1
|
Bezmalinovic A, Navarrete Á, Latorre M, Celentano D, Herrera EA, García-Herrera C. Characterization of mechanical damage and viscoelasticity on aortas from guinea pigs subjected to hypoxia. Sci Rep 2025; 15:13447. [PMID: 40251229 PMCID: PMC12008416 DOI: 10.1038/s41598-025-96086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/26/2025] [Indexed: 04/20/2025] Open
Abstract
To reliably assess the rupture risk of the aorta, along with the hazardousness of cardiovascular diseases and other extreme conditions or the effect of possible treatments, it is necessary to understand the influence of damage mechanisms along with the frequency and rate of mechanical loads. In particular, hypobaric hypoxia, an oxygen deficiency in the organism due to its low atmospheric partial pressure, is reported to alter the mechanical properties of blood vessels. In this work, we characterized the passive mechanical response of the aorta, seeking to capture the influence of hypoxia on their elastic, damage, and viscoelastic properties under ex-vivo conditions. The mechanical behavior of the aortic wall is described using an anisotropic hyperelastic model including two fiber families with asymmetric dispersion, along with an anisotropic damage model and an orthotropic viscoelastic model based on a reverse multiplicative decomposition of the deformation gradient. The constitutive model was experimentally calibrated from uniaxial-relaxation and biaxial-tensile test results, previously performed on thoracic aorta samples of guinea pigs. A group of guinea pigs subjected to hypoxia was contrasted with a normoxic (control) group. Cyclic-load stages of uniaxial tests were used to assess dissipation. Once the constitutive model was implemented and calibrated, its performance was evaluated via the numerical simulation of a bulge pressurization test to estimate energy dissipation and pressure associated with the onset of damage. Results indicated that hypoxia does not alter the visco-hyperelastic or damage behavior of the aorta. Besides, the pressure delivered by bulge-test simulations at the onset of damage on collagen fibers was representative of an arterial hypertensive condition.
Collapse
Affiliation(s)
- Alejandro Bezmalinovic
- Biomechanics and Biomaterials Laboratory, Department of Mechanical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Álvaro Navarrete
- Biomechanics and Biomaterials Laboratory, Department of Mechanical Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, Valencia, Spain
| | - Diego Celentano
- Department of Mechanical and Metallurgical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emilio A Herrera
- Pathophysiology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| | - Claudio García-Herrera
- Biomechanics and Biomaterials Laboratory, Department of Mechanical Engineering, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Navarrete Á, Utrera A, Rivera E, Latorre M, Celentano DJ, García-Herrera CM. An inverse fitting strategy to determine the constrained mixture model parameters: application in patient-specific aorta. Front Bioeng Biotechnol 2023; 11:1301988. [PMID: 38053847 PMCID: PMC10694237 DOI: 10.3389/fbioe.2023.1301988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The Constrained Mixture Model (CMM) is a novel approach to describe arterial wall mechanics, whose formulation is based on a referential physiological state. The CMM considers the arterial wall as a mixture of load-bearing constituents, each of them with characteristic mass fraction, material properties, and deposition stretch levels from its stress-free state to the in-vivo configuration. Although some reports of this model successfully assess its capabilities, they barely explore experimental approaches to model patient-specific scenarios. In this sense, we propose an iterative fitting procedure of numerical-experimental nature to determine material parameters and deposition stretch values. To this end, the model has been implemented in a finite element framework, and it is calibrated using reported experimental data of descending thoracic aorta. The main results obtained from the proposed procedure consist of a set of material parameters for each constituent. Moreover, a relationship between deposition stretches and residual strain measurements (opening angle and axial stretch) has been numerically proved, establishing a strong consistency between the model and experimental data.
Collapse
Affiliation(s)
- Álvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Andrés Utrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Eugenio Rivera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Diego J. Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Claudio M. García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| |
Collapse
|
3
|
Inostroza M, Utrera A, García-Herrera CM, Rivera E, Celentano DJ, Herrera EA. Analysis of the geometrical influence of ring-opening samples on arterial circumferential residual stress reconstruction. Front Bioeng Biotechnol 2023; 11:1233939. [PMID: 37675404 PMCID: PMC10477989 DOI: 10.3389/fbioe.2023.1233939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
This work consists of analyzing the impact of geometrical features (thickness and curvature) on the estimation of circumferential residual stresses in arteries. For this purpose, a specific sample of lamb abdominal artery is chosen for analysis and, through computational tools based on Python libraries, the stress-free geometry is captured after the ring opening test. Numerical simulations are then used to reconstruct the sample in order to estimate the circumferential residual stresses. Then, four stress-free geometry models are analyzed: an ideal geometry, i.e., constant curvature and thickness; a constant curvature and variable thickness geometry; a variable curvature and constant thickness geometry; and a variable curvature and thickness geometry. The numerical results show that models perform well from a geometric point of view, where the most different feature was the closed outer perimeter that differs about 14% from the closed real sample. As far as residual stress is concerned, differences up to 198% were found in more realistic models taking a constant curvature and thickness model as reference. Thus, the analysis of a realistic geometry with highly variable curvature and thickness can introduce, compared to an idealized geometry, significant differences in the estimation of residual stresses. This could indicate that the characterization of arterial residual stresses is not sufficient when considering only the opening angle and, therefore, it is also necessary to incorporate more geometrical variables.
Collapse
Affiliation(s)
- Matías Inostroza
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Andrés Utrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Eugenio Rivera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Diego J. Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emilio A. Herrera
- Pathophysiology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Laubrie JD, Bezmalinovic A, García-Herrera CM, Celentano DJ, Herrera EA, Avril S, Llanos AJ. Hyperelastic and damage properties of the hypoxic aorta treated with Cinaciguat. J Biomech 2023; 147:111457. [PMID: 36701962 DOI: 10.1016/j.jbiomech.2023.111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
Chronic hypoxia during gestation and postnatal period induces pulmonary hypertension, aorta stiffening and vascular remodeling. In this study, we hypothesized that a postnatal treatment with Cinaciguat, a guanylate cyclase activator, may improve the vascular function by enhancing NO-sGC pathways that induce vasodilation. To assess this, we collected aortas from six lambs gestated, born and raised at 3600 masl. Half of these lambs received a Cinaciguat postnatal treatment, while the other half was used as control (vehicle). Uniaxial tension was applied on samples of each group of aortas (control and Cinaciguat-treated) through cyclic loading. The obtained stress-stretch curves were used to identify constitutive parameters of a hyperelastic damage model. These material constants allowed us to assess the softening/dissipation behavior and to characterize the treatment effects. Results showed that Cinaciguat has an effect on the damage behavior at large strains, altering the damage onset under uniaxial tension. We conclude that Cinaciguat, as a vasodilator, can prevent the very early effects of vascular remodeling caused by perinatal hypoxia, and improve the aortic-tissue damage properties of hypoxic lambs.
Collapse
Affiliation(s)
- Joan D Laubrie
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago, Chile
| | - Alejandro Bezmalinovic
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio M García-Herrera
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Santiago de Chile, Santiago, Chile.
| | - Diego J Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emilio A Herrera
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Putre, Chile
| | - Stéphane Avril
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, F - 42023 Saint-Etienne, France
| | - Aníbal J Llanos
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Putre, Chile
| |
Collapse
|