a cause-effect relationship with an underlying mechanistic understanding of these changes requiring further investigation. Increased PG presence in serum associated with aortic disease highlights the future potential of these biomolecules as diagnostic or prognostic biomarkers.
Collapse
|
20
|
Tracking an Elusive Killer: State of the Art of Molecular-Genetic Knowledge and Laboratory Role in Diagnosis and Risk Stratification of Thoracic Aortic Aneurysm and Dissection. Diagnostics (Basel) 2022; 12:diagnostics12081785. [PMID: 35892496 PMCID: PMC9329974 DOI: 10.3390/diagnostics12081785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
The main challenge in diagnosing and managing thoracic aortic aneurysm and dissection (TAA/D) is represented by the early detection of a disease that is both deadly and “elusive”, as it generally grows asymptomatically prior to rupture, leading to death in the majority of cases. Gender differences exist in aortic dissection in terms of incidence and treatment options. Efforts have been made to identify biomarkers that may help in early diagnosis and in detecting those patients at a higher risk of developing life-threatening complications. As soon as the hereditability of the TAA/D was demonstrated, several genetic factors were found to be associated with both the syndromic and non-syndromic forms of the disease, and they currently play a role in patient diagnosis/prognosis and management-guidance purposes. Likewise, circulating biomarker could represent a valuable resource in assisting the diagnosis, and several studies have attempted to identify specific molecules that may help with risk stratification outside the emergency department. Even if promising, those data lack specificity/sensitivity, and, in most cases, they need more testing before entering the “clinical arena”. This review summarizes the state of the art of the laboratory in TAA/D diagnostics, with particular reference to the current and future role of molecular-genetic testing.
Collapse
|
21
|
Abstract
Aggrecan (Acan) and versican (Vcan) are large chondroitin sulfate proteoglycans of the extracellular matrix. They share the same structural domains at both N and C-termini. The N-terminal G1 domain binds hyaluronan (HA), forms an HA-rich matrix, and regulates HA-mediated signaling. The C-terminal G3 domain binds other extracellular matrix molecules and forms a supramolecular structure that stores TGFb and BMPs and regulates their signaling. EGF-like motifs in the G3 domain may directly act like an EGF ligand. Both Acan and Vcan are present in cartilage, intervertebral disc, brain, heart, and aorta. Their localizations are essentially reciprocal. This review describes their structural domains, expression patterns and functions, and regulation of their expression.
Collapse
Affiliation(s)
- Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
22
|
Juraszek A, Czerny M, Rylski B. Update in aortic dissection. Trends Cardiovasc Med 2021; 32:456-461. [PMID: 34411744 DOI: 10.1016/j.tcm.2021.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/16/2023]
Abstract
New concepts regarding the diagnosis, classification, and treatment of aortic dissection have been recently developed. The aim of this paper is to describe the current state of knowledge on this subject and discuss any controversies surrounding it. Novel findings in the patho mechanisms of aortic dissection have evolved focusing on the indications for preventive surgery, biomarkers, and four-dimensional (4D)-flow magnetic resonance imaging. New classifications of aortic dissections have been proposed (TEM, STS/SVS). Finally, recent treatment improvements in aortic dissection treatment options have been presented, i.e., the frozen elephant trunk approach, thoracic endovascular repair, and the endo-Bentall concept as a future option.
Collapse
Affiliation(s)
- Andrzej Juraszek
- Department of Cardiovascular Surgery, University Heart Centre Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| | - Martin Czerny
- Department of Cardiovascular Surgery, University Heart Centre Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Bartosz Rylski
- Department of Cardiovascular Surgery, University Heart Centre Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|