1
|
Jimoh-Abdulghaffaar HO, Joel IY, Jimoh OS, Ganiyu KO, Alatiba TM, Ogunyomi VO, Adebayo MS, Awoliyi VT, Agaka AO, Oyedeji AB, Kolade IA, Ojulari LS. Sex Influences Genetic Susceptibility to Depression-Like Behaviors in Chronic Unpredictable Mild Stress-Exposed Wistar Rats. Mol Neurobiol 2025; 62:1591-1604. [PMID: 39012445 DOI: 10.1007/s12035-024-04348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Depression is one of the most common mood disorders among psychiatric diseases. It affects about 10% of the adult population. However, its etiopathogenesis remains poorly understood. Exploring the dynamics of stress-susceptibility and resilience will help in understanding the molecular and biological mechanisms underlying the etiopathogenesis of depression. This study aimed to determine the differences and/or similarities in factors responsible for susceptibility to depression-like behaviors in male and female Wistar rats subjected to chronic unpredictable mild stress (CUMS). Sixty Wistar rats (30 male and 30 female) weighing between 120 and 150 g were used for this study. The rats were divided into two sub-groups: control (10) and test (20) groups. Rats in the test groups were subjected to CUMS. Depression-like behaviors were assessed using light-dark box, sucrose preference, and tail suspension tests. Rats that showed depression-like behaviors following the behavioral tests (CUMS-susceptible group) were sacrificed, and their hippocampi were excised. Genomic deoxyribonucleic acid (gDNA) was purified from the hippocampal samples. Purified gDNA was subjected to whole genome sequencing (WGS). Base-calling of sequence reads from raw sequencing signal (FAST5) files was carried out, and variants were called from alignment BAM files. The corresponding VCF files generated from the variant calling experiment were filtered. Genes were identified, their impacts estimated, and variants annotated. Functional enrichment analysis was then carried out. Approximately 41% of the male and 49% of the female rats subjected to CUMS showed significant (p < 0.05) depression-like behaviors following assessment on behavioral tests. WGS of the hippocampal DNA revealed 289,839 single nucleotide polymorphisms variant types, 7002 insertions, and 34,459 deletions in males, and 1,570,186 single nucleotide polymorphisms variant types, 109,860 insertions, and 597,241 deletions in female Wistar rats. Three genes with high-impact variants were identified in male and 22 in female Wistar rats, respectively. In conclusion, female Wistar rats are more susceptible to depression-like behaviors after exposure to CUMS than males. They also have more gene variants (especially high-impact variants) than male Wistar rats.
Collapse
Affiliation(s)
| | - Ireoluwa Yinka Joel
- Department of Biochemistry, Federal University of Agriculture, Makurdi, Benue State, Nigeria
| | | | - Kaosara Oyinola Ganiyu
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Temidayo Micheal Alatiba
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Victory Oluwaseyi Ogunyomi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Muhammed Salaudeen Adebayo
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Victoria Tolulope Awoliyi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Adamah Olamide Agaka
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Aminat Bolatito Oyedeji
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ifeoluwa A Kolade
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lekan Sheriff Ojulari
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
2
|
Harter AM, Nemesh M, Ji MT, Lee L, Yamazaki A, Kim C, Redei EE. Female Wistar Kyoto More Immobile rats with genetic stress hyper-reactivity show enhanced contextual fear memory without deficit in extinction of fear. Eur J Neurosci 2024; 60:6851-6865. [PMID: 39523452 PMCID: PMC11612840 DOI: 10.1111/ejn.16595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The prevalence of post-traumatic stress disorder (PTSD) is higher in females than males, but pre-clinical models are established almost exclusively in males. This study is aimed to investigate the stress-enhanced fear learning model of PTSD in females. The model mirrors PTSD symptomology in males, whereby prior stress leads to extinction resistant exaggerated contextual fear memory. As stress reactivity is highly relevant to the study and risk for PTSD, females of the stress hyper-reactive Wistar Kyoto More Immobile (WMI) and its nearly isogenic control the Wistar Kyoto Less Immobile (WLI) strains were employed. Prior studies have shown WMI females presenting unchanged or enhanced fear memory in the stress-enhanced fear learning paradigm compared WLIs. The present study confirmed the enhanced fear memory following contextual fear conditioning in WMIs compared to WLI females, but this increased fear memory was neither exaggerated by prior stress nor showed extinction deficit. The novel stressor of a glucose challenge test resulted in subtle strain- and prior stress-induced differences in plasma glucose responses. However, fasting plasma corticosterone levels were lower, and rose slower in response to glucose challenge in WMI females, suggesting a PTSD-like dysfunctional stress response. Hippocampal expressions of genes relevant to both learning and memory and the stress response were decreased in stressed WMIs compared to WLI females, further suggesting a marked dysregulation in stress-related functions like in PTSD. Thus, although WMI females do not show extinction-resistant enhanced fear memory, they do present other characteristics that are relevant to PTSD in women.
Collapse
Affiliation(s)
- Aspen M. Harter
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Mariya Nemesh
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Michelle T. Ji
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Luca Lee
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Anna Yamazaki
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Chris Kim
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
3
|
Amin M, Wu R, Postolache TT, Gragnoli C. The prolactin receptor ( PRLR) gene is linked to and associated with the comorbidity of depression and type 2 diabetes in Italian families. Genes Dis 2024; 11:101048. [PMID: 38274369 PMCID: PMC10806260 DOI: 10.1016/j.gendis.2023.06.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 06/27/2023] [Indexed: 01/27/2024] Open
Affiliation(s)
- Mutaz Amin
- INSERM, US14-Orphanet, Paris 75014, France
- University of Paris, Paris 75013, France
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Al-Neelain University, Khartoum 11121, Sudan
| | - Rongling Wu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Statistics, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Denver, CO 80246, USA
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD 21090, USA
| | - Claudia Gragnoli
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
- Division of Endocrinology, Department of Medicine, Creighton University School of Medicine, Omaha, NE 68124, USA
- Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome 00197, Italy
| |
Collapse
|
4
|
Ferreira A, Harter A, Afreen S, Kanai K, Batori S, Redei EE. The WMI Rat of Premature Cognitive Aging Presents Intrinsic Vulnerability to Oxidative Stress in Primary Neurons and Astrocytes Compared to Its Nearly Isogenic WLI Control. Int J Mol Sci 2024; 25:1692. [PMID: 38338968 PMCID: PMC10855588 DOI: 10.3390/ijms25031692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The primary neuronal and astrocyte culture described here is from the stress-hyperreactive Wistar Kyoto (WKY) More Immobile (WMI) rat with premature aging-related memory deficit, and its nearly isogenic control, the Less Immobile (WLI) strain. Primary WMI hippocampal neurons and cortical astrocytes are significantly more sensitive to oxidative stress (OS) generated by administration of H2O2 compared to WLI cells as measured by the trypan blue cell viability assay. Intrinsic genetic vulnerability is also suggested by the decreased gene expression in WMI neurons of catalase (Cat), and in WMI cortical astrocytes of insulin-like growth factor 2 (Igf2), synuclein gamma (Sncg) and glutathione peroxidase 2 (Gpx2) compared to WLI. The expressions of several mitochondrial genes are dramatically increased in response to H2O2 treatment in WLI, but not in WMI cortical astrocytes. We propose that the vulnerability of WMI neurons to OS is due to the genetic differences between the WLI and WMI. Furthermore, the upregulation of mitochondrial genes may be a compensatory response to the generation of free radicals by OS in the WLIs, and this mechanism is disturbed in the WMIs. Thus, this pilot study suggests intrinsic vulnerabilities in the WMI hippocampal neurons and cortical astrocytes, and affirm the efficacy of this bimodal in vitro screening system for finding novel drug targets to prevent oxidative damage in illnesses.
Collapse
Affiliation(s)
- Adriana Ferreira
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (A.F.)
| | - Aspen Harter
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Sana Afreen
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (A.F.)
| | - Karoly Kanai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Sandor Batori
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
5
|
de Jong TV, Pan Y, Rastas P, Munro D, Tutaj M, Akil H, Benner C, Chen D, Chitre AS, Chow W, Colonna V, Dalgard CL, Demos WM, Doris PA, Garrison E, Geurts AM, Gunturkun HM, Guryev V, Hourlier T, Howe K, Huang J, Kalbfleisch T, Kim P, Li L, Mahaffey S, Martin FJ, Mohammadi P, Ozel AB, Polesskaya O, Pravenec M, Prins P, Sebat J, Smith JR, Solberg Woods LC, Tabakoff B, Tracey A, Uliano-Silva M, Villani F, Wang H, Sharp BM, Telese F, Jiang Z, Saba L, Wang X, Murphy TD, Palmer AA, Kwitek AE, Dwinell MR, Williams RW, Li JZ, Chen H. A revamped rat reference genome improves the discovery of genetic diversity in laboratory rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536694. [PMID: 37214860 PMCID: PMC10197727 DOI: 10.1101/2023.04.13.536694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared to its predecessor. Gene annotations are now more complete, significantly improving the mapping precision of genomic, transcriptomic, and proteomics data sets. We jointly analyzed 163 short-read whole genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ~20.0 million sequence variations, of which 18.7 thousand are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.
Collapse
Affiliation(s)
- Tristan V de Jong
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yanchao Pan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Daniel Munro
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Department of Integrative Structural and Computational Biology, Scripps Research, San Diego, CA, USA
| | - Monika Tutaj
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Chris Benner
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - William Chow
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics; The American Genome Center, Uniformed Services University of the Health Sciences, Washington DC, USA
| | - Wendy M Demos
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Peter A Doris
- The Brown Foundation Institute of Molecular Medicine, Center For Human Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hakan M Gunturkun
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Victor Guryev
- Genome Structure and Ageing, University of Groningen, UMC Groningen, The Netherlands
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus in Hinxton, Cambridgeshire, UK
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Jun Huang
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ted Kalbfleisch
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Louisville, KY, USA
| | - Panjun Kim
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ling Li
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus in Hinxton, Cambridgeshire, UK
| | - Pejman Mohammadi
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Jennifer R Smith
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hongyang Wang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Burt M Sharp
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
6
|
Redei EE, Udell ME, Solberg Woods LC, Chen H. The Wistar Kyoto Rat: A Model of Depression Traits. Curr Neuropharmacol 2023; 21:1884-1905. [PMID: 36453495 PMCID: PMC10514523 DOI: 10.2174/1570159x21666221129120902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
There is an ongoing debate about the value of animal research in psychiatry with valid lines of reasoning stating the limits of individual animal models compared to human psychiatric illnesses. Human depression is not a homogenous disorder; therefore, one cannot expect a single animal model to reflect depression heterogeneity. This limited review presents arguments that the Wistar Kyoto (WKY) rats show intrinsic depression traits. The phenotypes of WKY do not completely mirror those of human depression but clearly indicate characteristics that are common with it. WKYs present despair- like behavior, passive coping with stress, comorbid anxiety, and enhanced drug use compared to other routinely used inbred or outbred strains of rats. The commonly used tests identifying these phenotypes reflect exploratory, escape-oriented, and withdrawal-like behaviors. The WKYs consistently choose withdrawal or avoidance in novel environments and freezing behaviors in response to a challenge in these tests. The physiological response to a stressful environment is exaggerated in WKYs. Selective breeding generated two WKY substrains that are nearly isogenic but show clear behavioral differences, including that of depression-like behavior. WKY and its substrains may share characteristics of subgroups of depressed individuals with social withdrawal, low energy, weight loss, sleep disturbances, and specific cognitive dysfunction. The genomes of the WKY and WKY substrains contain variations that impact the function of many genes identified in recent human genetic studies of depression. Thus, these strains of rats share characteristics of human depression at both phenotypic and genetic levels, making them a model of depression traits.
Collapse
Affiliation(s)
- Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mallory E. Udell
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leah C. Solberg Woods
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
7
|
Fan S, Liu H, Li L. The REEP family of proteins: molecular targets and role in pathophysiology. Pharmacol Res 2022; 185:106477. [PMID: 36191880 DOI: 10.1016/j.phrs.2022.106477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022]
Abstract
Receptor expression-enhancing proteins (REEPs) are an evolutionarily conserved protein family that is pivotal to the structure and function of the endoplasmic reticulum (ER). The REEP family can be classified into two major subfamilies in higher species, the REEP1-4 and REEP5-6 subfamilies. Within the REEP1-4 subfamily, REEP1 and REEP2 are closely related, and REEP3 and REEP4 are similarly related. The REEP family is widely distributed in various tissues. Recent studies indicate that the REEP family is involved in many pathological and physiological processes, such as ER morphogenesis and remodeling, microtubule cytoskeleton regulation, and the trafficking and expression of G protein-coupled receptors (GPCRs). Moreover, the REEP family plays crucial roles in the occurrence and development of many diseases, including neurological diseases, diabetes, retinal diseases, cardiac diseases, infertility, obesity, oligoarticular juvenile idiopathic arthritis (OJIA), COVID-19, and cancer. In the present review, we describe the distribution and structure of the REEP family. Furthermore, we summarize the functions and the associated diseases of this family. Based on the pleiotropic actions of the REEP family, the study of its family members is crucial to understanding the relevant pathophysiological processes and developing strategies to modulate and control these related diseases. AVAILABILITY OF DATA AND MATERIAL: The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Sisi Fan
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Huimei Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of tumor microenvironment responsive drug research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
8
|
Stapel B, Xiao K, Gorinski N, Schmidt K, Pfanne A, Fiedler J, Richter I, Vollbrecht AL, Thum T, Kahl KG, Ponimaskin E. MicroRNAs as novel peripheral markers for suicidality in patients with major depressive disorder. Front Psychiatry 2022; 13:1020530. [PMID: 36506422 PMCID: PMC9729747 DOI: 10.3389/fpsyt.2022.1020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Major depressive disorder (MDD) constitutes a main risk factor for suicide. Suicide risk in psychiatric patients is primarily determined by often unreliable, self-reported information. We assessed serum levels of three microRNAs (miRNAs), previously demonstrated to be dysregulated in post-mortem brain samples of suicide victims, as potential peripheral biomarkers for suicidality. METHODS All study participants were diagnosed with MDD according to Diagnostic and Statistical Manual of Mental Disorders, 5th edition criteria. Suicidality, defined as acute suicide risk or suicide attempt within one week prior to study entry, was assessed by clinical interview. Relative serum levels of miR-30a, miR-30e, and miR-200a, normalized to U6, were measured by quantitative real-time PCR in MDD inpatients with (MDD/SI, N = 19) and without (MDD, N = 31) acute suicide risk. Median age and gender distribution were comparable in both groups. RESULTS Levels of miR-30a, miR-30e, and miR-200a were significantly elevated in MDD/SI compared to MDD. Subgroup analysis of the MDD/SI group showed that levels of miR-30e and miR-200a were significantly higher and miR-30a was increased by trend in patients admitted following a suicide attempt (N = 7) compared to patients with acute suicide risk but without recent suicide attempt (N = 12). Additionally, use of two databases for in silico transcription factor-miRNA interaction prediction indicated early growth response protein (EGR) 1 as potential transcriptional regulator for all three miRNAs. CONCLUSION This study demonstrates suicide risk in MDD patients to be associated with increased levels of miR-30a, miR-30e, and miR-200a. Thus, these miRNAs might constitute potential biomarkers to predict suicidal behavior in MDD patients.
Collapse
Affiliation(s)
- Britta Stapel
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Ke Xiao
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany
| | | | - Kevin Schmidt
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hanover, Germany
| | - Angelika Pfanne
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hanover, Germany
| | - Jan Fiedler
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany
| | - Imke Richter
- Cellular Neurophysiology, Hannover Medical School, Hanover, Germany
| | | | - Thomas Thum
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany.,Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hanover, Germany.,Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hanover, Germany
| | - Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | | |
Collapse
|
9
|
Schaack AK, Mocchi M, Przybyl KJ, Redei EE. Immediate stress alters social and object interaction and recognition memory in nearly isogenic rat strains with differing stress reactivity. Stress 2021; 24:911-919. [PMID: 34374625 DOI: 10.1080/10253890.2021.1958203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Stress prior to learning and recall is known to affect both processes depending on the learning paradigm, the sex of the animal, and their reactivity to stress. Male and female animals of the inbred Wistar-Kyoto More Immobile (WMI) and Less Immobile (WLI) strains were tested in the modified novel object and spatial recognition paradigm and in the social interaction-recognition paradigm immediately after a 30 min restraint stress. The WMI strain shows enhanced stress reactivity compared to its near isogenic WLI control and thus, represents a genetically stress-susceptible rodent model. Without stress, there were no strain differences in social or object recognition, but there were sex differences in both types of investigation. Immediate stress generally increased object investigation, but decreased social interaction in all groups, except the WMI males, who exhibited increased aggression toward the juveniles. While stress increased plasma corticosterone and decreased testosterone levels in WLI males as expected, it increased testosterone in the aggressive WMI males, despite elevated levels of corticosterone. Stress generally decreased recognition, except the spatial recognition of WMI females, which paradoxically improved after stress. The strain-specific effects of immediate stress indicate that stress unlocks the vulnerability encoded by the stable genetic differences between WLIs and WMIs to result in the observed phenotypes.
Collapse
Affiliation(s)
- Alice K Schaack
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, USA
| | - Madaline Mocchi
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, USA
| | - Katherine J Przybyl
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
10
|
Przybyl KJ, Jenz ST, Lim PH, Ji MT, Wert SL, Luo W, Gacek SA, Schaack AK, Redei EE. Genetic stress-reactivity, sex, and conditioning intensity affect stress-enhanced fear learning. Neurobiol Learn Mem 2021; 185:107523. [PMID: 34562618 DOI: 10.1016/j.nlm.2021.107523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/11/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022]
Abstract
The Stress-Enhanced Fear Learning (SEFL) model of posttraumatic stress disorder (PTSD) reveals increased fear memory in animals exposed to stress prior to contextual fear conditioning (CFC), similar to the increased likelihood of developing PTSD in humans after prior stress. The present study utilized the SEFL model by exposing animals to restraint stress as the first stressor, followed by CFC using foot-shocks with 0.6 mA or 0.8 mA intensity. Adult males and females from the two nearly isogenic rat strains, the genetically more stress-reactive Wistar Kyoto (WKY) More Immobile (WMI), and the less stress-reactive WKY Less Immobile (WLI) were employed. Percent time spent freezing at acquisition and at recall differed between these strains in both prior stress and no stress conditions. The significant correlations between percent freezing at acquisition and at recall suggest that fear memory differences represent a true phenotype related to the stress-reactivity differences between the strains. This assumption is further substantiated by the lack of effect of either conditioning intensity on percent freezing in WLI males, while WMI males were affected by both intensities albeit with opposite directional changes after prior stress. Differences between the sexes in sensitivity to the two conditioning intensities became apparent by the opposite directional and inverse relationship between fear memory and the intensity of conditioning in WMI males and females. The present data also illustrate that although corticosterone (CORT) responses to prior stress are known to be necessary for SEFL, plasma CORT and percent freezing were positively correlated only in the stress less-reactive WLI strain. These differences in baseline fear acquisition, fear memory, and the percent freezing responses to the SEFL paradigm in the two genetically close inbred WMI and WLI strains provide a unique opportunity to study the genetic contribution to the variation in these phenotypes.
Collapse
Affiliation(s)
- K J Przybyl
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - S T Jenz
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - P H Lim
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - M T Ji
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - S L Wert
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - W Luo
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - S A Gacek
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - A K Schaack
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - E E Redei
- Dept. of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|