1
|
Montoya L, Escobar-Briones E. Unveiling the significance of prokaryotic composition from ferromanganese crusts regarding the interlink between cobalt and vitamin B 12 in deep-sea ecosystems. Front Microbiol 2025; 16:1524057. [PMID: 40365069 PMCID: PMC12069332 DOI: 10.3389/fmicb.2025.1524057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
The intricate relationship between prokaryotic vitamin B12 (cobalamin) producers and metazoans in deep-sea ecosystems, particularly within ferromanganese crusts and polymetallic nodules, is critical for understanding oceanic biogeochemical cycling of cobalt. Microbial communities are key regulators of essential biogeochemical cycles, with cobalt serving as a vital component in the synthesis of cobalamin, a metallocofactor indispensable for numerous metabolic processes. We analyzed the significance of cobalamin biosynthetic pathways confined to prokaryotes and emphasized the ecological importance of auxotrophic organisms that rely on exogenous sources of vitamin B12. Additionally, we recognize recent research regarding the spatial distribution of dissolved cobalt and its consequential effects on cobalamin production and bioavailability, indicating the scarcity of cobalt and cobalamin in marine environments. We propose that cobalt-rich environments may foster unique interactions between prokaryotic and eukaryotic organisms, potentially altering the food web dynamics owing to the localized abundance of this element. By investigating the roles of cobalt and cobalamin in nutrient cycling and interspecies interactions, we outlined key criteria for future research on deep-sea microbial communities and their contributions to the cobalt biogeochemical cycle.
Collapse
Affiliation(s)
- Lilia Montoya
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Mexico City, Mexico
| | - Elva Escobar-Briones
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| |
Collapse
|
2
|
Pinheiro M, Martins I, Raimundo J, Caetano M, Neuparth T, Santos MM. Stressors of emerging concern in deep-sea environments: microplastics, pharmaceuticals, personal care products and deep-sea mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162557. [PMID: 36898539 DOI: 10.1016/j.scitotenv.2023.162557] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Although most deep-sea areas are remote in comparison to coastal zones, a growing body of literature indicates that many sensitive ecosystems could be under increased stress from anthropogenic sources. Among the multiple potential stressors, microplastics (MPs), pharmaceuticals and personal care products (PPCPs/PCPs) and the imminent start of commercial deep-sea mining have received increased attention. Here we review recent literature on these emerging stressors in deep-sea environments and discuss cumulative effects with climate change associated variables. Importantly, MPs and PPCPs have been detected in deep-sea waters, organisms and sediments, in some locations in comparable levels to coastal areas. The Atlantic Ocean and the Mediterranean Sea are the most studied areas and where higher levels of MPs and PPCPs have been detected. The paucity of data for most other deep-sea ecosystems indicates that many more locations are likely to be contaminated by these emerging stressors, but the absence of studies hampers a better assessment of the potential risk. The main knowledge gaps in the field are identified and discussed, and future research priorities are highlighted to improve hazard and risk assessment.
Collapse
Affiliation(s)
- Marlene Pinheiro
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - Irene Martins
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Joana Raimundo
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Miguel Caetano
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Avenida Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal
| | - Teresa Neuparth
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Miguel M Santos
- CIIMAR/CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal.
| |
Collapse
|
3
|
Stratmann T, Simon-Lledó E, Morganti TM, de Kluijver A, Vedenin A, Purser A. Habitat types and megabenthos composition from three sponge-dominated high-Arctic seamounts. Sci Rep 2022; 12:20610. [PMID: 36446839 PMCID: PMC9708660 DOI: 10.1038/s41598-022-25240-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Seamounts are isolated underwater mountains stretching > 1000 m above the seafloor. They are identified as biodiversity hotspots of marine life, and host benthic assemblages that may vary on regional (among seamounts) and local (within seamounts) scales. Here, we collected seafloor imagery of three seamounts at the Langseth Ridge in the central Arctic Ocean to assess habitats and megabenthos community composition at the Central Mount (CM), the Karasik Seamount (KS), and the Northern Mount (NM). The majority of seafloor across these seamounts comprised bare rock, covered with a mixed layer of sponge spicule mats intermixed with detrital debris composed of polychaete tubes, and sand, gravel, and/or rocks. The megabenthos assemblages consisted of in total 15 invertebrate epibenthos taxa and 4 fish taxa, contributing to mean megabenthos densities of 55,745 ind. ha-1 at CM, 110,442 ind. ha-1 at KS, and 65,849 ind. ha-1 at NM. The faunal assemblages at all three seamounts were dominated by habitat-forming Tetractinellida sponges that contributed between 66% (KS) and 85% (CM) to all megabenthos. Interestingly, taxa richness did not differ at regional and local scale, whereas the megabenthos community composition did. Abiotic and biogenic factors shaping distinct habitat types played a major role in structuring of benthic communities in high-Arctic seamounts.
Collapse
Affiliation(s)
- Tanja Stratmann
- grid.5477.10000000120346234Department of Earth Sciences, Utrecht University, Vening Meineszgebouw A, Princetonlaan 8, 3584 CB Utrecht, The Netherlands ,grid.419529.20000 0004 0491 3210HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany ,grid.10914.3d0000 0001 2227 4609Department of Ocean Systems, NIOZ – Royal Netherlands Institute for Sea Research, Landsdiep 4, 1797 SZ ‘t Horntje (Texel), The Netherlands
| | - Erik Simon-Lledó
- grid.418022.d0000 0004 0603 464XOcean BioGeosciences, National Oceanography Centre, European Way, Southampton, SO14 3ZH UK
| | - Teresa Maria Morganti
- grid.419529.20000 0004 0491 3210HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany ,grid.423940.80000 0001 2188 0463Marine Chemistry Department, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock, Germany
| | - Anna de Kluijver
- grid.5477.10000000120346234Department of Earth Sciences, Utrecht University, Vening Meineszgebouw A, Princetonlaan 8, 3584 CB Utrecht, The Netherlands
| | - Andrey Vedenin
- grid.500026.10000 0004 0487 6958Marine Biology Section, Senckenberg am Meer, Südstrand 40, 26382 Wilhelmshaven, Germany
| | - Autun Purser
- grid.10894.340000 0001 1033 7684Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
4
|
Katona S, Paulikas D, Stone GS. Ethical opportunities in deep-sea collection of polymetallic nodules from the Clarion-Clipperton Zone. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:634-654. [PMID: 34766726 PMCID: PMC9300171 DOI: 10.1002/ieam.4554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 05/14/2023]
Abstract
Infrastructure supporting the transition of human societies from fossil fuels to renewable energy will require hundreds of millions of tons of metals. Polymetallic nodules on the abyssal seabed of the Clarion-Clipperton Zone (CCZ), eastern North Pacific Ocean, could provide them. We focus on ethical considerations and opportunities available to the novel CCZ nodule-collection industry, integrating robust science with strong pillars of social and environmental responsibility. Ethical considerations include harm to sea life and recovery time, but also the value of human life, indigenous rights, rights of nature, animal rights, intrinsic values, and intangible ecosystem services. A "planetary perspective" considers the biosphere, hydrosphere, and atmosphere, extends beyond mineral extraction to a life-cycle view of impacts, and includes local, national, and global impacts and stakeholders. Stakeholders include direct nodule-collection actors, ocean conservationists, companies, communities, interest groups, nations, and citizens globally, plus counterfactual stakeholders involved with or affected by intensification of terrestrial mining if ocean metals are not used. Nodule collection would harm species and portions of ecosystems, but could have lower life-cycle impacts than terrestrial mining expansion, especially if nodule-metal producers explicitly design for it and stakeholders hold them accountable. Participants across the value chain can elevate the role of ethics in strategic objective setting, engineering design optimization, commitments to stakeholders, democratization of governance, and fostering of circular economies. The International Seabed Authority is called to establish equitable and transparent distribution of royalties and gains, and continue engaging scientists, economists, and experts from all spheres in optimizing deep-sea mineral extraction for humans and nature. Nodule collection presents a unique opportunity for an ambitious reset of ecological norms in a nascent industry. Embracing ethical opportunities can set an example for industrial-scale activities on land and sea, accelerate environmental gains through environmental competition with land ores, and hasten civilization's progress toward a sustainable future. Integr Environ Assess Manag 2022;18:634-654. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Daina Paulikas
- Minerals, Materials and Society Program, Department of Geography and Spatial Sciences, Pearson HallUniversity of DelawareNewarkDelawareUSA
| | | |
Collapse
|
5
|
Gollner S, Haeckel M, Janssen F, Lefaible N, Molari M, Papadopoulou S, Reichart G, Trabucho Alexandre J, Vink A, Vanreusel A. Restoration experiments in polymetallic nodule areas. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:682-696. [PMID: 34677903 PMCID: PMC9299087 DOI: 10.1002/ieam.4541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/14/2023]
Abstract
Deep-seabed polymetallic nodule mining can have multiple adverse effects on benthic communities, such as permanent loss of habitat by removal of nodules and habitat modification of sediments. One tool to manage biodiversity risks is the mitigation hierarchy, including avoidance, minimization of impacts, rehabilitation and/or restoration, and offset. We initiated long-term restoration experiments at sites in polymetallic nodule exploration contract areas in the Clarion-Clipperton Zone that were (i) cleared of nodules by a preprototype mining vehicle, (ii) disturbed by dredge or sledge, (iii) undisturbed, and (iv) naturally devoid of nodules. To accommodate for habitat loss, we deployed >2000 artificial ceramic nodules to study the possible effect of substrate provision on the recovery of biota and its impact on sediment biogeochemistry. Seventy-five nodules were recovered after eight weeks and had not been colonized by any sessile epifauna. All other nodules will remain on the seafloor for several years before recovery. Furthermore, to account for habitat modification of the top sediment layer, sediment in an epibenthic sledge track was loosened by a metal rake to test the feasibility of sediment decompaction to facilitate soft-sediment recovery. Analyses of granulometry and nutrients one month after sediment decompaction revealed that sand fractions are proportionally lower within the decompacted samples, whereas total organic carbon values are higher. Considering the slow natural recovery rates of deep-sea communities, these experiments represent the beginning of a ~30-year study during which we expect to gain insights into the nature and timing of the development of hard-substrate communities and the influence of nodules on the recovery of disturbed sediment communities. Results will help us understand adverse long-term effects of nodule removal, providing an evidence base for setting criteria for the definition of "serious harm" to the environment. Furthermore, accompanying research is needed to define a robust ecosystem baseline in order to effectively identify restoration success. Integr Environ Assess Manag 2022;18:682-696. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Sabine Gollner
- Department of Ocean SystemsRoyal Netherlands Institute for Sea Research (NIOZ)Den Burgthe Netherlands
| | | | - Felix Janssen
- HGF MPG Joint Research Group for Deep Sea Ecology and TechnologyAlfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI)BremerhavenGermany
- HGF MPG Joint Research Group for Deep Sea Ecology and TechnologyMax Planck Institute for Marine Microbiology (MPI)BremenGermany
| | - Nene Lefaible
- Marine Biology Research GroupGhent UniversityGhentBelgium
| | - Massimiliano Molari
- HGF MPG Joint Research Group for Deep Sea Ecology and TechnologyMax Planck Institute for Marine Microbiology (MPI)BremenGermany
| | | | - Gert‐Jan Reichart
- Department of Ocean SystemsRoyal Netherlands Institute for Sea Research (NIOZ)Den Burgthe Netherlands
| | | | - Annemiek Vink
- Federal Institute for Geosciences and Natural Resources (BGR)HannoverGermany
| | - Ann Vanreusel
- Marine Biology Research GroupGhent UniversityGhentBelgium
| |
Collapse
|