1
|
Ji Y. Sepsis-induced coagulopathy (SIC) in the management of sepsis. Ann Intensive Care 2025; 15:23. [PMID: 39969636 PMCID: PMC11839958 DOI: 10.1186/s13613-025-01441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025] Open
Affiliation(s)
- Yun Ji
- Department of Surgical Intensive Care Unit, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Meza Monge K, Ardon-Lopez A, Pratap A, Idrovo JP. Targeting Inflammation After Hemorrhagic Shock as a Molecular and Experimental Journey to Improve Outcomes: A Review. Cureus 2025; 17:e77776. [PMID: 39981454 PMCID: PMC11841828 DOI: 10.7759/cureus.77776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Hemorrhagic shock continues to be a major contributor to trauma-related fatalities globally, posing a significant and intricate pathophysiological challenge. The condition is marked by injury and blood loss, which activate molecular cascades that can quickly become harmful. The inflammatory response exhibits a biphasic pattern, beginning with a hyper-inflammatory phase that transitions into immunosuppression, posing significant obstacles to effective therapeutic interventions. This review article explores the intricate molecular mechanisms driving inflammation in hemorrhagic shock, emphasizing cellular signaling pathways, endothelial dysfunction, and immune activation. We discuss the role of molecular biomarkers in tracking disease progression and stratifying risk, with a focus on markers of endothelial dysfunction and inflammatory mediators as potential prognostic tools. Additionally, we assess therapeutic strategies, spanning traditional approaches like hemostatic resuscitation to advanced immunomodulatory treatments. Despite promising advancements in molecular monitoring and targeted therapies, challenges persist in bridging experimental findings with clinical applications. Future efforts must prioritize understanding the dynamic progression of inflammatory pathways and refining the timing of interventions to improve outcomes in hemorrhagic shock management.
Collapse
Affiliation(s)
- Kenneth Meza Monge
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| | - Astrid Ardon-Lopez
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Colorado, Aurora, USA
| | - Akshay Pratap
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| | - Juan-Pablo Idrovo
- Department of Surgery, Division of GI, Trauma, and Endocrine Surgery, University of Colorado, Aurora, USA
| |
Collapse
|
3
|
Wang B, Ouyang J, Xing R, Jiang J, Ying M. A novel nomogram to predict the risk of requiring mechanical ventilation in patients with sepsis within 48 hours of admission: a retrospective analysis. PeerJ 2024; 12:e18500. [PMID: 39498290 PMCID: PMC11533908 DOI: 10.7717/peerj.18500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Abstract
Objective To establish a model that can predict the risk of requiring mechanical ventilation within 48 h after admission in patients with sepsis. Methods Data for patients with sepsis admitted to Dongyang People's Hospital from October 2011 to October 2023 were collected and divided into a modeling group and a validation group. Independent risk factors in the modeling group were analyzed, and a corresponding predictive nomogram was established. The model was evaluated for discriminative power (the area under the curve of the receiver operating characteristic curve, AUC), calibration degree (Hosmer-Lemeshow test), and clinical benefit (decision curve analysis, DCA). Models based on the Sequential Organ Failure Assessment (SOFA) scores, the National Early Warning Score (NEWS) scores and multiple machine learning methods were also established. Results The independent factors related to the risk of requiring mechanical ventilation in patients with sepsis within 48 h included lactic acid, pro-brain natriuretic peptide (PRO-BNP), and albumin levels, as well as prothrombin time, the presence of lung infection, and D-dimer levels. The AUC values of nomogram model in the modeling group and validation group were 0.820 and 0.837, respectively. The nomogram model had a good fit and clinical value. The AUC values of the models constructed using SOFA scores and NEWSs were significantly lower than those of the nomogram (P < 0.01). The AUC value of the integrated machine-learning model for the validation group was 0.849, comparable to that of the nomogram model (P = 0.791). Conclusion The established nomogram could effectively predict the risk of requiring mechanical ventilation within 48 h of admission by patients with sepsis. Thus, the model can be used for the treatment and management of sepsis.
Collapse
Affiliation(s)
- Bin Wang
- Emergency Department, Dongyang Hospital Affiliated to Wenzhou Medical University, Jinhua City, Zhejiang, China
| | - Jian Ouyang
- Emergency Department, Dongyang Hospital Affiliated to Wenzhou Medical University, Jinhua City, Zhejiang, China
| | - Rui Xing
- Haemaology Department, Dongyang Hospital Affiliated to Wenzhou Medical University, Jinhua City, Zhejiang, China
| | - Jiyuan Jiang
- Emergency Department, Dongyang Hospital Affiliated to Wenzhou Medical University, Jinhua City, Zhejiang, China
| | - Manzhen Ying
- Emergency Department, Dongyang Hospital Affiliated to Wenzhou Medical University, Jinhua City, Zhejiang, China
| |
Collapse
|
4
|
Eralp Inan O, Kocaturk M, Cansev M, Ozarda Y, Yilmaz Z, Ulus IH. Thromboelastographic evaluation of the effectiveness of choline or CDP-choline treatment on endotoxin-induced hemostatic alterations in dogs. Res Vet Sci 2024; 171:105205. [PMID: 38479101 DOI: 10.1016/j.rvsc.2024.105205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
Sepsis/endotoxemia associates with coagulation abnormalities. We showed previously that exogenous choline treatment reversed the changes in platelet count and function as well as prevented disseminated intravascular coagulation (DIC) in endotoxemic dogs. The aim of this follow-up study was to evaluate the effect of treatment with choline or cytidine-5'-diphosphocholine (CDP-choline), a choline donor, on endotoxin-induced hemostatic alterations using thromboelastography (TEG). Dogs were randomized to six groups and received intravenously (iv) saline, choline (20 mg/kg) or CDP-choline (70 mg/kg) in the control groups, whereas endotoxin (0.1 mg/kg, iv) was used alone or in combination with choline or CDP-choline at the same doses in the treatment groups. TEG variables including R- and K-time (clot formation), maximum amplitude (MA) and α-angle (clot stability), G value (clot elasticity), and EPL, A, and LY30 (fibrinolysis), as well as overall assessment of coagulation (coagulation index - CI), were measured before and at 0.5-48 h after the treatments. TEG parameters did not change significantly in the control groups, except for CI parameter after choline administration. Endotoxemia resulted in increased R-time and A value (P < 0.05), decreased K-time (P < 0.05), α-angle (P < 0.001) and CI values (P < 0.01) at different time points. Treatment with either choline or CDP-choline attenuated or prevented completely the alterations in TEG parameters in endotoxemic dogs with CDP-choline being more effective. These results confirm and extend the effectiveness of choline or CDP-choline in endotoxemia by further demonstrating their efficacy in attenuating or preventing the altered viscoelastic properties of blood clot measured by TEG.
Collapse
Affiliation(s)
- Oya Eralp Inan
- Department of Animal Science, Eskisehir Osmangazi University Faculty of Agriculture, Eskisehir, Turkey.
| | - Meric Kocaturk
- Department of Internal Medicine, Bursa Uludag University Faculty of Veterinary Medicine, Bursa, Turkey.
| | - Mehmet Cansev
- Department of Pharmacology, Bursa Uludag University Faculty of Medicine, Bursa, Turkey.
| | - Yesim Ozarda
- Department of Biochemistry, Yeditepe University Faculty of Medicine, Istanbul, Turkey.
| | - Zeki Yilmaz
- Department of Internal Medicine, Bursa Uludag University Faculty of Veterinary Medicine, Bursa, Turkey.
| | - Ismail Hakki Ulus
- Department of Pharmacology, Istanbul Okan University Faculty of Medicine, Istanbul, Turkey.
| |
Collapse
|
5
|
Samavedam S. Sepsis Induced Coagulopathy: Bringing Science to the Bedside. Indian J Crit Care Med 2023; 27:611-612. [PMID: 37719344 PMCID: PMC10504649 DOI: 10.5005/jp-journals-10071-24537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
How to cite this article: Samavedam S, Sepsis Induced Coagulopathy: Bringing Science to the Bedside. Indian J Crit Care Med 2023;27(9): 611-612.
Collapse
Affiliation(s)
- Srinivas Samavedam
- Department of Critical Care, Ramdevrao Hospital, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Mohapatra P, Kumar A, Singh RK, Gupta R, Hussain M, Singh S, Kumar P. The Effect of Sepsis and Septic Shock on the Viscoelastic Properties of Clot Quality and Mass Using Thromboelastometry: A Prospective Observational Study. Indian J Crit Care Med 2023; 27:625-634. [PMID: 37719352 PMCID: PMC10504658 DOI: 10.5005/jp-journals-10071-24539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/12/2023] [Indexed: 09/19/2023] Open
Abstract
Background Sepsis is associated with wide variable coagulation abnormalities. Thromboelastography (TEG) effectively measures the viscoelastic properties of the clots. This study aims to illustrate the viscoelastic properties of clot quality and mass in sepsis and septic shock patients using TEG, as an effective tool over standard coagulation tests. Materials and methods A single-center, prospective observational study was conducted. 50 patients each meeting the criteria for sepsis and septic shock, and a healthy group of 30 patients was included in the study. Blood samples were obtained and analyzed for standard coagulation tests, platelet count, fibrinogen, and TEG study. Results A total of 130 patients were included. Septic shock patients had a higher sequential (sepsis-related) organ failure score. Prothrombin time (PT) and activated partial thromboplastin time (aPTT) were increased significantly as compared to the sepsis and control groups. TEG markers such as alpha angle, and maximum amplitude (MA) were significantly prolonged while reaction time (R time), was significantly shortened in the sepsis group as compared to the healthy group, suggestive of a hypercoagulable state in sepsis patients. While in septic shock patients, MA and Lysis Index 30 (LY 30) were significantly prolonged and, R time was significantly shortened compared to all other groups. Even though LY30 in sepsis patients was found to be within the normal range (p < 0.001), 18% of patients had prolonged LY30 indicating a hypercoagulable state with impaired fibrinolysis. Conclusion Thromboelastography, as a point-of-care test combined with conventional coagulation tests can provide additional, clinically relevant information on coagulopathy, and outcome, and thus help guide treatment modality in sepsis and septic shock-induced coagulopathy. How to cite this article Mohapatra P, Kumar A, Singh RK, Gupta R, Hussain M, Singh S, et al. The Effect of Sepsis and Septic Shock on the Viscoelastic Properties of Clot Quality and Mass Using Thromboelastometry: A Prospective Observational Study. Indian J Crit Care Med 2023;27(9):625-634.
Collapse
Affiliation(s)
- Priyanka Mohapatra
- Department of Anesthesiology & Critical Care Medicine, Indira Gandhi Institute of Medical Science, Patna, Bihar, India
| | - Arvind Kumar
- Department of Anesthesiology & Critical Care Medicine, Indira Gandhi Institute of Medical Science, Patna, Bihar, India
| | - Rakesh Kumar Singh
- Department of Anesthesiology & Critical Care Medicine, Indira Gandhi Institute of Medical Science, Patna, Bihar, India
| | - Ruchi Gupta
- Department of Critical Care, Holy Family Hospital, New Delhi, India
| | - Mumtaz Hussain
- Department of Anesthesiology & Critical Care Medicine, Indira Gandhi Institute of Medical Science, Patna, Bihar, India
| | - Swati Singh
- Department of Anesthesiology & Critical Care Medicine, Indira Gandhi Institute of Medical Science, Patna, Bihar, India
| | - Pankaj Kumar
- Department of Anesthesiology & Critical Care Medicine, Indira Gandhi Institute of Medical Science, Patna, Bihar, India
| |
Collapse
|
7
|
Coagulation Disorders in Sepsis and COVID-19-Two Sides of the Same Coin? A Review of Inflammation-Coagulation Crosstalk in Bacterial Sepsis and COVID-19. J Clin Med 2023; 12:jcm12020601. [PMID: 36675530 PMCID: PMC9866352 DOI: 10.3390/jcm12020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Sepsis is a major cause of morbidity and mortality worldwide. Sepsis-associated coagulation disorders are involved in the pathogenesis of multiorgan failure and lead to a subsequently worsening prognosis. Alongside the global impact of the COVID-19 pandemic, a great number of research papers have focused on SARS-CoV-2 pathogenesis and treatment. Significant progress has been made in this regard and coagulation disturbances were once again found to underlie some of the most serious adverse outcomes of SARS-CoV-2 infection, such as acute lung injury and multiorgan dysfunction. In the attempt of untangling the mechanisms behind COVID-19-associated coagulopathy (CAC), a series of similarities with sepsis-induced coagulopathy (SIC) became apparent. Whether they are, in fact, the same disease has not been established yet. The clinical picture of CAC shows the unique feature of an initial phase of intravascular coagulation confined to the respiratory system. Only later on, patients can develop a clinically significant form of systemic coagulopathy, possibly with a consumptive pattern, but, unlike SIC, it is not a key feature. Deepening our understanding of CAC pathogenesis has to remain a major goal for the research community, in order to design and validate accurate definitions and classification criteria.
Collapse
|
8
|
Carsetti A, Vitali E, Pesaresi L, Antolini R, Casarotta E, Damiani E, Adrario E, Donati A. Anesthetic management of patients with sepsis/septic shock. Front Med (Lausanne) 2023; 10:1150124. [PMID: 37035341 PMCID: PMC10076637 DOI: 10.3389/fmed.2023.1150124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, while septic shock is a subset of sepsis with persistent hypotension requiring vasopressors to maintain a mean arterial pressure (MAP) of ≥65 mmHg and having a serum lactate level of >2 mmol/L, despite adequate volume resuscitation. Sepsis and septic shock are medical emergencies and time-dependent diseases with a high mortality rate for which early identification, early antibiotic therapy, and early source control are paramount for patient outcomes. The patient may require surgical intervention or an invasive procedure aiming to control the source of infection, and the anesthesiologist has a pivotal role in all phases of patient management. During the preoperative assessment, patients should be aware of all possible organ dysfunctions, and the severity of the disease combined with the patient's physiological reserve should be carefully assessed. All possible efforts should be made to optimize conditions before surgery, especially from a hemodynamic point of view. Anesthetic agents may worsen the hemodynamics of shock patients, and the anesthesiologist must know the properties of each anesthetic agent. All possible efforts should be made to maintain organ perfusion supporting hemodynamics with fluids, vasoactive agents, and inotropes if required.
Collapse
Affiliation(s)
- Andrea Carsetti
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
- *Correspondence: Andrea Carsetti
| | - Eva Vitali
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Lucia Pesaresi
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Riccardo Antolini
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Erika Casarotta
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Elisa Damiani
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Erica Adrario
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Abele Donati
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Anesthesia and Intensive Care Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| |
Collapse
|
9
|
Bunch CM, Chang E, Moore EE, Moore HB, Kwaan HC, Miller JB, Al-Fadhl MD, Thomas AV, Zackariya N, Patel SS, Zackariya S, Haidar S, Patel B, McCurdy MT, Thomas SG, Zimmer D, Fulkerson D, Kim PY, Walsh MR, Hake D, Kedar A, Aboukhaled M, Walsh MM. SHock-INduced Endotheliopathy (SHINE): A mechanistic justification for viscoelastography-guided resuscitation of traumatic and non-traumatic shock. Front Physiol 2023; 14:1094845. [PMID: 36923287 PMCID: PMC10009294 DOI: 10.3389/fphys.2023.1094845] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Irrespective of the reason for hypoperfusion, hypocoagulable and/or hyperfibrinolytic hemostatic aberrancies afflict up to one-quarter of critically ill patients in shock. Intensivists and traumatologists have embraced the concept of SHock-INduced Endotheliopathy (SHINE) as a foundational derangement in progressive shock wherein sympatho-adrenal activation may cause systemic endothelial injury. The pro-thrombotic endothelium lends to micro-thrombosis, enacting a cycle of worsening perfusion and increasing catecholamines, endothelial injury, de-endothelialization, and multiple organ failure. The hypocoagulable/hyperfibrinolytic hemostatic phenotype is thought to be driven by endothelial release of anti-thrombogenic mediators to the bloodstream and perivascular sympathetic nerve release of tissue plasminogen activator directly into the microvasculature. In the shock state, this hemostatic phenotype may be a counterbalancing, yet maladaptive, attempt to restore blood flow against a systemically pro-thrombotic endothelium and increased blood viscosity. We therefore review endothelial physiology with emphasis on glycocalyx function, unique biomarkers, and coagulofibrinolytic mediators, setting the stage for understanding the pathophysiology and hemostatic phenotypes of SHINE in various etiologies of shock. We propose that the hyperfibrinolytic phenotype is exemplified in progressive shock whether related to trauma-induced coagulopathy, sepsis-induced coagulopathy, or post-cardiac arrest syndrome-associated coagulopathy. Regardless of the initial insult, SHINE appears to be a catecholamine-driven entity which early in the disease course may manifest as hyper- or hypocoagulopathic and hyper- or hypofibrinolytic hemostatic imbalance. Moreover, these hemostatic derangements may rapidly evolve along the thrombohemorrhagic spectrum depending on the etiology, timing, and methods of resuscitation. Given the intricate hemochemical makeup and changes during these shock states, macroscopic whole blood tests of coagulative kinetics and clot strength serve as clinically useful and simple means for hemostasis phenotyping. We suggest that viscoelastic hemostatic assays such as thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are currently the most applicable clinical tools for assaying global hemostatic function-including fibrinolysis-to enable dynamic resuscitation with blood products and hemostatic adjuncts for those patients with thrombotic and/or hemorrhagic complications in shock states.
Collapse
Affiliation(s)
- Connor M Bunch
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Eric Chang
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO, United States
| | - Hunter B Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO, United States.,Department of Transplant Surgery, Denver Health and University of Colorado Health Sciences Center, Denver, CO, United States
| | - Hau C Kwaan
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph B Miller
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Mahmoud D Al-Fadhl
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Anthony V Thomas
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Nuha Zackariya
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Shivani S Patel
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Sufyan Zackariya
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Saadeddine Haidar
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Bhavesh Patel
- Division of Critical Care, Department of Medicine, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Michael T McCurdy
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Scott G Thomas
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Donald Zimmer
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Daniel Fulkerson
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Paul Y Kim
- Department of Medicine, McMaster University, Hamilton, ON, Canada.,Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | | | - Daniel Hake
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Archana Kedar
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Michael Aboukhaled
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Mark M Walsh
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States.,Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| |
Collapse
|
10
|
Construction of Standard Fast Medical Procedures for Traumatic Shock and Its Application Effects. Emerg Med Int 2022; 2022:2055925. [PMID: 36267142 PMCID: PMC9578901 DOI: 10.1155/2022/2055925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Objective To explore the construction of standard fast medical procedures for traumatic shock and its application effects. Methods 84 patients with traumatic shock were admitted to emergency department of the hospital between January 2018 and January 2020. Using random number table method, the patients were divided into the control group (was given emergency treatment by routine emergency rescue procedures) and the study group (was given emergency treatment by standard fast medical procedures) with 42 patients in each group. The treatment time (rescue time, consultation time in each department, and examination time), shock index (SI), blood pressure fluctuation range, urine output, serum lactate (LAC) level, activated partial thromboplastin time (APTT), and international normalized ratio (INR) were recorded. The incidences of complications in the two groups within 3 days were counted. Results The rescue time, consultation time, and examination time of the study group were shorter than those of the control group (P < 0.05). After 18 h of treatment, the SI, blood pressure fluctuation range, LAC, and APTT in the study group were lower or shorter than those in the control group (P < 0.05), while urine volume and INR were higher than those in the control group (P < 0.05). Within 3 days of treatment, the incidence of complications in the study group was 5.41% lower than that in the control group which was 24.14% (P < 0.05). Conclusion Standard fast medical procedures can effectively shorten the time of each stage of emergency treatment for traumatic shock, which allows patients to receive effective treatment in the shortest time while improving shock symptoms and reducing related complications.
Collapse
|
11
|
He L, Lin Q, Zhong L, Zeng Q, Song J. Thromboelastography maximum amplitude as an early predictor of disseminated intravascular coagulation in patients with heatstroke. Int J Hyperthermia 2022; 39:605-610. [PMID: 35465816 DOI: 10.1080/02656736.2022.2066206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the ability of TEG to predict DIC associated with heatstroke. METHODS We carried out a retrospective, single-center study of 67 patients with heatstroke admitted to an intensive care unit (ICU) at a comprehensive hospital between July 2016 and August 2021. Conventional coagulation tests (CCTs) and TEG were performed within 2 h of admission in ICU. Patients were diagnosed with DIC based on International Society of Thrombosis and Hemostasis criteria, and those with or without DIC were compared in terms of CCTs and TEG findings. The ability of individual parameters to predict DIC was assessed based on logistic regression and the area under receiver operating characteristic curves (AUC). RESULTS Of the 67 patients, 19 (28.4%) were diagnosed with DIC. Compared to patients without DIC, those with DIC had significantly longer reaction time [14.5(10.6-26.0) vs. 6.2(5.1-10.1)min](p < 0.001) and kinetic time [10.9(5.9-25.0) vs. 2.7(2.2-4.7) min](p < 0.001). Conversely, those with DIC had significantly lower alpha angle [22(9.1-43.3) vs. 55.0(44.8-61.7)°](p < 0.001), maximum amplitude (MA) [(26.9(17.7-41.4) vs. 52.2(45.8-58.1) mm)] (p < 0.001) and coagulation index [-17.3(-39 to -7.9)vs. -2.4(-6.2to-0.6)](p < 0.001). MA at a cutoff value of 45.4 mm gave an AUC of 0.9 for predicting DIC, with sensitivity of 77.1%, specificity of 89.5%, positive predictive value of 10.5% and negative predictive value of 22.9%. Multifactorial logistic regression identified MA < 45.4 mm as an independent predictor of DIC (odds ratio 9, 95% confidence interval 1.2-69.2, p = 0.035). MA decreased significantly as DIC score increased and was significantly lower in the non-survivors on admission. CONCLUSIONS MA < 45.4 mm in patients with heatstroke may predict elevated risk of DIC. HighlightsPatients with heatstroke-induced disseminated intravascular coagulation (DIC) has high mortality.A retrospective, single-center study was performed to investigate the ability of thromboelastography (TEG) to predict DIC associated with heatstroke.The maximum amplitude (MA) value of TEG decreased significantly with the increase of DIC score.MA < 45.4 mm was firstly demonstrated to an independent predictor of heatstroke-induced DIC.
Collapse
Affiliation(s)
- Longping He
- Department of Critical Care Medicine, the 908th Hospital of Chinese Logistical Support Force, Nanchang, China
| | - Qingwei Lin
- Department of Critical Care Medicine, the 908th Hospital of Chinese Logistical Support Force, Nanchang, China
| | - Lincui Zhong
- Department of Critical Care Medicine, the 908th Hospital of Chinese Logistical Support Force, Nanchang, China
- Nanchang Key Laboratory of Thrombosis and Hemostasis, Nanchang, China
| | - Qingbo Zeng
- Nanchang Key Laboratory of Thrombosis and Hemostasis, Nanchang, China
- Intensive Care Unit, Nanchang Hongdou Hospital of TCM, Nanchang, China
| | - Jingchun Song
- Department of Critical Care Medicine, the 908th Hospital of Chinese Logistical Support Force, Nanchang, China
- Nanchang Key Laboratory of Thrombosis and Hemostasis, Nanchang, China
| |
Collapse
|
12
|
Neuenfeldt FS, Weigand MA, Fischer D. Coagulopathies in Intensive Care Medicine: Balancing Act between Thrombosis and Bleeding. J Clin Med 2021; 10:5369. [PMID: 34830667 PMCID: PMC8623639 DOI: 10.3390/jcm10225369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Patient Blood Management advocates an individualized treatment approach, tailored to each patient's needs, in order to reduce unnecessary exposure to allogeneic blood products. The optimization of hemostasis and minimization of blood loss is of high importance when it comes to critical care patients, as coagulopathies are a common phenomenon among them and may significantly impact morbidity and mortality. Treating coagulopathies is complex as thrombotic and hemorrhagic conditions may coexist and the medications at hand to modulate hemostasis can be powerful. The cornerstones of coagulation management are an appropriate patient evaluation, including the individual risk of bleeding weighed against the risk of thrombosis, a proper diagnostic work-up of the coagulopathy's etiology, treatment with targeted therapies, and transfusion of blood product components when clinically indicated in a goal-directed manner. In this article, we will outline various reasons for coagulopathy in critical care patients to highlight the aspects that need special consideration. The treatment options outlined in this article include anticoagulation, anticoagulant reversal, clotting factor concentrates, antifibrinolytic agents, desmopressin, fresh frozen plasma, and platelets. This article outlines concepts with the aim of the minimization of complications associated with coagulopathies in critically ill patients. Hereditary coagulopathies will be omitted in this review.
Collapse
Affiliation(s)
| | | | - Dania Fischer
- Department of Anaesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; (F.S.N.); (M.A.W.)
| |
Collapse
|