1
|
Wang J, Guo Z, Fu F. Locomotion behavior of air bubbles on solid surfaces. Adv Colloid Interface Sci 2024; 332:103266. [PMID: 39153417 DOI: 10.1016/j.cis.2024.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Air bubbles are a common occurrence in both natural and industrial settings and are a significant topic in the fields of physics, chemistry, engineering, and medicine. The physical phenomena of the contact between bubbles and submerged solid surfaces, as well as the locomotion behavior of bubbles, are worth exploring. Bubbles are generated in an unbounded liquid environment and rise due to unbalanced external forces. Bubbles of different diameters follow different ascending paths, after which they approach, touch, collide, bounce, and finally adsorb to the solid surface, forming a stable three-phase contact line (TPCL). The bubbles are in an unstable state due to the unbalanced external forces on the solid surface and the effects generated by the two-phase contact surface, resulting in different locomotion behaviors on the solid surface. Studying the formation, transport, aggregation, and rupture behaviors of bubbles on solid surfaces can enable the controllable operation of bubbles. This, in turn, can effectively reduce the loss of mechanical apparatus in agro-industrial production activities and improve corresponding production efficiency. Recent research has shown that the degree of bubble wetting on a solid surface is a crucial factor in the locomotion behavior of bubbles on that surface. This has led to significant progress in the study of bubble wetting, which has in turn greatly advanced our understanding of bubble behavior. Based on this, exploring the manipulation process of the directional motion of bubbles is a promising research direction. The locomotion behavior of bubbles on solid surfaces can be controlled by changing external conditions, leading to the integration of bubble behavior in various scientific and technological fields. Studying the dynamics of bubbles in liquids with infinite boundaries is worthwhile. Additionally, the manipulation process and mode of these bubbles is a popular research direction.
Collapse
Affiliation(s)
- Jing Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Feiyan Fu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
2
|
Xue L, Li A, Li H, Yu X, Li K, Yuan R, Deng X, Li R, Liu Q, Song Y. Droplet-based mechanical transducers modulated by the symmetry of wettability patterns. Nat Commun 2024; 15:4225. [PMID: 38762537 PMCID: PMC11102432 DOI: 10.1038/s41467-024-48538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
Asymmetric mechanical transducers have important applications in energy harvesting, signal transmission, and micro-mechanics. To achieve asymmetric transformation of mechanical motion or energy, active robotic metamaterials, as well as materials with asymmetric microstructures or internal orientation, are usually employed. However, these strategies usually require continuous energy supplement and laborious fabrication, and limited transformation modes are achieved. Herein, utilizing wettability patterned surfaces for precise control of the droplet contact line and inner flow, we demonstrate a droplet-based mechanical transducer system, and achieve multimodal responses to specific vibrations. By virtue of the synergistic effect of surface tension and solid-liquid adhesion on the liquid dynamics, the droplet on the patterned substrate can exhibit symmetric/asymmetric vibration transformation when the substrate vibrates horizontally. Based on this, we construct arrayed patterns with distinct arrangements on the substrate, and employ the swarm effect of the arrayed droplets to achieve three-dimensional and multimodal actuation of the target plate under a fixed input vibration. Further, we demonstrate the utilization of the mechanical transducers for vibration management, object transport, and laser modulation. These findings provide a simple yet efficient strategy to realize a multimodal mechanical transducer, which shows significant potential for aseismic design, optical molding, as well as micro-electromechanical systems (MEMS).
Collapse
Affiliation(s)
- Luanluan Xue
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - An Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Xinye Yu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaixuan Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Renxuan Yuan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Deng
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rujun Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quan Liu
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Xiangfu Laboratory, Jiashan, Zhejiang, 314102, China.
| |
Collapse
|
3
|
Dong T, Han Z, Sheng D, Yu L, Zhai J, Liu Y, Tian H. Artificial neural network assisted the design of subwavelength-grating waveguides for nanoparticles optical trapping. OPTICS EXPRESS 2024; 32:9656-9670. [PMID: 38571195 DOI: 10.1364/oe.514601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 04/05/2024]
Abstract
In this work, we propose artificial neural networks (ANNs) to predict the optical forces on particles with a radius of 50 nm and inverse-design the subwavelength-grating (SWG) waveguides structure for trapping. The SWG waveguides are applied to particle trapping due to their superior bulk sensitivity and surface sensitivity, as well as longer working distance than conventional nanophotonic waveguides. To reduce the time consumption of the design, we train ANNs to predict the trapping forces and to inverse-design the geometric structure of SWG waveguides, and the low mean square errors (MSE) of the networks achieve 2.8 × 10-4. Based on the well-trained forward prediction and inverse-design network, an SWG waveguide with significant trapping performance is designed. The trapping forces in the y-direction achieve-40.39 pN when the center of the particle is placed 100 nm away from the side wall of the silicon segment, and the negative sign of the optical forces indicates the direction of the forces. The maximum trapping potential achieved to 838.16 kBT in the y-direction. The trapping performance in the x and z directions is also quite superior, and the neural network model has been further applied to design SWGs with a high trapping performance. The present work is of significance for further research on the application of artificial neural networks in other optical devices designed for particle trapping.
Collapse
|
4
|
Wang J, Yang W, He Y. Plasmon-induced magnetic anapole mode assisted strong field enhancement. J Chem Phys 2023; 159:244701. [PMID: 38146831 DOI: 10.1063/5.0180255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
Optical metamaterials, sensing, nonlinear optics, and surface-enhanced spectroscopies have witnessed the remarkable potential of the anapole mode. While dielectric particles with a high refractive index have garnered significant attention in recent years, the exploration of plasmonic anapole modes with intense localized electric field enhancements in the visible frequency range remains limited. In this study, we present a theoretical investigation on the relationship between the strongest near-field response and magnetic anapole modes, along with their substantial enhancement of Raman signals from probing molecules. These captivating findings arise from the design of a practical metallic oblate spheroid-film plasmonic system that generates magnetic anapole resonances at frequencies within the visible-near-infrared range. This research not only sheds light on the underlying mechanisms in a wide range of plasmon-enhanced spectroscopies but also paves the way for innovative nano-device designs.
Collapse
Affiliation(s)
- Jingyu Wang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030000, China
| | - Weimin Yang
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Yonglin He
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| |
Collapse
|