1
|
Ruiz-Otero N, Tessem JS, Banerjee RR. Pancreatic islet adaptation in pregnancy and postpartum. Trends Endocrinol Metab 2024; 35:834-847. [PMID: 38697900 DOI: 10.1016/j.tem.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Pancreatic islets, particularly insulin-producing β-cells, are central regulators of glucose homeostasis capable of responding to a variety of metabolic stressors. Pregnancy is a unique physiological stressor, necessitating the islets to adapt to the complex interplay of maternal and fetal-placental factors influencing the metabolic milieu. In this review we highlight studies defining gestational adaptation mechanisms within maternal islets and emerging studies revealing islet adaptations during the early postpartum and lactation periods. These include adaptations in both β and in 'non-β' islet cells. We also discuss insights into how gestational and postpartum adaptation may inform pregnancy-specific and general mechanisms of islet responses to metabolic stress and contribute to investigation of gestational diabetes.
Collapse
Affiliation(s)
- Nelmari Ruiz-Otero
- Division of Endocrinology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Jeffery S Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84601, USA
| | - Ronadip R Banerjee
- Division of Endocrinology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
2
|
Carroll DT, Miller A, Fuhr J, Elsakr JM, Ricciardi V, Del Bene AN, Stephens S, Krystofiak E, Lindsley SR, Kirigiti M, Takahashi DL, Dean TA, Wesolowski SR, McCurdy CE, Friedman JE, Aagaard KM, Kievit P, Gannon M. Analysis of beta-cell maturity and mitochondrial morphology in juvenile non-human primates exposed to maternal Western-style diet during development. Front Endocrinol (Lausanne) 2024; 15:1417437. [PMID: 39114287 PMCID: PMC11304003 DOI: 10.3389/fendo.2024.1417437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Using a non-human primate (NHP) model of maternal Western-style diet (mWSD) feeding during pregnancy and lactation, we previously reported altered offspring beta:alpha cell ratio in vivo and insulin hyper-secretion ex vivo. Mitochondria are known to maintain beta-cell function by producing ATP for insulin secretion. In response to nutrient stress, the mitochondrial network within beta cells undergoes morphological changes to maintain respiration and metabolic adaptability. Given that mitochondrial dynamics have also been associated with cellular fate transitions, we assessed whether mWSD exposure was associated with changes in markers of beta-cell maturity and/or mitochondrial morphology that might explain the offspring islet phenotype. Methods We evaluated the expression of beta-cell identity/maturity markers (NKX6.1, MAFB, UCN3) via florescence microscopy in islets of Japanese macaque pre-adolescent (1 year old) and peri-adolescent (3-year-old) offspring born to dams fed either a control diet or WSD during pregnancy and lactation and weaned onto WSD. Mitochondrial morphology in NHP offspring beta cells was analyzed in 2D by transmission electron microscopy and in 3D using super resolution microscopy to deconvolve the beta-cell mitochondrial network. Results There was no difference in the percent of beta cells expressing key maturity markers in NHP offspring from WSD-fed dams at 1 or 3 years of age; however, beta cells of WSD-exposed 3 year old offspring showed increased levels of NKX6.1 per beta cell at 3 years of age. Regardless of maternal diet, the beta-cell mitochondrial network was found to be primarily short and fragmented at both ages in NHP; overall mitochondrial volume increased with age. In utero and lactational exposure to maternal WSD consumption may increase mitochondrial fragmentation. Discussion Despite mWSD consumption having clear developmental effects on offspring beta:alpha cell ratio and insulin secretory response to glucose, this does not appear to be mediated by changes to beta-cell maturity or the beta-cell mitochondrial network. In general, the more fragmented mitochondrial network in NHP beta cells suggests greater ability for metabolic flexibility.
Collapse
Affiliation(s)
- Darian T. Carroll
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Allie Miller
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer Fuhr
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs Tennessee Valley, Nashville, TN, United States
| | - Joseph M. Elsakr
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Valerie Ricciardi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alexa N. Del Bene
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| | - Stedman Stephens
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| | - Evan Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Sarah R. Lindsley
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Melissa Kirigiti
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Diana L. Takahashi
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Tyler A. Dean
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Stephanie R. Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Carrie E. McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Jacob E. Friedman
- Department of Physiology and Biochemistry and Harold Hamm Diabetes Center at the University of Oklahoma, Oklahoma City, OK, United States
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX, United States
| | - Paul Kievit
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Veterans Affairs Tennessee Valley, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
3
|
Beck EA, Hetrick B, Nassar L, Turnbull DW, Dean TA, Gannon M, Aagaard KM, Wesolowski SR, Friedman JE, Kievit P, McCurdy CE. Maternal Western-style diet programs skeletal muscle gene expression in lean adolescent Japanese macaque offspring. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594191. [PMID: 38826380 PMCID: PMC11142092 DOI: 10.1101/2024.05.17.594191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Early-life exposure to maternal obesity or a maternal calorically dense Western-style diet (WSD) is strongly associated with a greater risk of metabolic diseases in offspring, most notably insulin resistance and metabolic dysfunction-associated steatotic liver disease (MASLD). Prior studies in our well-characterized Japanese macaque model demonstrated that offspring of dams fed a WSD, even when weaned onto a control (CTR) diet, had reductions in skeletal muscle mitochondrial metabolism and increased skeletal muscle insulin resistance compared to offspring of dams on CTR diet. In the current study, we employed a nested design to test for differences in gene expression in skeletal muscle from lean 3-year-old adolescent offspring from dams fed a maternal WSD in both the presence and absence of maternal obesity or lean dams fed a CTR diet. We included offspring weaned to both a WSD or CTR diet to further account for differences in response to post-weaning diet and interaction effects between diets. Overall, we found that a maternal WSD fed to dams during pregnancy and lactation was the principal driver of differential gene expression (DEG) in offspring muscle at this time point. We identified key gene pathways important in insulin signaling including PI3K-Akt and MAP-kinase, regulation of muscle regeneration, and transcription-translation feedback loops, in both male and female offspring. Muscle DEG showed no measurable difference between offspring of obese dams on WSD compared to those of lean dams fed WSD. A post-weaning WSD effected offspring transcription only in individuals from the maternal CTR diet group but not in maternal WSD group. Collectively, we identify that maternal diet composition has a significant and lasting impact on offspring muscle transcriptome and influences later transcriptional response to WSD in muscle, which may underlie the increased metabolic disease risk in offspring.
Collapse
|
4
|
Greyslak KT, Hetrick B, Bergman BC, Dean TA, Wesolowski SR, Gannon M, Schenk S, Sullivan EL, Aagaard KM, Kievit P, Chicco AJ, Friedman JE, McCurdy CE. A Maternal Western-Style Diet Impairs Skeletal Muscle Lipid Metabolism in Adolescent Japanese Macaques. Diabetes 2023; 72:1766-1780. [PMID: 37725952 PMCID: PMC10658061 DOI: 10.2337/db23-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Maternal consumption of a Western-style diet (mWD) during pregnancy alters fatty acid metabolism and reduces insulin sensitivity in fetal skeletal muscle. The long-term impact of these fetal adaptations and the pathways underlying disordered lipid metabolism are incompletely understood. Therefore, we tested whether a mWD chronically fed to lean, insulin-sensitive adult Japanese macaques throughout pregnancy and lactation would impact skeletal muscle oxidative capacity and lipid metabolism in adolescent offspring fed a postweaning (pw) Western-style diet (WD) or control diet (CD). Although body weight was not different, retroperitoneal fat mass and subscapular skinfold thickness were significantly higher in pwWD offspring consistent with elevated fasting insulin and glucose. Maximal complex I (CI)-dependent respiration in muscle was lower in mWD offspring in the presence of fatty acids, suggesting that mWD impacts muscle integration of lipid with nonlipid oxidation. Abundance of all five oxidative phosphorylation complexes and VDAC, but not ETF/ETFDH, were reduced with mWD, partially explaining the lower respiratory capacity with lipids. Muscle triglycerides increased with pwWD; however, the fold increase in lipid saturation, 1,2-diacylglycerides, and C18 ceramide compared between pwCD and pwWD was greatest in mWD offspring. Reductions in CI abundance and VDAC correlated with reduced markers of oxidative stress, suggesting that these reductions may be an early-life adaptation to mWD to mitigate excess reactive oxygen species. Altogether, mWD, independent of maternal obesity or insulin resistance, results in sustained metabolic reprogramming in offspring muscle despite a healthy diet intervention. ARTICLE HIGHLIGHTS In lean, active adolescent offspring, a postweaning Western-style diet (pwWD) leads to shifts in body fat distribution that are associated with poorer insulin sensitivity. Fatty acid-linked oxidative metabolism was reduced in skeletal muscles from offspring exposed to maternal Western-style diet (mWD) even when weaned to a healthy control diet for years. Reduced oxidative phosphorylation complex I-V and VDAC1 abundance partially explain decreased skeletal muscle respiration in mWD offspring. Prior exposure to mWD results in greater fold increase with pwWD in saturated lipids and bioactive lipid molecules (i.e. ceramide and sphingomyelin) associated with insulin resistance.
Collapse
Affiliation(s)
| | - Byron Hetrick
- Department of Human Physiology, University of Oregon, Eugene, OR
| | - Bryan C. Bergman
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tyler A. Dean
- Division of Cardiometabolic Health, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR
| | | | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, CA
| | - Elinor L. Sullivan
- Division of Neuroscience, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR
- Department of Psychiatry, Oregon Health & Science University, Portland, OR
- Department of Behavioral Sciences, Oregon Health & Science University, Portland, OR
| | - Kjersti M. Aagaard
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon Health & Science University, Oregon National Primate Research Center, Beaverton, OR
| | - Adam J. Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | |
Collapse
|
5
|
Edwards TL, Greene CA, Piekos JA, Hellwege JN, Hampton G, Jasper EA, Velez Edwards DR. Challenges and Opportunities for Data Science in Women's Health. Annu Rev Biomed Data Sci 2023; 6:23-45. [PMID: 37040736 PMCID: PMC10877578 DOI: 10.1146/annurev-biodatasci-020722-105958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The intersection of women's health and data science is a field of research that has historically trailed other fields, but more recently it has gained momentum. This growth is being driven not only by new investigators who are moving into this area but also by the significant opportunities that have emerged in new methodologies, resources, and technologies in data science. Here, we describe some of the resources and methods being used by women's health researchers today to meet challenges in biomedical data science. We also describe the opportunities and limitations of applying these approaches to advance women's health outcomes and the future of the field, with emphasis on repurposing existing methodologies for women's health.
Collapse
Affiliation(s)
- Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| | - Catherine A Greene
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacqueline A Piekos
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacklyn N Hellwege
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gabrielle Hampton
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
| | - Elizabeth A Jasper
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Precision Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA;
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Carroll DT, Elsakr JM, Miller A, Fuhr J, Lindsley SR, Kirigiti M, Takahashi DL, Dean TA, Wesolowski SR, McCurdy CE, Friedman JE, Aagaard KM, Kievit P, Gannon M. Maternal Western-style diet in nonhuman primates leads to offspring islet adaptations including altered gene expression and insulin hypersecretion. Am J Physiol Endocrinol Metab 2023; 324:E577-E588. [PMID: 37134140 PMCID: PMC10259856 DOI: 10.1152/ajpendo.00087.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Maternal overnutrition is associated with increased susceptibility to type 2 diabetes in the offspring. Rodent models have shown that maternal overnutrition influences islet function in offspring. To determine whether maternal Western-style diet (WSD) alters prejuvenile islet function in a model that approximates that of human offspring, we utilized a well-characterized Japanese macaque model. We compared islet function from offspring exposed to WSD throughout pregnancy and lactation and weaned to WSD (WSD/WSD) compared with islets from offspring exposed only to postweaning WSD (CD/WSD) at 1 yr of age. WSD/WSD offspring islets showed increased basal insulin secretion and an exaggerated increase in glucose-stimulated insulin secretion, as assessed by dynamic ex vivo perifusion assays, relative to CD/WSD-exposed offspring. We probed potential mechanisms underlying insulin hypersecretion using transmission electron microscopy to evaluate β-cell ultrastructure, qRT-PCR to quantify candidate gene expression, and Seahorse assay to assess mitochondrial function. Insulin granule density, mitochondrial density, and mitochondrial DNA ratio were similar between groups. However, islets from WSD/WSD male and female offspring had increased expression of transcripts known to facilitate stimulus-secretion coupling and changes in the expression of cell stress genes. Seahorse assay revealed increased spare respiratory capacity in islets from WSD/WSD male offspring. Overall, these results show that maternal WSD feeding confers changes to genes governing insulin secretory coupling and results in insulin hypersecretion as early as the postweaning period. The results suggest a maternal diet leads to early adaptation and developmental programming in offspring islet genes that may underlie future β-cell dysfunction.NEW & NOTEWORTHY Programed adaptations in islets in response to maternal WSD exposure may alter β-cell response to metabolic stress in offspring. We show that islets from maternal WSD-exposed offspring hypersecrete insulin, possibly due to increased components of stimulus-secretion coupling. These findings suggest that islet hyperfunction is programed by maternal diet, and changes can be detected as early as the postweaning period in nonhuman primate offspring.
Collapse
Affiliation(s)
- Darian T Carroll
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Joseph M Elsakr
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Allie Miller
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jennifer Fuhr
- Department of Veterans Affairs Tennessee Valley, Nashville, Tennessee, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Sarah Rene Lindsley
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Melissa Kirigiti
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Tyler A Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma, Oklahoma City, Oklahoma, United States
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, Oregon, United States
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Department of Veterans Affairs Tennessee Valley, Nashville, Tennessee, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
7
|
Nash MJ, Dobrinskikh E, Soderborg TK, Janssen RC, Takahashi DL, Dean TA, Varlamov O, Hennebold JD, Gannon M, Aagaard KM, McCurdy CE, Kievit P, Bergman BC, Jones KL, Pietras EM, Wesolowski SR, Friedman JE. Maternal diet alters long-term innate immune cell memory in fetal and juvenile hematopoietic stem and progenitor cells in nonhuman primate offspring. Cell Rep 2023; 42:112393. [PMID: 37058409 PMCID: PMC10570400 DOI: 10.1016/j.celrep.2023.112393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
Maternal overnutrition increases inflammatory and metabolic disease risk in postnatal offspring. This constitutes a major public health concern due to increasing prevalence of these diseases, yet mechanisms remain unclear. Here, using nonhuman primate models, we show that maternal Western-style diet (mWSD) exposure is associated with persistent pro-inflammatory phenotypes at the transcriptional, metabolic, and functional levels in bone marrow-derived macrophages (BMDMs) from 3-year-old juvenile offspring and in hematopoietic stem and progenitor cells (HSPCs) from fetal and juvenile bone marrow and fetal liver. mWSD exposure is also associated with increased oleic acid in fetal and juvenile bone marrow and fetal liver. Assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling of HSPCs and BMDMs from mWSD-exposed juveniles supports a model in which HSPCs transmit pro-inflammatory memory to myeloid cells beginning in utero. These findings show that maternal diet alters long-term immune cell developmental programming in HSPCs with proposed consequences for chronic diseases featuring altered immune/inflammatory activation across the lifespan.
Collapse
Affiliation(s)
- Michael J Nash
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Taylor K Soderborg
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rachel C Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Diana L Takahashi
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Tyler A Dean
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Maureen Gannon
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carrie E McCurdy
- Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Bryan C Bergman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eric M Pietras
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
8
|
Nash MJ, Dobrinskikh E, Janssen RC, Lovell MA, Schady DA, Levek C, Jones KL, D’Alessandro A, Kievit P, Aagaard KM, McCurdy CE, Gannon M, Friedman JE, Wesolowski SR. Maternal Western diet is associated with distinct preclinical pediatric NAFLD phenotypes in juvenile nonhuman primate offspring. Hepatol Commun 2023; 7:e0014. [PMID: 36691970 PMCID: PMC9851700 DOI: 10.1097/hc9.0000000000000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
Pediatric NAFLD has distinct and variable pathology, yet causation remains unclear. We have shown that maternal Western-style diet (mWSD) compared with maternal chow diet (CD) consumption in nonhuman primates produces hepatic injury and steatosis in fetal offspring. Here, we define the role of mWSD and postweaning Western-style diet (pwWSD) exposures on molecular mechanisms linked to NAFLD development in a cohort of 3-year-old juvenile nonhuman primates offspring exposed to maternal CD or mWSD followed by CD or Western-style diet after weaning. We used histologic, transcriptomic, and metabolomic analyses to identify hepatic pathways regulating NAFLD. Offspring exposed to mWSD showed increased hepatic periportal collagen deposition but unchanged hepatic triglyceride levels and body weight. mWSD was associated with a downregulation of gene expression pathways underlying HNF4α activity and protein, and downregulation of antioxidant signaling, mitochondrial biogenesis, and PPAR signaling pathways. In offspring exposed to both mWSD and pwWSD, liver RNA profiles showed upregulation of pathways promoting fibrosis and endoplasmic reticulum stress and increased BiP protein expression with pwWSD. pwWSD increased acylcarnitines and decreased anti-inflammatory fatty acids, which was more pronounced when coupled with mWSD exposure. Further, mWSD shifted liver metabolites towards decreased purine catabolism in favor of synthesis, suggesting a mitochondrial DNA repair response. Our findings demonstrate that 3-year-old offspring exposed to mWSD but weaned to a CD have periportal collagen deposition, with transcriptional and metabolic pathways underlying hepatic oxidative stress, compromised mitochondrial lipid sensing, and decreased antioxidant response. Exposure to pwWSD worsens these phenotypes, triggers endoplasmic reticulum stress, and increases fibrosis. Overall, mWSD exposure is associated with altered expression of candidate genes and metabolites related to NAFLD that persist in juvenile offspring preceding clinical presentation of NAFLD.
Collapse
Affiliation(s)
- Michael J. Nash
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Mark A. Lovell
- Department of Pathology & Laboratory Medicine, Children’s Hospital Colorado, Aurora, Colorado, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Deborah A. Schady
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Claire Levek
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kenneth L. Jones
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
- Department of Molecular and Cell Biology, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas, USA
| | - Carrie E. McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Stephanie R. Wesolowski
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
9
|
Mitchell AJ, Khambadkone SG, Dunn G, Bagley J, Tamashiro KLK, Fair D, Gustafsson H, Sullivan EL. Maternal Western-style diet reduces social engagement and increases idiosyncratic behavior in Japanese macaque offspring. Brain Behav Immun 2022; 105:109-121. [PMID: 35809877 PMCID: PMC9987715 DOI: 10.1016/j.bbi.2022.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023] Open
Abstract
Recent evidence in humans and animals indicates an association between maternal obesity and offspring behavioral outcomes. In humans, increased maternal body mass index has been linked to an increased risk of children receiving a diagnosis of early-emerging neurodevelopmental disorders such as Attention Deficit/Hyperactivity Disorder (ADHD) and/or Autism Spectrum Disorder (ASD). However, a limited number of preclinical studies have examined associations between maternal Western-Style Diet (mWSD) exposure and offspring social behavior. To our knowledge, this is the first study to investigate relationships between mWSD exposure and social behavior in non-human primates. Since aberrant social behavior is a diagnostic criterion for several neurodevelopmental disorders, the current study focuses on examining the influence of maternal nutrition and metabolic state on offspring social behavior in Japanese macaques (Macaca fuscata). We found that mWSD offspring initiated less affiliative social behaviors as well as proximity to a peer. Using path analysis, we found that the association between mWSD consumption and reduced offspring social engagement was statistically mediated by increased maternal interleukin (IL)-12 during the third trimester of pregnancy. Additionally, mWSD offspring displayed increased idiosyncratic behavior, which was related to alterations in maternal adiposity and leptin in the third trimester. Together, these results suggest that NHP offspring exposed to mWSD exhibit behavioral phenotypes similar to what is described in some early-emerging neurodevelopmental disorders. These results provide evidence that mWSD exposure during gestation may be linked to increased risk of neurodevelopmental disorders and provides targets for prevention and intervention efforts.
Collapse
Affiliation(s)
- A J Mitchell
- Oregon National Primate Research Center, Division of Neuroscience, Beaverton, OR, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, Portland, OR, USA
| | - Seva G Khambadkone
- Johns Hopkins University, School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, USA
| | - Geoffrey Dunn
- University of Oregon, Department of Human Physiology, Eugene, OR, USA
| | - Jennifer Bagley
- Oregon National Primate Research Center, Division of Neuroscience, Beaverton, OR, USA
| | - Kellie L K Tamashiro
- Johns Hopkins University, School of Medicine, Department of Psychiatry & Behavioral Sciences, Baltimore, MD, USA
| | - Damien Fair
- University of Minnesota School of Medicine, Masonic Institute of Child Development, Minneapolis, MN, USA
| | - Hanna Gustafsson
- Oregon Health & Science University, Department of Psychiatry, Portland, OR, USA
| | - Elinor L Sullivan
- Oregon National Primate Research Center, Division of Neuroscience, Beaverton, OR, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, Portland, OR, USA; University of Oregon, Department of Human Physiology, Eugene, OR, USA; Oregon Health & Science University, Department of Psychiatry, Portland, OR, USA.
| |
Collapse
|
10
|
Ashar Y, Teng Q, Wurpel JND, Chen ZS, Reznik SE. Palmitic Acid Impedes Extravillous Trophoblast Activity by Increasing MRP1 Expression and Function. Biomolecules 2022; 12:1162. [PMID: 36009056 PMCID: PMC9406058 DOI: 10.3390/biom12081162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/05/2022] Open
Abstract
Normal function of placental extravillous trophoblasts (EVTs), which are responsible for uteroplacental vascular remodeling, is critical for adequate delivery of oxygen and nutrients to the developing fetus and normal fetal programming. Proliferation and invasion of spiral arteries by EVTs depends upon adequate levels of folate. Multidrug resistance-associated protein 1 (MRP1), which is an efflux transporter, is known to remove folate from these cells. We hypothesized that palmitic acid increases MRP1-mediated folate removal from EVTs, thereby interfering with EVTs' role in early placental vascular remodeling. HTR-8/SVneo and Swan-71 cells, first trimester human EVTs, were grown in the absence or presence of 0.5 mM and 0.7 mM palmitic acid, respectively, for 72 h. Palmitic acid increased ABCC1 gene expression and MRP1 protein expression in both cell lines. The rate of folate efflux from the cells into the media increased with a decrease in migration and invasion functions in the cultured cells. Treatment with N-acetylcysteine (NAC) prevented the palmitic acid-mediated upregulation of MRP1 and restored invasion and migration in the EVTs. Finally, in an ABCC1 knockout subline of Swan-71 cells, there was a significant increase in invasion and migration functions. The novel finding in this study that palmitic acid increases MRP1-mediated folate efflux provides a missing link that helps to explain how maternal consumption of saturated fatty acids compromises the in utero environment.
Collapse
Affiliation(s)
- Yunali Ashar
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA
| | - Qiuxu Teng
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA
| | - John N. D. Wurpel
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA
| | - Sandra E. Reznik
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA
- Departments of Pathology and Obstetrics and Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
11
|
Dunn GA, Mitchell AJ, Selby M, Fair DA, Gustafsson HC, Sullivan EL. Maternal diet and obesity shape offspring central and peripheral inflammatory outcomes in juvenile non-human primates. Brain Behav Immun 2022; 102:224-236. [PMID: 35217175 PMCID: PMC8995380 DOI: 10.1016/j.bbi.2022.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/21/2022] [Accepted: 02/19/2022] [Indexed: 12/30/2022] Open
Abstract
The obesity epidemic affects 40% of adults in the US, with approximately one-third of pregnant women classified as obese. Previous research suggests that children born to obese mothers are at increased risk for a number of health conditions. The mechanisms behind this increased risk are poorly understood. Increased exposure to in-utero inflammation induced by maternal obesity is proposed as an underlying mechanism for neurodevelopmental alterations in offspring. Utilizing a non-human primate model of maternal obesity, we hypothesized that maternal consumption of an obesogenic diet will predict offspring peripheral (e.g., cytokines and chemokines) and central (microglia number) inflammatory outcomes via the diet's effects on maternal adiposity and maternal inflammatory state during the third trimester. We used structural equation modeling to simultaneously examine the complex associations among maternal diet, metabolic state, adiposity, inflammation, and offspring central and peripheral inflammation. Four latent variables were created to capture maternal chemokines and pro-inflammatory cytokines, and offspring cytokine and chemokines. Model results showed that offspring microglia counts in the basolateral amygdala were associated with maternal diet (β = -0.622, p < 0.01), adiposity (β = 0.593, p < 0.01), and length of gestation (β = 0.164, p < 0.05) but not with maternal chemokines (β = 0.135, p = 0.528) or maternal pro-inflammatory cytokines (β = 0.083, p = 0.683). Additionally, we found that juvenile offspring peripheral cytokines (β = -0.389, p < 0.01) and chemokines (β = -0.298, p < 0.05) were associated with a maternal adiposity-induced decrease in maternal circulating chemokines during the third trimester (β = -0.426, p < 0.01). In summary, these data suggest that maternal diet and adiposity appear to directly predict offspring amygdala microglial counts while maternal adiposity influences offspring peripheral inflammatory outcomes via maternal inflammatory state.
Collapse
Affiliation(s)
| | - A J Mitchell
- Oregon Health & Science University, Department of Behavioral Neuroscience, USA; Oregon National Primate Research Center, Department of Neuroscience, USA
| | - Matthew Selby
- University of Oregon, Department of Human Physiology, USA
| | - Damien A Fair
- University of Minnesota School of Medicine, Masonic Institute of Child Development, USA
| | | | - Elinor L Sullivan
- University of Oregon, Department of Human Physiology, USA; Oregon Health & Science University, Department of Behavioral Neuroscience, USA; Oregon National Primate Research Center, Department of Neuroscience, USA; Oregon Health & Science University, Department of Psychiatry, USA.
| |
Collapse
|
12
|
Sugino KY, Mandala A, Janssen RC, Gurung S, Trammell M, Day MW, Brush RS, Papin JF, Dyer DW, Agbaga MP, Friedman JE, Castillo-Castrejon M, Jonscher KR, Myers DA. Western diet-induced shifts in the maternal microbiome are associated with altered microRNA expression in baboon placenta and fetal liver. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:945768. [PMID: 36935840 PMCID: PMC10012127 DOI: 10.3389/fcdhc.2022.945768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Maternal consumption of a high-fat, Western-style diet (WD) disrupts the maternal/infant microbiome and contributes to developmental programming of the immune system and nonalcoholic fatty liver disease (NAFLD) in the offspring. Epigenetic changes, including non-coding miRNAs in the fetus and/or placenta may also underlie this risk. We previously showed that obese nonhuman primates fed a WD during pregnancy results in the loss of beneficial maternal gut microbes and dysregulation of cellular metabolism and mitochondrial dysfunction in the fetal liver, leading to a perturbed postnatal immune response with accelerated NAFLD in juvenile offspring. Here, we investigated associations between WD-induced maternal metabolic and microbiome changes, in the absence of obesity, and miRNA and gene expression changes in the placenta and fetal liver. After ~8-11 months of WD feeding, dams were similar in body weight but exhibited mild, systemic inflammation (elevated CRP and neutrophil count) and dyslipidemia (increased triglycerides and cholesterol) compared with dams fed a control diet. The maternal gut microbiome was mainly comprised of Lactobacillales and Clostridiales, with significantly decreased alpha diversity (P = 0.0163) in WD-fed dams but no community-wide differences (P = 0.26). At 0.9 gestation, mRNA expression of IL6 and TNF in maternal WD (mWD) exposed placentas trended higher, while increased triglycerides, expression of pro-inflammatory CCR2, and histological evidence for fibrosis were found in mWD-exposed fetal livers. In the mWD-exposed fetus, hepatic expression levels of miR-204-5p and miR-145-3p were significantly downregulated, whereas in mWD-exposed placentas, miR-182-5p and miR-183-5p were significantly decreased. Notably, miR-1285-3p expression in the liver and miR-183-5p in the placenta were significantly associated with inflammation and lipid synthesis pathway genes, respectively. Blautia and Ruminococcus were significantly associated with miR-122-5p in liver, while Coriobacteriaceae and Prevotellaceae were strongly associated with miR-1285-3p in the placenta; both miRNAs are implicated in pathways mediating postnatal growth and obesity. Our findings demonstrate that mWD shifts the maternal microbiome, lipid metabolism, and inflammation prior to obesity and are associated with epigenetic changes in the placenta and fetal liver. These changes may underlie inflammation, oxidative stress, and fibrosis patterns that drive NAFLD and metabolic disease risk in the next generation.
Collapse
Affiliation(s)
- Kameron Y. Sugino
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ashok Mandala
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - MaJoi Trammell
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michael W. Day
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Richard S. Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - James F. Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Martin-Paul Agbaga
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Karen R. Jonscher
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- CORRESPONDENCE: Karen R. Jonscher,
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
13
|
Nash MJ, Dobrinskikh E, Newsom SA, Messaoudi I, Janssen RC, Aagaard KM, McCurdy CE, Gannon M, Kievit P, Friedman JE, Wesolowski SR. Maternal Western diet exposure increases periportal fibrosis beginning in utero in nonhuman primate offspring. JCI Insight 2021; 6:e154093. [PMID: 34935645 PMCID: PMC8783685 DOI: 10.1172/jci.insight.154093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022] Open
Abstract
Maternal obesity affects nearly one-third of pregnancies and is a major risk factor for nonalcoholic fatty liver disease (NAFLD) in adolescent offspring, yet the mechanisms behind NAFLD remain poorly understood. Here, we demonstrate that nonhuman primate fetuses exposed to maternal Western-style diet (WSD) displayed increased fibrillar collagen deposition in the liver periportal region, with increased ACTA2 and TIMP1 staining, indicating localized hepatic stellate cell (HSC) and myofibroblast activation. This collagen deposition pattern persisted in 1-year-old offspring, despite weaning to a control diet (CD). Maternal WSD exposure increased the frequency of DCs and reduced memory CD4+ T cells in fetal liver without affecting systemic or hepatic inflammatory cytokines. Switching obese dams from WSD to CD before conception or supplementation of the WSD with resveratrol decreased fetal hepatic collagen deposition and reduced markers of portal triad fibrosis, oxidative stress, and fetal hypoxemia. These results demonstrate that HSCs and myofibroblasts are sensitive to maternal WSD-associated oxidative stress in the fetal liver, which is accompanied by increased periportal collagen deposition, indicative of early fibrogenesis beginning in utero. Alleviating maternal WSD-driven oxidative stress in the fetal liver holds promise for halting steatosis and fibrosis and preventing developmental programming of NAFLD.
Collapse
Affiliation(s)
- Michael J. Nash
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sean A. Newsom
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Departments of Molecular and Human Genetics and Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Carrie E. McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jacob E. Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Stephanie R. Wesolowski
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|