1
|
Song Y, Liu T, Hao Q, Fang Q, Gong X, Li Y, Tian Z, Wei H, Wang M, Wang J, Cheng T, Mi Y. Comprehensive omics-based classification system in adult patients with B-cell acute lymphoblastic leukemia. Mol Oncol 2025. [PMID: 40388565 DOI: 10.1002/1878-0261.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/06/2025] [Accepted: 05/07/2025] [Indexed: 05/21/2025] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) is a highly heterogeneous disease with a challenging prognosis, particularly in adult patients. We enrolled 88 adult B-ALL patients with transcriptomic and mutation profiles for classification system identification, and a comprehensive system for B-ALL patients (COMBAT) was developed. COMBAT stratified patients into three cohorts: (1) COMBAT1, characterized by high stem/myeloid antigen expression, low immune infiltration, high infiltration of endothelial cells, and hypo-CIMP (CpG island methylator phenotype); (2) COMBAT2, defined as an inflamed subtype with immune exhaustion, moderate myeloid antigen expression, and hypo-CIMP; and (3) COMBAT3, marked by proliferative profiles with MYC pathway activation and hypomethylation at enhancer regions in patients characterized by CIMP. The molecular features of the three COMBATs were verified in two external cohorts, the GSE34861 (N = 194) and GSE66005 (N = 109) datasets. In univariate analysis, only COMBAT classification presented significance for OS, and patients of COMBAT3 presented significantly superior survival than COMBAT1/2 in Ph-negative ALL. Ph-negative ALL patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the COMBAT3 group showed better overall survival (OS) than those in the COMBAT1-2 groups (estimated 3-year OS: 100% vs. 65.6%, P = 0.034), suggesting a prognostic benefit of this subtype. In summary, the COMBAT system redefines the characteristics of adult B-ALL subtypes and guides the selection of allo-HSCT for Ph-negative patients.
Collapse
Affiliation(s)
- Yang Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Ting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Qishan Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiuyun Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Xiaoyuan Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yingchang Mi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
2
|
Sallati I, Abend Bardagi J, Mendonça JA, Degasperi GR. Evaluating obesity and fat cells as possible important metabolic players in childhood leukemia. J Pediatr Endocrinol Metab 2025:jpem-2024-0448. [PMID: 40294346 DOI: 10.1515/jpem-2024-0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/23/2025] [Indexed: 04/30/2025]
Abstract
INTRODUCTION The prevalence of overweight and obesity in childhood is a health challenge. This condition induces alterations in adipose tissue and metabolic disorders such as diabetes, dyslipidemia, and hypertension even in childhood and may also be associated with cancer development. Underlying mechanisms related to childhood cancer, such as leukemia and obesity, are not entirely understood. CONTENT Considering this scenario, a systematic literature review was performed on the PubMed library. Studies that evaluate the association between overweight or obesity at diagnosis of childhood leukemia and the outcomes associated with this condition were included. SUMMARY In some studies, a worse prognosis was observed in obese children compared to non-obese, which begs the question of how the adipose tissue environment may be involved with leukemia progression and its outcomes such as relapse, overall and event-free survival and infections. OUTLOOK Obesity in children diagnosed with leukemia may be associated with poor outcomes during disease progression as reported in some studies. The remodeling and composition of adipose tissue, alterations in adipocytokines secretion, such as leptin, and inflammation that may trigger awakened oncogenes seem to be important players in cancer development and outcomes during treatment. Understanding if there is any relationship between adipose tissue and the development of childhood leukemia and its prognosis, as well as the biological mechanisms of this scenario, is important to contribute to improving the treatment protocols and survival, especially in obese children.
Collapse
Affiliation(s)
- Isabela Sallati
- School of Life Sciences, Pontifical Catholic University of Campinas, Campinas, SP, Brazil
- School of Medicine, Pontifical Catholic University of Campinas, Campinas, SP, Brazil
| | - Julia Abend Bardagi
- School of Life Sciences, Pontifical Catholic University of Campinas, Campinas, SP, Brazil
- School of Nutrition, Pontifical Catholic University of Campinas, Campinas, SP, Brazil
| | - José Alexandre Mendonça
- School of Life Sciences, Pontifical Catholic University of Campinas, Campinas, SP, Brazil
- 28101 Postgraduate Program in Health Sciences, Pontifical Catholic University of Campinas , Campinas, SP, Brazil
| | - Giovanna R Degasperi
- School of Life Sciences, Pontifical Catholic University of Campinas, Campinas, SP, Brazil
- 28101 Postgraduate Program in Health Sciences, Pontifical Catholic University of Campinas , Campinas, SP, Brazil
| |
Collapse
|
3
|
Osman AM, Ali AM, Sayed HA, Atta H, Ahmed S, Alieldin N, Abdelhamed MA, Saad K, Shibl A. Cognitive performance and brain volume among survivors of pediatric hematological malignancies: a case-control study. Clin Transl Oncol 2025; 27:1263-1273. [PMID: 39133385 DOI: 10.1007/s12094-024-03646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Cognitive dysfunction may be one of the hazardous late effects among survivors of pediatric hematological malignancies. Our study aimed to explore cognitive performance and assess the global and regional brain volume changes in survivors of hematological malignancies. METHODS This case-control study was conducted on 68 survivors of hematological malignancies, with a median follow-up period of 2 years (ranging from 1 to 6.2 years). Stanford-Binet Test was used for cognitive assessment. A quantitative volumetric assessment of the brain was done using the NeuroQuant Brain Magnetic Resonance. Age and sex-matched 68 children were selected as a comparison group. RESULTS Cancer survivors showed significantly lower levels of IQ and their subtests than the control group. Global brain atrophy was observed in the majority of the survivors. Many risk factors significantly affected different IQ subtests, such as radiotherapy (RTH), high cumulative doses of methotrexate (MTX), and prednisone. At the same time, low white matter volume (WMV) was observed with higher cumulative doses of MTX and anthracyclines. CONCLUSIONS Hematological malignancies have a negative impact on cognition. Neurocognitive impairment and related brain changes were evident in those who received RTH, HDMTX, or high cumulative doses of steroids.
Collapse
Affiliation(s)
- Amira M Osman
- Department of Pediatric Oncology and Hematological Malignancies, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Amany M Ali
- Department of Pediatric Oncology and Hematological Malignancies, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Heba A Sayed
- Department of Pediatric Oncology and Hematological Malignancies, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Haisam Atta
- Radiology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Shimaa Ahmed
- Department of Radiation Oncology and Nuclear Medicine, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Nelly Alieldin
- Department of Cancer Epidemiology and Biostatistics, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed A Abdelhamed
- Neuropsychiatric Department, and Neuroepidemiology Lab, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khaled Saad
- Pediatric Department, Faculty of Medicine, Assiut University Children's Hospital, Assiut University Campus, Assiut, 71111, Egypt.
| | - Azza Shibl
- Department of Pediatric Oncology and Hematological Malignancies, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Brauner J, Wilt A, Montgomery CP, Bline K. The role of myeloid-derived suppressor cells in children. Front Pediatr 2025; 13:1525143. [PMID: 40083432 PMCID: PMC11903755 DOI: 10.3389/fped.2025.1525143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
Myeloid-derived suppressor cells (MDSC) were first recognized over twenty years ago as a key immunomodulatory cell population. Since their initial identification, a growing body of literature points to the importance of MDSC as a heterogeneous, immunosuppressive cell population and as a therapeutic target in adults with cancer. MDSC are potent suppressors of T cells and Natural Killer (NK) cells and can be helpful or harmful to the host depending on the pathophysiology. For example, MDSC are beneficial in pregnancy and prevent spontaneous abortion by promoting maternal-fetal tolerance. Increased MDSC are also associated with improved outcomes in patients with graft vs. host disease by decreasing T cell-driven inflammation. However, MDSC can also be harmful and are known to be pathologic in adults with cancer and chronic infections by promoting tumor escape and impairing pathogen clearance, respectively. Despite the widespread recognition of the importance of MDSC and their immune suppression effects in adults, much less is known regarding the role of MDSC in children. Research investigating MDSC in children lags significantly behind adult studies. In fact, while over 5,000 publications on PubMed discuss MDSC in immune regulation, fewer than 50 of these publications focus specifically on their role in children. This review aims to summarize the existing literature on the role of MDSC in children and identify important directions for future research, including targeting these cells in the pediatric population to improve clinical outcomes.
Collapse
Affiliation(s)
- Jordan Brauner
- Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Anna Wilt
- University of Minnesota Health Sciences, University of Minnesota Medical Center, Minneapolis, MN, United States
| | | | - Katherine Bline
- Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
5
|
Elgenidy A, Al-Kurdi MAM, Ibrahim HAA, Gad EF, Awad AK, Caruana R, Diacono S, Sherif A, Elattar T, Al-Ghanam IE, Eldmaty AM, Abubasheer TM, Afifi AM, Elhoufey A, Dailah HG, Osman AM, Ezzat M, Gamal DA, Elmonier R, Hammour AES, Abougabal MT, Saad K. Mapping the Grounds for Mortalities in Acute Myeloid Leukemia Through Registry Analyses: A Retrospective Cohort Study of Children, Adolescents, and Young Adults Patients. J Clin Med Res 2024; 16:310-318. [PMID: 39027809 PMCID: PMC11254311 DOI: 10.14740/jocmr5205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Our objective was to identify non-malignant factors that contribute to mortality in children, adolescents and young adults, aiming to improve patient follow-up and reduce mortality rates to achieve better survival outcomes. METHODS We analyzed 8,239 acute myeloid leukemia (AML) cases diagnosed between 2000 and 2019 in the USA. Using version 8.4.0.1 of the Surveillance, Epidemiology, and End Results (SEER)*Stat software, we calculated the standardized mortality ratios (SMRs) and 95% confidence intervals (CIs) for each cause of death. RESULTS Out of the 3,165 deaths observed in the study population, the majority (2,245;70.9%) were attributed to AML itself, followed by non-AML cancers (573; 18.1%) and non-cancerous causes (347; 10.9%). CONCLUSIONS Patients with AML are at a higher risk of developing other types of cancer and granulocyte deficiencies, which increases the risk of death from non-cancerous causes such as infections. Moreover, treatment for AML carries the risk of cardiac problems. AML is commoner in males than females.
Collapse
Affiliation(s)
- Anas Elgenidy
- Faculty of Medicine, Cairo University, Cairo, Egypt
- These authors contributed equally to this article
| | - Mohammed Al-Mahdi Al-Kurdi
- Faculty of Medicine, University of Aleppo, Aleppo, Syrian Arab Republic
- These authors contributed equally to this article
| | | | - Eman F. Gad
- Department of Pediatrics, Assiut University, Assiut 71516, Egypt
| | - Ahmed K. Awad
- Faculty of Medicine Ain-Shams University, Cairo, Egypt
| | | | | | - Aya Sherif
- Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| | - Tasneem Elattar
- Faculty of Clinical Pharmacy, Al Azhar University, Cairo, Egypt
| | | | | | | | - Ahmed M. Afifi
- Department of Surgery, University of Toledo Medical Center, Toledo, OH, USA
| | - Amira Elhoufey
- Department of Community Health Nursing, Alddrab University College, Jazan University, Jazan 45142, Saudi Arabia
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Amira M. Osman
- Department of Pediatric Oncology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Mohamed Ezzat
- Department of Pediatrics, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Doaa Ali Gamal
- Department of Clinical Oncology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Rady Elmonier
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, New Damietta, Egypt
| | | | | | - Khaled Saad
- Department of Pediatrics, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
6
|
Xiang Y, Chen Q, Nan Y, Liu M, Xiao Z, Yang Y, Zhang J, Ying X, Long X, Wang S, Sun J, Huang Q, Ai K. Nitric Oxide‐Based Nanomedicines for Conquering TME Fortress: Say “NO” to Insufficient Tumor Treatment. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202312092] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 01/02/2025]
Abstract
AbstractAlmost all cancer treatments are significantly limited by the strong tumor microenvironment (TME) fortress formed by abnormal vasculature, dense extracellular matrix (ECM), multidrug resistance (MDR) system, and immune “cold” environment. In the huge efforts of dismantling the TME fortress, nitric oxide (NO)‐based nanomedicines are increasingly occupying a central position and have already been identified as super “strong polygonal warriors” to dismantle TME fortress for efficient cancer treatment, benefiting from NO's unique physicochemical properties and extremely fascinating biological effects. However, there is a paucity of systematic review to elaborate on the progress and fundamental mechanism of NO‐based nanomedicines in oncology from this aspect. Herein, the key characteristics of TME fortress and the potential of NO in reprogramming TME are delineated and highlighted. The evolution of NO donors and the advantages of NO‐based nanomedicines are discussed subsequently. Moreover, the latest progress of NO‐based nanomedicines for solid tumors is comprehensively reviewed, including normalizing tumor vasculature, overcoming ECM barrier, reversing MDR, and reactivating the immunosuppression TME. Lastly, the prospects, limitations, and future directions on NO‐based nanomedicines for TME manipulation are discussed to provide new insights into the construction of more applicable anticancer nanomedicines.
Collapse
Affiliation(s)
- Yuting Xiang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Yayun Nan
- Geriatric Medical Center People's Hospital of Ningxia Hui Autonomous Region Yinchuan Ningxia 750002 P. R. China
| | - Min Liu
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Yuqi Yang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Jinping Zhang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Xiaohong Ying
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Xingyu Long
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
| | - Jian Sun
- College of Pharmacy Xinjiang Medical University Urumqi 830017 P. R. China
| | - Qiong Huang
- Department of Pharmacy Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital Central South University Changsha Hunan 410008 P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences Central South University Changsha Hunan 410078 P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research Xiangya School of Pharmaceutical Sciences Central South University Changsha 410078 P. R. China
- Key Laboratory of Aging‐related Bone and Joint Diseases Prevention and Treatment Ministry of Education Xiangya Hospital Central South University Changsha 410078 P. R. China
| |
Collapse
|
7
|
Poveda-Garavito N, Combita AL. Contribution of the TIME in BCP-ALL: the basis for novel approaches therapeutics. Front Immunol 2024; 14:1325255. [PMID: 38299154 PMCID: PMC10827891 DOI: 10.3389/fimmu.2023.1325255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024] Open
Abstract
The bone marrow (BM) niche is a microenvironment where both immune and non-immune cells functionally interact with hematopoietic stem cells (HSC) and more differentiated progenitors, contributing to the regulation of hematopoiesis. It is regulated by various signaling molecules such as cytokines, chemokines, and adhesion molecules in its microenvironment. However, despite the strict regulation of BM signals to maintain their steady state, accumulating evidence in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) indicates that leukemic cells can disrupt the physiological hematopoietic niche in the BM, creating a new leukemia-supportive microenvironment. This environment favors immunological evasion mechanisms and the interaction of these cells with the development and progression of BCP-ALL. With a growing understanding of the tumor immune microenvironment (TIME) in the development and progression of BCP-ALL, current strategies focused on "re-editing" TIME to promote antitumor immunity have been developed. In this review, we summarize how TIME cells are disrupted by the presence of leukemic cells, evading immunosurveillance mechanisms in the BCP-ALL model. We also explore the crosstalk between TIME and leukemic cells that leads to treatment resistance, along with the most promising immuno-therapy strategies. Understanding and further research into the role of the BM microenvironment in leukemia progression and relapse are crucial for developing more effective treatments and reducing patient mortality.
Collapse
Affiliation(s)
- Nathaly Poveda-Garavito
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Alba Lucía Combita
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología (INC), Bogotá, Colombia
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
8
|
Carvalho MPSS, Magalhães-Gama F, Loiola BP, Neves JCF, Araújo ND, Silva FS, Catão CLS, Alves EB, Pimentel JPD, Barbosa MNS, Fraiji NA, Teixeira-Carvalho A, Martins-Filho OA, Costa AG, Malheiro A. Systemic immunological profile of children with B-cell acute lymphoblastic leukemia: performance of cell populations and soluble mediators as serum biomarkers. Front Oncol 2023; 13:1290505. [PMID: 38107068 PMCID: PMC10722195 DOI: 10.3389/fonc.2023.1290505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Background Children with B-cell acute lymphoblastic leukemia (B-ALL) have an immune imbalance that is marked by remodeling of the hematopoietic compartment, with effects on peripheral blood (PB). Although the bone marrow (BM) is the main maintenance site of malignancy, the frequency with which immune cells and molecules can be monitored is limited, thus the identification of biomarkers in PB becomes an alternative for monitoring the evolution of the disease. Methods Here, we characterize the systemic immunological profile in children undergoing treatment for B-ALL, and evaluate the performance of cell populations, chemokines and cytokines as potential biomarkers during clinical follow-up. For this purpose, PB samples from 20 patients with B-ALL were collected on diagnosis (D0) and during induction therapy (days 8, 15 and 35). In addition, samples from 28 children were used as a control group (CG). The cellular profile (NK and NKT-cells, Treg, CD3+ T, CD4+ T and CD8+ T cells) and soluble immunological mediators (CXCL8, CCL2, CXCL9, CCL5, CXCL10, IL-6, TNF, IFN-γ, IL-17A, IL- 4, IL-10 and IL-2) were evaluated via flow cytometry immunophenotyping and cytometric bead array assay. Results On D0, B-ALL patients showed reduction in the frequency of cell populations, except for CD4+ T and CD8+ T cells, which together with CCL2, CXCL9, CXCL10, IL-6 and IL-10 were elevated in relation to the patients of the CG. On D8 and D15, the patients presented a transition in the immunological profile. While, on D35, they already presented an opposite profile to D0, with an increase in NKT, CD3+ T, CD4+ T and Treg cells, along with CCL5, and a decrease in the levels of CXCL9, CXCL10 and IL-10, thus demonstrating that B-ALL patients present a complex and dynamic immune network during induction therapy. Furthermore, we identified that many immunological mediators could be used to classify the therapeutic response based on currently used parameters. Conclusion Finally, it is noted that the systemic immunological profile after remission induction still differs significantly when compared to the GC and that multiple immunological mediators performed well as serum biomarkers.
Collapse
Affiliation(s)
- Maria Perpétuo Socorro Sampaio Carvalho
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Bruna Pires Loiola
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | | | - Nilberto Dias Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Flavio Souza Silva
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Claudio Lucas Santos Catão
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Eliana Brasil Alves
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Hospital Universitário Getúlio Vargas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - João Paulo Diniz Pimentel
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Maria Nazaré Saunier Barbosa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Nelson Abrahim Fraiji
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Andréa Teixeira-Carvalho
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Olindo Assis Martins-Filho
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| |
Collapse
|
9
|
Duminuco A, Markovic U, Parrinello NL, Lo Nigro L, Mauro E, Vetro C, Parisi M, Maugeri C, Fiumara PF, Milone G, Romano A, Di Raimondo F, Leotta S. Potential clinical impact of T-cell lymphocyte kinetics monitoring in patients with B cell precursors acute lymphoblastic leukemia treated with blinatumomab: a single-center experience. Front Immunol 2023; 14:1195734. [PMID: 37809082 PMCID: PMC10556455 DOI: 10.3389/fimmu.2023.1195734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Blinatumomab is a bispecific anti-CD3 and anti-CD19 antibody that acts as a T-cell engager: by binding CD19+ lymphoblasts, blinatumomab recruits cytotoxic CD3+ T-lymphocytes to target the cancer cells. Here we describe seven different patients affected by B-cell precursor acute lymphoblastic leukemia (Bcp-ALL) and treated with blinatumomab, on which we evaluated the potential association between the amount of different T-cells subsets and deep molecular response after the first cycle, identified as a complete remission in the absence of minimal residual disease (CR/MRD). The immune-system effector cells studied were CD3+, CD4+ effector memory (T4-EM), CD8+ effector memory (T8-EM), and T-regulatory (T-reg) lymphocytes, and myeloid-derived suppressor cells (MDSC). Measurements were performed in the peripheral blood using flow cytometry of the peripheral blood at baseline and after the first cycle of blinatumomab. The first results show that patients with a higher proportion of baseline T-lymphocytes achieved MRD negativity more frequently with no statistically significant difference (p=0.06) and without differences in the subpopulation count following the first treatment. These extremely preliminary data could potentially pave the way for future studies, including larger and less heterogeneous cohorts, in order to assess the T-cell kinetics in a specific set of patients with potential synergy effects in targeting myeloid-derived suppressor cells (MDSC), commonly known to have an immune evasion mechanism in Bcp-ALL.
Collapse
Affiliation(s)
- Andrea Duminuco
- Division of Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
- Postgraduate School of Hematology, University of Catania, Catania, Italy
| | - Uros Markovic
- Division of Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
- Division of Hematology with Bone Marrow Transplant, Istituto Oncologico del Mediterraneo, Viagrande, Italy
| | - Nunziatina Laura Parrinello
- Division of Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Luca Lo Nigro
- Center of Pediatric Hematology Oncology, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Elisa Mauro
- Division of Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Calogero Vetro
- Division of Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Marina Parisi
- Division of Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Cinzia Maugeri
- Division of Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Paolo Fabio Fiumara
- Division of Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Giuseppe Milone
- Division of Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Alessandra Romano
- Division of Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
- Dipartimento di Specialità Medico-Chirurgiche, CHIRMED, Sezione di Ematologia, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Division of Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
- Dipartimento di Specialità Medico-Chirurgiche, CHIRMED, Sezione di Ematologia, University of Catania, Catania, Italy
| | - Salvatore Leotta
- Division of Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliero Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| |
Collapse
|
10
|
Krętowska-Grunwald A, Sawicka-Żukowska M, Kowalska M, Basaj A, Krawczuk-Rybak M, Moniuszko M, Grubczak K. Significance of Th17 and Treg in Treatment Efficacy and Outcome in Pediatric Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:12323. [PMID: 37569699 PMCID: PMC10418382 DOI: 10.3390/ijms241512323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Acute lymphoblastic leukemia represents a malignant proliferation of lymphoid cells blocked at an early stage of cell differentiation. It is the most common cancer occurring in children. Despite favorable prognosis, the survival rate of patients with poor treatment response or relapse remains dismal. The interaction between leukemic cells and the tumor immune microenvironment is pivotal in mediating tumor progression. In this study we evaluated associations between Treg and Th17 lymphocytes and the clinical presentation of ALL pediatric patients to validate their value in monitoring treatment outcome. The peripheral blood and bone marrow aspirates from 35 pediatric patients with ALL and 48 healthy control subjects were selected for the experiment. We demonstrated the numbers of Th17 lymphocytes and Tregs were increased in the bone marrow of ALL patients at the moment of diagnosis compared to the healthy control group, with the latter significantly decreasing during the course of ALL treatment. Patients with lower Th17 were found to demonstrate higher risk of blasts prevalence in bone marrow at day 33. ALL patients with lower WBC demonstrated higher frequency of Tregs. In summary, we identified a significant role of Th17 and Treg lymphocytes in ALL of pediatric patients and their contribution to disease-related parameters.
Collapse
Affiliation(s)
- Anna Krętowska-Grunwald
- Department of Pediatric Oncology and Hematology, Medical University of Białystok, 15-274 Bialystok, Poland; (M.S.-Ż.); (M.K.-R.)
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, 15-269 Białystok, Poland;
| | - Małgorzata Sawicka-Żukowska
- Department of Pediatric Oncology and Hematology, Medical University of Białystok, 15-274 Bialystok, Poland; (M.S.-Ż.); (M.K.-R.)
| | - Małgorzata Kowalska
- Department of Pediatric Surgery and Urology, Medical University of Białystok, 15-274 Bialystok, Poland;
| | - Aleksandra Basaj
- 1st Chair and Department of Cardiology, University Clinical Center of the Medical University of Warsaw, Central Clinical Hospital, 02-097 Warsaw, Poland;
| | - Maryna Krawczuk-Rybak
- Department of Pediatric Oncology and Hematology, Medical University of Białystok, 15-274 Bialystok, Poland; (M.S.-Ż.); (M.K.-R.)
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, 15-269 Białystok, Poland;
- Department of Allergology and Internal Medicine, Medical University of Białystok, 15-276 Białystok, Poland
| | - Kamil Grubczak
- Department of Regenerative Medicine and Immune Regulation, Medical University of Białystok, 15-269 Białystok, Poland;
| |
Collapse
|
11
|
Gao X. Identification of DUSP7 as an RNA Marker for Prognostic Stratification in Acute Myeloid Leukemia: Evidence from Large Population Cohorts. Genet Res (Camb) 2023; 2023:4348290. [PMID: 37538139 PMCID: PMC10396553 DOI: 10.1155/2023/4348290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 08/05/2023] Open
Abstract
Background The problem of prognostic stratification in acute myeloid leukemia (AML) patients still has limitations. Methods The expression profile data and clinical features of AML patients were obtained from multiple publicly available sources, including GSE71014, TCGA-LAML, and TARGET-AML. Single-cell analysis was performed using the TISCH project. All the analysis was conducted in the R software. Results In our study, three public AML cohorts, GSE71014, TARGET-AML, and TCGA-AML, were selected. Then, we identified the prognosis-related molecules through bioinformatic analysis. Finally, the DUSP7 was noticed as a risk factor for AML patients, which has not been reported previously. Biological enrichment analysis and immune-related analysis were performed to illustrate the role of DUSP7 in AML. Single-cell analysis indicated that the DUSP7 was widely distributed in various cells, especially in monocyte/macrophages and malignant. Following this, a prognosis model based on DUSP7-derived genes was constructed, which showed a good prognosis prediction ability in all cohorts. Conclusions Our results preliminarily reveal the role and potential mechanism of DUSP7 in AML, providing direction for future research.
Collapse
Affiliation(s)
- Xin Gao
- Anhui Medical College, Hefei, China
| |
Collapse
|
12
|
Bhardwaj V, Ansell SM. Modulation of T-cell function by myeloid-derived suppressor cells in hematological malignancies. Front Cell Dev Biol 2023; 11:1129343. [PMID: 37091970 PMCID: PMC10113446 DOI: 10.3389/fcell.2023.1129343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes that negatively regulate the immune response to cancer and chronic infections. Abnormal myelopoiesis and pathological activation of myeloid cells generate this heterogeneous population of myeloid-derived suppressor cells. They are characterized by their distinct transcription, phenotypic, biochemical, and functional features. In the tumor microenvironment (TME), myeloid-derived suppressor cells represent an important class of immunosuppressive cells that correlate with tumor burden, stage, and a poor prognosis. Myeloid-derived suppressor cells exert a strong immunosuppressive effect on T-cells (and a broad range of other immune cells), by blocking lymphocyte homing, increasing production of reactive oxygen and nitrogen species, promoting secretion of various cytokines, chemokines, and immune regulatory molecules, stimulation of other immunosuppressive cells, depletion of various metabolites, and upregulation of immune checkpoint molecules. Additionally, the heterogeneity of myeloid-derived suppressor cells in cancer makes their identification challenging. Overall, they serve as a major obstacle for many cancer immunotherapies and targeting them could be a favorable strategy to improve the effectiveness of immunotherapeutic interventions. However, in hematological malignancies, particularly B-cell malignancies, the clinical outcomes of targeting these myeloid-derived suppressor cells is a field that is still to be explored. This review summarizes the complex biology of myeloid-derived suppressor cells with an emphasis on the immunosuppressive pathways used by myeloid-derived suppressor cells to modulate T-cell function in hematological malignancies. In addition, we describe the challenges, therapeutic strategies, and clinical relevance of targeting myeloid-derived suppressor cells in these diseases.
Collapse
|
13
|
Wang S, Zhao X, Wu S, Cui D, Xu Z. Myeloid-derived suppressor cells: key immunosuppressive regulators and therapeutic targets in hematological malignancies. Biomark Res 2023; 11:34. [PMID: 36978204 PMCID: PMC10049909 DOI: 10.1186/s40364-023-00475-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The immunosuppressive tumor microenvironment (TME) supports the development of tumors and limits tumor immunotherapy, including hematological malignancies. Hematological malignancies remain a major public health issue with high morbidity and mortality worldwide. As an important component of immunosuppressive regulators, the phenotypic characteristics and prognostic value of myeloid-derived suppressor cells (MDSCs) have received much attention. A variety of MDSC-targeting therapeutic approaches have produced encouraging outcomes. However, the use of various MDSC-targeted treatment strategies in hematologic malignancies is still difficult due to the heterogeneity of hematologic malignancies and the complexity of the immune system. In this review, we summarize the biological functions of MDSCs and further provide a summary of the phenotypes and suppressive mechanisms of MDSC populations expanded in various types of hematological malignancy contexts. Moreover, we discussed the clinical correlation between MDSCs and the diagnosis of malignant hematological disease, as well as the drugs targeting MDSCs, and focused on summarizing the therapeutic strategies in combination with other immunotherapies, such as various immune checkpoint inhibitors (ICIs), that are under active investigation. We highlight the new direction of targeting MDSCs to improve the therapeutic efficacy of tumors.
Collapse
Affiliation(s)
- Shifen Wang
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyun Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siwen Wu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhenshu Xu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
14
|
Naghavi Alhosseini M, Palazzo M, Cari L, Ronchetti S, Migliorati G, Nocentini G. Overexpression of Potential Markers of Regulatory and Exhausted CD8 + T Cells in the Peripheral Blood Mononuclear Cells of Patients with B-Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:4526. [PMID: 36901957 PMCID: PMC10003658 DOI: 10.3390/ijms24054526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
B-acute lymphoblastic leukemia (B-ALL) is one of the most common pediatric cancers, wherein regulatory T cells (Treg) and exhausted CD8+ T cells may be important in its development and maintenance. In this bioinformatics study, we evaluated the expression of 20 Treg/CD8 exhaustion markers and their possible roles in patients with B-ALL. The mRNA expression values of peripheral blood mononuclear cell samples from 25 patients with B-ALL and 93 healthy subjects (HSs) were downloaded from publicly available datasets. Treg/CD8 exhaustion marker expression was normalized with that of the T cell signature and correlated with the expression of Ki-67, regulatory transcription factors (FoxP3, Helios), cytokines (IL-10, TGF-β), CD8+ markers (CD8α chain, CD8β chain), and CD8+ activation markers (Granzyme B, Granulysin). The mean expression level of 19 Treg/CD8 exhaustion markers was higher in the patients than in the HSs. In patients, the expression of five markers (CD39, CTLA-4, TNFR2, TIGIT, and TIM-3) correlated positively with Ki-67, FoxP3, and IL-10 expression. Moreover, the expression of some of them correlated positively with Helios or TGF-β. Our results suggested that Treg/CD8+ T cells expressing CD39, CTLA-4, TNFR2, TIGIT, and TIM-3 favor B-ALL progression, and targeted immunotherapy against these markers could be a promising approach for treating B-ALL.
Collapse
Affiliation(s)
| | | | | | - Simona Ronchetti
- Pharmacology Division, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | | | | |
Collapse
|
15
|
Yu S, Ren X, Li L. Myeloid-derived suppressor cells in hematologic malignancies: two sides of the same coin. Exp Hematol Oncol 2022; 11:43. [PMID: 35854339 PMCID: PMC9295421 DOI: 10.1186/s40164-022-00296-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/13/2022] [Indexed: 12/15/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of bone marrow cells originating from immature myeloid cells. They exert potent immunosuppressive activity and are closely associated with the development of various diseases such as malignancies, infections, and inflammation. In malignant tumors, MDSCs, one of the most dominant cellular components comprising the tumor microenvironment, play a crucial role in tumor growth, drug resistance, recurrence, and immune escape. Although the role of MDSCs in solid tumors is currently being extensively studied, little is known about their role in hematologic malignancies. In this review, we comprehensively summarized and reviewed the different roles of MDSCs in hematologic malignancies and hematopoietic stem cell transplantation, and finally discussed current targeted therapeutic strategies.Affiliation: Kindly check and confirm the processed affiliations are correct. Amend if any.correct
Collapse
Affiliation(s)
- Shunjie Yu
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Heping district 154 Anshan Road, Tianjin, China.
| |
Collapse
|
16
|
Xie Y, Yang H, Yang C, He L, Zhang X, Peng L, Zhu H, Gao L. Role and Mechanisms of Tumor-Associated Macrophages in Hematological Malignancies. Front Oncol 2022; 12:933666. [PMID: 35875135 PMCID: PMC9301190 DOI: 10.3389/fonc.2022.933666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mounting evidence has revealed that many nontumor cells in the tumor microenvironment, such as fibroblasts, endothelial cells, mesenchymal stem cells, and leukocytes, are strongly involved in tumor progression. In hematological malignancies, tumor-associated macrophages (TAMs) are considered to be an important component that promotes tumor growth and can be polarized into different phenotypes with protumor or antitumor roles. This Review emphasizes research related to the role and mechanisms of TAMs in hematological malignancies. TAMs lead to poor prognosis by influencing tumor progression at the molecular level, including nurturing cancer stem cells and laying the foundation for metastasis. Although detailed molecular mechanisms have not been clarified, TAMs may be a new therapeutic target in hematological disease treatment.
Collapse
|
17
|
Salem ML, El-Bakry KA, Moubark EH, Sobh A, Khalil SM. Beneficial Modulatory Effects of Treatment With Bone Marrow Lysate on Hematopoietic Stem Cells and Myeloid Cells in Tumor-Bearing Mice. Br J Biomed Sci 2022; 79:10328. [PMID: 35996501 PMCID: PMC9302549 DOI: 10.3389/bjbs.2022.10328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022]
Abstract
Introduction: Leukopenia is one of the major side effects of myelosuppressive chemotherapy such as cyclophosphamide (CTX). We and others have used CTX either alone or in combination with G-CSF for the mobilization of hematopoietic stem cells (HSCs). This mobilization can induce expansion of myeloid cells with immunosuppressive phenotype. In this pilot study, we aimed to test whether bone marrow lysate (BML)/CTX, a rich source of growth factors, can lower the expansion of myeloid cells with immunosuppressive phenotypes in tumor-bearing mice without interfering with the anti-tumor effects of CTX or with the mobilization of HSCs. Methods: Female CD1 mice were treated on day 0 with an i.p. injection of Ehrlich ascites carcinoma (EAC). On day 7, the mice were i.p. injected with CTX followed by s.c. injection of G-CSF for 5 consecutive days, single s.c. injection of BML/PBS or BML/CTX or single i.v. injection of BMC/PBS or BMC/CTX. Results: Treatment of EAC-bearing mice with BML/PBS or BML/CTX did not interfere with the anti-tumor effect of CTX. EAC increased the numbers of immature polymorphonuclear cells (iPMN; neutrophils) in both blood and spleen. Treatment of EAC-bearing mice with CTX further increased the numbers of these cells, which were decreased upon treatment with BML/CTX. Treatment with BML/PBS or BML/CTX increased the numbers of stem cells (C.Kit+Sca-1+) in BM; the effect of BML/CTX was higher, but with no significant effect on the numbers of HSCs. Future studies are needed to analyze the molecular components in BM lysate and to determine the underlying mechanisms.
Collapse
Affiliation(s)
- Mohamed L. Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- Center of Excellence in Cancer Research (CECR), Tanta University, Tanta, Egypt
| | - Kadry A. El-Bakry
- Zoology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Eman H. Moubark
- Zoology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Ashraf Sobh
- Department of Biology, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Sohaila M. Khalil
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- Center of Excellence in Cancer Research (CECR), Tanta University, Tanta, Egypt
| |
Collapse
|
18
|
Jiménez-Morales S, Aranda-Uribe IS, Pérez-Amado CJ, Ramírez-Bello J, Hidalgo-Miranda A. Mechanisms of Immunosuppressive Tumor Evasion: Focus on Acute Lymphoblastic Leukemia. Front Immunol 2021; 12:737340. [PMID: 34867958 PMCID: PMC8636671 DOI: 10.3389/fimmu.2021.737340] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a malignancy with high heterogeneity in its biological features and treatments. Although the overall survival (OS) of patients with ALL has recently improved considerably, owing to the application of conventional chemo-therapeutic agents, approximately 20% of the pediatric cases and 40-50% of the adult patients relapse during and after the treatment period. The potential mechanisms that cause relapse involve clonal evolution, innate and acquired chemoresistance, and the ability of ALL cells to escape the immune-suppressive tumor response. Currently, immunotherapy in combination with conventional treatment is used to enhance the immune response against tumor cells, thereby significantly improving the OS in patients with ALL. Therefore, understanding the mechanisms of immune evasion by leukemia cells could be useful for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ivan Sammir Aranda-Uribe
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Departamento de Farmacología, División de Ciencias de la Salud, Universidad de Quintana Roo, Quintana Roo, Mexico
| | - Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Programa de Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julian Ramírez-Bello
- Departamento de Endocrinología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|