1
|
Everett A, Elsheikha HM. Neuroinflammation and schizophrenia: The role of Toxoplasma gondii infection and astrocytic dysfunction. J Neuroimmunol 2025; 403:578588. [PMID: 40139129 DOI: 10.1016/j.jneuroim.2025.578588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
Obligate intracellular pathogens such as the protozoan Toxoplasma gondii exploit host cell mechanisms to facilitate their survival and replication. While T. gondii can infect any nucleated mammalian cell, it exhibits a particular affinity for central nervous system cells, including neurons, astrocytes, and microglia. Among these, astrocytes play a pivotal role in maintaining neuroimmune balance, and their infection by T. gondii induces structural and functional alterations. Emerging evidence suggests that these changes may contribute to the pathophysiology of schizophrenia (SCZ). Although a direct causal link between T. gondii-induced astrocytic dysfunction and SCZ remains unproven, infection has been associated with increased kynurenic acid production, elevated dopamine levels, and heightened inflammatory cytokines-all of which are implicated in SCZ pathology. Additionally, T. gondii infection disrupts crucial neurobiological processes, including N-methyl-d-aspartate receptor signaling, blood-brain barrier integrity, and gray matter volume, further aligning with SCZ-associated neuropathology. This review underscores the need for targeted research into T. gondii-mediated astrocytic dysfunction as a potential factor in SCZ development. Understanding the mechanistic links between T. gondii infection, astrocytic alterations, and psychiatric disorders may open new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Abigail Everett
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
2
|
Ahidjo N, Seke Etet PF, Ngarka L, Maidawa Yaya F, Ndianteng EW, Eyenga Nna AL, Meka’a Zang LY, Kemmo C, Nwasike CNC, Yonkeu Tatchou FG, Njamnshi WY, Nfor LN, Tsouh Fokou PV, Djiogue S, Fekam Boyom F, Ngadjui BT, Njamnshi AK. Effects of diet and ovariectomy on Toxoplasma gondii brain infection: functional alterations and neuronal loss in rats. Brain Commun 2024; 7:fcae441. [PMID: 39741781 PMCID: PMC11686407 DOI: 10.1093/braincomms/fcae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 10/14/2024] [Accepted: 12/26/2024] [Indexed: 01/03/2025] Open
Abstract
Epidemiological evidence associates Toxoplasma gondii latent infection with the development of neuropsychiatric disorders, and various immunological and environmental factors play key pathophysiological roles through host immune response alterations. We investigated the cognitive and motor alterations occurring in the terminal stage of T. gondii infection in rats, and whether a low-protein diet, a high-fat diet or ovariectomy may accelerate their development, given the role of malnutrition and menopause on immunity and resistance to infection. In two sets of experiments, 2-month-old (157.5 ± 4.3 g, n = 42) male (n = 18) and female (n = 24) Wistar rats were infected with T. gondii (ATCC 40050). Open-field and elevated plus maze tests were performed in the terminal stage of infection first and then in the early stage in low-protein diet-fed, high-fat diet-fed and ovariectomized infected rats. Late-stage (90 days) infected and early-stage (17 days) low-protein diet-fed groups showed significant decreases in body weight (42.42%↓, P = 0.016 and 57.14%↓, P < 0.001 versus non-infected, respectively), increases in body temperature (P = 0.001 and P < 0.001, respectively), decreases in blood glucose levels (P = 0.006 and P = 0.020, respectively), signs of cognitive and motor impairment and lower neuron counts. The alterations observed in high-fat diet-fed and ovariectomized infected animals were milder. Low-protein diet feeding to T. gondii-infected rats accelerated the occurrence of the infection terminal stage. Thus, a diet low in proteins could transform a slow early-stage T. gondii infection into an active neurotoxoplasmosis with neuropsychiatric manifestations and possible neurodegeneration in rats.
Collapse
Affiliation(s)
- Nene Ahidjo
- Brain Research Africa Initiative (BRAIN), P.O. Box 25625, Yaoundé, Cameroon
| | - Paul F Seke Etet
- Brain Research Africa Initiative (BRAIN), P.O. Box 25625, Yaoundé, Cameroon
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
- Basic and Translational Research Unit, Center for Sustainable Health and Development, Garoua, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, P.O. Box 346 Garoua, Garoua, Cameroon
| | - Leonard Ngarka
- Brain Research Africa Initiative (BRAIN), P.O. Box 25625, Yaoundé, Cameroon
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
| | - Frederic Maidawa Yaya
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
- Basic and Translational Research Unit, Center for Sustainable Health and Development, Garoua, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, P.O. Box 346 Garoua, Garoua, Cameroon
| | - Ethel W Ndianteng
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
| | - Aude L Eyenga Nna
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
| | - Luc Yvan Meka’a Zang
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Christelle Kemmo
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Caroline N C Nwasike
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
| | - Floriane G Yonkeu Tatchou
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Wepnyu Y Njamnshi
- Brain Research Africa Initiative (BRAIN), P.O. Box 25625, Yaoundé, Cameroon
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
- Division of Health Operations Research, Ministry of Public Health, P. O. Box 1937, Yaoundé, Cameroon
| | - Leonard N Nfor
- Brain Research Africa Initiative (BRAIN), P.O. Box 25625, Yaoundé, Cameroon
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
| | - Patrick V Tsouh Fokou
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies (LPMPS), The University of Yaoundé I, P. O. Box 812, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39, Bamenda, Cameroon
- Advanced Research and Health Innovation Hub, P.O. Box 20133, Yaoundé, Cameroon
| | - Sefirin Djiogue
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Fabrice Fekam Boyom
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies (LPMPS), The University of Yaoundé I, P. O. Box 812, Yaoundé, Cameroon
- Advanced Research and Health Innovation Hub, P.O. Box 20133, Yaoundé, Cameroon
| | - Bonaventure T Ngadjui
- Department of Organic Chemistry, The University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN), P.O. Box 25625, Yaoundé, Cameroon
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
| |
Collapse
|
3
|
Ahidjo N, Maidawa Yaya F, Njamnshi WY, Rissia-Ngo Pambe JC, Ndianteng EW, Nwasike CNC, Kemmo C, Choupo AC, Meka’a Zang LY, Pieme AC, Vecchio L, Ngadjui BT, Njamnshi AK, Seke Etet PF. Therapeutic potential of Garcinia kola against experimental toxoplasmosis in rats. Brain Commun 2024; 6:fcae255. [PMID: 39130514 PMCID: PMC11316209 DOI: 10.1093/braincomms/fcae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/19/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024] Open
Abstract
Cerebral toxoplasmosis, the most common opportunistic infection in immunocompromised individuals, is increasingly reported in immunocompetent individuals due to mutant strains of Toxoplasma gondii, which, furthermore, are reported to be resistant to available treatments. We assessed the therapeutic potential of Garcinia kola, a medicinal plant reported to have antiplasmodial and neuroprotective properties, against experimental toxoplasmosis in rats. Severe toxoplasmosis was induced in male Wistar rats (156.7 ± 4.1 g) by injecting them with 10 million tachyzoites in suspension in 500 µl of saline (intraperitoneal), and exclusive feeding with a low-protein diet [7% protein (weight by weight)]. Then, animals were treated with hexane, dichloromethane, and ethyl acetate fractions of Garcinia kola. Footprints were analysed and open-field and elevated plus maze ethological tests were performed when symptoms of severe disease were observed in the infected controls. After sacrifice, blood samples were processed for Giemsa staining, organs were processed for haematoxylin and eosin staining, and brains were processed for Nissl staining and cell counting. Compared with non-infected animals, the infected control animals had significantly lower body weights (30.27%↓, P = 0.001), higher body temperatures (P = 0.033) during the sacrifice, together with signs of cognitive impairment and neurologic deficits such as lower open-field arena centre entries (P < 0.001), elevated plus maze open-arm time (P = 0.029) and decreased stride lengths and step widths (P < 0.001), as well as neuronal loss in various brain areas. The ethyl acetate fraction of Garcinia kola prevented or mitigated most of these signs. Our data suggest that the ethyl acetate fraction of Garcinia kola has therapeutic potential against cerebral toxoplasmosis.
Collapse
Affiliation(s)
- Nene Ahidjo
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Frederic Maidawa Yaya
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| | - Wepnyu Y Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Judith C Rissia-Ngo Pambe
- Department of Morphological Sciences and Pathological Anatomy, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Ethel W Ndianteng
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Caroline N C Nwasike
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Christelle Kemmo
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Arnaud C Choupo
- Faculty of Medicine and Biomedical Sciences, Laboratory of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Luc Yvan Meka’a Zang
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Anatole C Pieme
- Faculty of Medicine and Biomedical Sciences, Laboratory of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Lorella Vecchio
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| | | | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Paul F Seke Etet
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| |
Collapse
|
4
|
Guimarães AL, Richer Araujo Coelho D, Scoriels L, Mambrini J, Ribeiro do Valle Antonelli L, Henriques P, Teixeira-Carvalho A, Assis Martins Filho O, Mineo J, Bahia-Oliveira L, Panizzutti R. Effects of Toxoplasma gondii infection on cognition, symptoms, and response to digital cognitive training in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:104. [PMID: 36434103 PMCID: PMC9700796 DOI: 10.1038/s41537-022-00292-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/28/2022] [Indexed: 11/27/2022]
Abstract
Studies indicate that neuroscience-informed digital cognitive training can remediate cognitive impairments in schizophrenia, but the factors contributing to these deficits and response to treatment remain unclear. Toxoplasma gondii is a neuroinvasive parasite linked to cognitive decline that also presents a higher prevalence in schizophrenia. Here, we compared the cognition and symptom severity of IgG seropositive (TOXO+; n = 25) and seronegative (TOXO-; n = 35) patients who participated in a randomized controlled trial of digital cognitive training. At baseline, TOXO+ subjects presented lower global cognition than TOXO- (F = 3.78, p = 0.05). Specifically, TOXO+ subjects showed worse verbal memory and learning (F = 4.48, p = 0.03), social cognition (F = 5.71, p = 0.02), and higher antibody concentrations were associated with increased negative (r = 0.42, p = 0.04) and total (r = 0.40, p = 0.04) schizophrenia symptoms. After training, the TOXO+ group showed higher adherence to the intervention (X2 = 9.31, p = 0.03), but there were no differences in changes in cognition and symptoms between groups. These findings highlight the association between seropositivity to T. gondii and deteriorated cognition and symptoms in schizophrenia. Further research is needed to assess the specific efficacy of digital cognitive training on this population.
Collapse
Affiliation(s)
- Anna Luiza Guimarães
- Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Linda Scoriels
- Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Mambrini
- Instituto René Rachou, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | - José Mineo
- Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Lilian Bahia-Oliveira
- Departamento de Imunoparasitologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rogério Panizzutti
- Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Yin K, Xu C, Zhao G, Xie H. Epigenetic Manipulation of Psychiatric Behavioral Disorders Induced by Toxoplasma gondii. Front Cell Infect Microbiol 2022; 12:803502. [PMID: 35237531 PMCID: PMC8882818 DOI: 10.3389/fcimb.2022.803502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Toxoplasma gondii is known to have a complex life cycle and infect almost all kinds of warm-blooded animals around the world. The brain of the host could be persistently infected by cerebral cysts, and a variety of psychiatric disorders such as schizophrenia and suicide have been reported to be related with latent toxoplasmosis. The infected animals showed fear reduction and a tendency to be preyed upon. However, the mechanism of this “parasites manipulation” effects have not been elucidated. Here, we reviewed the recent infection prevalence of toxoplasmosis and the evidence of mental and behavioral disorders induced by T. gondii and discussed the related physiological basis including dopamine dysregulation and gamma-aminobutyric acid (GABA) pathway and the controversial opinion of the necessity for cerebral cysts existence. Based on the recent advances, we speculated that the neuroendocrine programs and neurotransmitter imbalance may play a key role in this process. Simultaneously, studies in the evaluation of the expression pattern of related genes, long noncoding RNAs (lncRNAs), and mRNAs of the host provides a new point for understanding the mechanism of neurotransmitter dysfunction induced by parasite manipulation. Therefore, we summarized the animal models, T. gondii strains, and behavioral tests used in the related epigenetic studies and the responsible epigenetic processes; pinpointed opportunities and challenges in future research including the causality evidence of human psychiatric disorders, the statistical analysis for rodent-infected host to be more vulnerable preyed upon; and identified responsible genes and drug targets through epigenetics.
Collapse
|