1
|
Spanou S, Makatounakis T, Filippopoulou C, Dougalis G, Stamatakis G, Nikolaou C, Samiotaki M, Chachami G, Papamatheakis J, Kretsovali A. Promyelocytic Leukemia Protein (PML) Regulates Stem Cell Pluripotency Through Novel Sumoylation Targets. Int J Mol Sci 2025; 26:1145. [PMID: 39940913 PMCID: PMC11818296 DOI: 10.3390/ijms26031145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
The promyelocytic leukemia protein (PML) and its associated nuclear bodies have recently emerged as critical regulators of embryonic stem (ES) cell identity. Despite their recognized importance, the complete spectrum of PML-mediated molecular events in ES cells remains unclear. In this report, we study how PML is shaping the proteomic and SUMO proteomic landscape in ES cells. Proteomic profiling of PML-depleted ES cells uncovered a downregulation of self-renewal factors and an upregulation of proteins associated with translation and proteasomal activity, reflecting a cellular transition from pluripotency to differentiation. Importantly, PML promotes the sumoylation of pluripotency-related factors, chromatin organizers, and cell cycle regulators. We identified SALL1 and CDCA8 as novel PML-directed sumoylation targets, both critical for ES cell maintenance. SALL1 sumoylation increases the activation of the Wnt pathway, contributing to its ability to inhibit ES cell differentiation. Similarly, CDCA8 sumoylation enhances its capacity to promote cell proliferation. Collectively, our findings demonstrate that PML regulates ES cell identity by modulating the abundance or sumoylation of key regulators involved in pluripotency and cell cycle progression.
Collapse
Affiliation(s)
- Syrago Spanou
- Department of Biology, University of Crete, 71500 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Takis Makatounakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Chrysa Filippopoulou
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | | | - George Stamatakis
- Institute for Bio-Innovation, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece
| | - Christoforos Nikolaou
- Institute for Bio-Innovation, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece
| | - Martina Samiotaki
- Institute for Bio-Innovation, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Joseph Papamatheakis
- Department of Biology, University of Crete, 71500 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Androniki Kretsovali
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| |
Collapse
|
2
|
Matoba S, Shikata D, Shirai F, Tatebe T, Hirose M, Nakata A, Watanabe N, Hasegawa A, Ito A, Yoshida M, Ogura A. Reduction of H3K9 methylation by G9a inhibitors improves the development of mouse SCNT embryos. Stem Cell Reports 2024; 19:906-921. [PMID: 38729154 PMCID: PMC11390627 DOI: 10.1016/j.stemcr.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Removal of somatic histone H3 lysine 9 trimethylation (H3K9me3) from the embryonic genome can improve the efficiency of mammalian cloning using somatic cell nuclear transfer (SCNT). However, this strategy involves the injection of histone demethylase mRNA into embryos, which is limiting because of its invasive and labor-consuming nature. Here, we report that treatment with an inhibitor of G9a (G9ai), the major histone methyltransferase that introduces H3K9me1/2 in mammals, greatly improved the development of mouse SCNT embryos. Intriguingly, G9ai caused an immediate reduction of H3K9me1/2, a secondary loss of H3K9me3 in SCNT embryos, and increased the birth rate of cloned pups about 5-fold (up to 3.9%). G9ai combined with the histone deacetylase inhibitor trichostatin A further improved this rate to 14.5%. Mechanistically, G9ai and TSA synergistically enhanced H3K9me3 demethylation and boosted zygotic genome activation. Thus, we established an easy, highly effective SCNT protocol that would enhance future cloning research and applications.
Collapse
Affiliation(s)
- Shogo Matoba
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | - Daiki Shikata
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Fumiyuki Shirai
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takaki Tatebe
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Michiko Hirose
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Akiko Nakata
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Naomi Watanabe
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Ayumi Hasegawa
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan
| | - Akihiro Ito
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan; Office of University Professors, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, Bioresource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; The Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, Tokyo 113-0033, Japan; Bioresource Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
3
|
Fu L, Wu Q, Fu J. Exploring the biological roles of DHX36, a DNA/RNA G-quadruplex helicase, highlights functions in male infertility: A comprehensive review. Int J Biol Macromol 2024; 268:131811. [PMID: 38677694 DOI: 10.1016/j.ijbiomac.2024.131811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/29/2024]
Abstract
It is estimated that 15 % of couples at reproductive age worldwide suffer from infertility, approximately 50 % of cases are caused by male factors. Significant progress has been made in the diagnosis and treatment of male infertility through assisted reproductive technology and molecular genetics methods. However, there is still inadequate research on the underlying mechanisms of gene regulation in the process of spermatogenesis. Guanine-quadruplexes (G4s) are a class of non-canonical secondary structures of nucleic acid commonly found in genomes and RNAs that play important roles in various biological processes. Interestingly, the DEAH-box helicase 36 (DHX36) displays high specificity for the G4s which can unwind both DNA G4s and RNA G4s enzymatically and is highly expressed in testis, thereby regulating multiple cellular functions including transcription, pre-mRNA splicing, translation, telomere maintenance, genomic stability, and RNA metabolism in development and male infertility. This review provides an overview of the roles of G4s and DHX36 in reproduction and development. We mainly focus on the potential role of DHX36 in male infertility. We also discuss possible future research directions regarding the mechanism of spermatogenesis mediated by DHX36 through G4s in spermatogenesis-related genes and provide new targets for gene therapy of male infertility.
Collapse
Affiliation(s)
- Li Fu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China; Department of Reproductive Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Junjiang Fu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Shimada K, Lu Y, Ikawa M. Disruption of testis-enriched cytochrome c oxidase subunit COX6B2 but not COX8C leads to subfertility. Exp Anim 2024; 73:1-10. [PMID: 37423748 PMCID: PMC10877148 DOI: 10.1538/expanim.23-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
Mammalian sperm flagellum contains the midpiece characterized by a mitochondrial sheath that packs tightly around the axoneme and outer dense fibers. Mitochondria are known as the "powerhouse" of the cell, and produce ATP through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). However, the contribution of the TCA cycle and OXPHOS to sperm motility and male fertility is less clear. Cytochrome c oxidase (COX) is an oligomeric complex localized within the mitochondrial inner membrane, and the terminal enzyme of the mitochondrial electron transport chain in eukaryotes. Both COX6B2 and COX8C are testis-enriched COX subunits whose functions in vivo are poorly studied. Here, we generated Cox6b2 and Cox8c knockout (KO) mice using the CRISPR/Cas9 system. We examined their fertility and sperm mitochondrial function to determine the significance of testis-enriched COX subunits in male fertility. The mating test revealed that disrupting COX6B2 induces male subfertility, while disrupting COX8C does not affect male fertility. Cox6b2 KO spermatozoa showed low sperm motility, but mitochondrial function was normal according to oxygen consumption rates. Therefore, low sperm motility seems to cause subfertility in Cox6b2 KO male mice. These results also indicate that testis-enriched COX, COX6B2 and COX8C, are not essential for OXPHOS in mouse spermatozoa.
Collapse
Affiliation(s)
- Keisuke Shimada
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yonggang Lu
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Laboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
5
|
Khan MR, Akbari A, Nicholas TJ, Castillo-Madeen H, Ajmal M, Haq TU, Laan M, Quinlan AR, Ahuja JS, Shah AA, Conrad DF. Genome sequencing of Pakistani families with male infertility identifies deleterious genotypes in SPAG6, CCDC9, TKTL1, TUBA3C, and M1AP. Andrology 2023:10.1111/andr.13570. [PMID: 38073178 PMCID: PMC11163020 DOI: 10.1111/andr.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/29/2023] [Accepted: 11/30/2023] [Indexed: 06/12/2024]
Abstract
BACKGROUND There are likely to be hundreds of monogenic forms of human male infertility. Whole genome sequencing (WGS) is the most efficient way to make progress in mapping the causative genetic variants, and ultimately improve clinical management of the disease in each patient. Recruitment of consanguineous families is an effective approach to ascertain the genetic forms of many diseases. OBJECTIVES To apply WGS to large consanguineous families with likely hereditary male infertility and identify potential genetic cases. MATERIALS AND METHODS We recruited seven large families with clinically diagnosed male infertility from rural Pakistan, including five with a history of consanguinity. We generated WGS data on 26 individuals (3-5 per family) and analyzed the resulting data with a computational pipeline to identify potentially causal single nucleotide variants, indels, and copy number variants. RESULTS We identified plausible genetic causes in five of the seven families, including a homozygous 10 kb deletion of exon 2 in a well-established male infertility gene (M1AP), and biallelic missense substitutions (SPAG6, CCDC9, TUBA3C) and an in-frame hemizygous deletion (TKTL1) in genes with emerging relevance. DISCUSSION AND CONCLUSION The rate of genetic findings using the current approach (71%) was much higher than what we recently achieved using whole-exome sequencing (WES) of unrelated singleton cases (20%). Furthermore, we identified a pathogenic single-exon deletion in M1AP that would be undetectable by WES. Screening more families with WGS, especially in underrepresented populations, will further reveal the types of variants underlying male infertility and accelerate the use of genetics in the patient management.
Collapse
Affiliation(s)
- Muhammad Riaz Khan
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Arvand Akbari
- Center for Embryonic Cell & Gene Therapy, Oregon Health & Science University, Portland, Oregon, USA
| | - Thomas J Nicholas
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Helen Castillo-Madeen
- Center for Embryonic Cell & Gene Therapy, Oregon Health & Science University, Portland, Oregon, USA
| | - Muhammad Ajmal
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Taqweem Ul Haq
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Maris Laan
- Chair of Human Genetics, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Jasvinder S Ahuja
- Center for Embryonic Cell & Gene Therapy, Oregon Health & Science University, Portland, Oregon, USA
| | - Aftab Ali Shah
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Donald F Conrad
- Center for Embryonic Cell & Gene Therapy, Oregon Health & Science University, Portland, Oregon, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
6
|
Han X, Wang B, Situ C, Qi Y, Zhu H, Li Y, Guo X. scapGNN: A graph neural network-based framework for active pathway and gene module inference from single-cell multi-omics data. PLoS Biol 2023; 21:e3002369. [PMID: 37956172 PMCID: PMC10681325 DOI: 10.1371/journal.pbio.3002369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/27/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023] Open
Abstract
Although advances in single-cell technologies have enabled the characterization of multiple omics profiles in individual cells, extracting functional and mechanistic insights from such information remains a major challenge. Here, we present scapGNN, a graph neural network (GNN)-based framework that creatively transforms sparse single-cell profile data into the stable gene-cell association network for inferring single-cell pathway activity scores and identifying cell phenotype-associated gene modules from single-cell multi-omics data. Systematic benchmarking demonstrated that scapGNN was more accurate, robust, and scalable than state-of-the-art methods in various downstream single-cell analyses such as cell denoising, batch effect removal, cell clustering, cell trajectory inference, and pathway or gene module identification. scapGNN was developed as a systematic R package that can be flexibly extended and enhanced for existing analysis processes. It provides a new analytical platform for studying single cells at the pathway and network levels.
Collapse
Affiliation(s)
- Xudong Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Medicine, Southeast University, Nanjing, China
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Medicine, Southeast University, Nanjing, China
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Chenghao Situ
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yaling Qi
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Hui Zhu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yan Li
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Medicine, Southeast University, Nanjing, China
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Fan Q, He R, Li Y, Gao P, Huang R, Li R, Zhang J, Li H, Liang X. Studying the effect of hyperoside on recovery from cyclophosphamide induced oligoasthenozoospermia. Syst Biol Reprod Med 2023; 69:333-346. [PMID: 37578152 DOI: 10.1080/19396368.2023.2241600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Oligoasthenozoospermia is becoming a serious problem, but effective prevention or treatment is lacking. Hyperoside, one of the main active ingredients in traditional Chinese medicine, may be effective in the treatment of oligoasthenozoospermia. In this study, we used cyclophosphamide (CTX: 50 mg/kg) to establish a mouse model of Oligoasthenozoospermia to investigate the therapeutic effect of hyperoside (30 mg/kg) on CTX-induced oligoasthenozoospermia. All mice were divided into four groups: blank control group (Control), treatment control group (Hyp), disease group (CTX) and treatment group (CTX + H). Mice body weight, testicular weight, sperm parameters and testicular histology were used to assess the reproductive capacity of mice and to explore the underlying mechanism of hyperoside in the treatment of oligoasthenozoospermia by assessing hormone levels, protein levels of molecules related to hormone synthesis and transcript levels of important genes related to spermatogenesis. Treatment with hyperoside significantly improved sperm density, sperm viability and testicular function compared to untreated oligoasthenozoospermia mice. In mechanism, treatment with hyperoside resulted in significant improvement in pathological changes in spermatogenic tubules, with an increase in testosterone production, and upregulations of Protein Kinase CAMP-Activated Catalytic Subunit Beta (PRKACB), Steroidogenic Acute Regulatory Protein (STAR), and Cytochrome P450 Family 17 Subfamily A Member 1 (CYP17A1) for testosterone production. Hyperoside also promoted the cell cycle of germ cells and up-regulated meiosis and spermatogenesis-related genes, including DNA Meiotic Recombinase 1 (Dmc1), Ataxia telangiectasia mutated (Atm) and RAD21 Cohesin Complex Component (Rad21). In conclusion, hyperoside exerted protective effects on oligoasthenozoospermia mice by regulating testosterone production, meiosis and sperm maturation of germ cells.
Collapse
Affiliation(s)
- Qigang Fan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Pu Gao
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Runchun Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Rong Li
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiayu Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hongli Li
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| |
Collapse
|
8
|
Tantry MSA, Santhakumar K. Insights on the Role of α- and β-Tubulin Isotypes in Early Brain Development. Mol Neurobiol 2023; 60:3803-3823. [PMID: 36943622 DOI: 10.1007/s12035-023-03302-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Tubulins are the highly conserved subunit of microtubules which involve in various fundamental functions including brain development. Microtubules help in neuronal proliferation, migration, differentiation, cargo transport along the axons, synapse formation, and many more. Tubulin gene family consisting of multiple isotypes, their differential expression and varied post translational modifications create a whole new level of complexity and diversity in accomplishing manifold neuronal functions. The studies on the relation between tubulin genes and brain development opened a new avenue to understand the role of each tubulin isotype in neurodevelopment. Mutations in tubulin genes are reported to cause brain development defects especially cortical malformations, referred as tubulinopathies. There is an increased need to understand the molecular correlation between various tubulin mutations and the associated brain pathology. Recently, mutations in tubulin isotypes (TUBA1A, TUBB, TUBB1, TUBB2A, TUBB2B, TUBB3, and TUBG1) have been linked to cause various neurodevelopmental defects like lissencephaly, microcephaly, cortical dysplasia, polymicrogyria, schizencephaly, subcortical band heterotopia, periventricular heterotopia, corpus callosum agenesis, and cerebellar hypoplasia. This review summarizes on the microtubule dynamics, their role in neurodevelopment, tubulin isotypes, post translational modifications, and the role of tubulin mutations in causing specific neurodevelopmental defects. A comprehensive list containing all the reported tubulin pathogenic variants associated with brain developmental defects has been prepared to give a bird's eye view on the broad range of tubulin functions.
Collapse
Affiliation(s)
- M S Ananthakrishna Tantry
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| |
Collapse
|
9
|
Shikata D, Matoba S, Hada M, Sakashita A, Inoue K, Ogura A. Suppression of endogenous retroviral enhancers in mouse embryos derived from somatic cell nuclear transfer. Front Genet 2022; 13:1032760. [PMID: 36425066 PMCID: PMC9681155 DOI: 10.3389/fgene.2022.1032760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Endogenous retroviruses (ERVs) in the mammalian genome play diverse roles in embryonic development. These developmentally related ERVs are generally repressed in somatic cells and therefore are likely repressed in embryos derived from somatic cell nuclear transfer (SCNT). In this study, we sought to identify ERVs that are repressed in SCNT-derived morulae, which might cause previously unexplained embryonic deaths shortly after implantation. Our transcriptome analysis revealed that, amongst ERV families, ERVK was specifically, and strongly downregulated in SCNT-derived embryos while other transposable elements including LINE and ERVL were unchanged. Among the subfamilies of ERVK, RLTR45-int was most repressed in SCNT-derived embryos despite its highest expression in control fertilized embryos. Interestingly, the nearby genes (within 5–50 kb, n = 18; 50–200 kb, n = 63) of the repressed RLTR45-int loci were also repressed in SCNT-derived embryos, with a significant correlation between them. Furthermore, lysine H3K27 acetylation was enriched around the RLTR45-int loci. These findings indicate that RLTR45-int elements function as enhancers of nearby genes. Indeed, deletion of two sequential RLTR45-int loci on chromosome 4 or 18 resulted in downregulations of nearby genes at the morula stage. We also found that RLTR45-int loci, especially SCNT-low, enhancer-like loci, were strongly enriched with H3K9me3, a repressive histone mark. Importantly, these H3K9me3-enriched regions were not activated by overexpression of H3K9me3 demethylase Kdm4d in SCNT-derived embryos, suggesting the presence of another epigenetic barrier repressing their expressions and enhancer activities in SCNT embryos. Thus, we identified ERVK subfamily RLTR45-int, putative enhancer elements, as a strong reprogramming barrier for SCNT (253 words).
Collapse
Affiliation(s)
- Daiki Shikata
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Masashi Hada
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akihiko Sakashita
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- *Correspondence: Atsuo Ogura,
| |
Collapse
|
10
|
Heinen T, Xie C, Keshavarz M, Stappert D, Künzel S, Tautz D. Evolution of a New Testis-Specific Functional Promoter Within the Highly Conserved Map2k7 Gene of the Mouse. Front Genet 2022; 12:812139. [PMID: 35069705 PMCID: PMC8766832 DOI: 10.3389/fgene.2021.812139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
Map2k7 (synonym Mkk7) is a conserved regulatory kinase gene and a central component of the JNK signaling cascade with key functions during cellular differentiation. It shows complex transcription patterns, and different transcript isoforms are known in the mouse (Mus musculus). We have previously identified a newly evolved testis-specific transcript for the Map2k7 gene in the subspecies M. m. domesticus. Here, we identify the new promoter that drives this transcript and find that it codes for an open reading frame (ORF) of 50 amino acids. The new promoter was gained in the stem lineage of closely related mouse species but was secondarily lost in the subspecies M. m. musculus and M. m. castaneus. A single mutation can be correlated with its transcriptional activity in M. m. domesticus, and cell culture assays demonstrate the capability of this mutation to drive expression. A mouse knockout line in which the promoter region of the new transcript is deleted reveals a functional contribution of the newly evolved promoter to sperm motility and the spermatid transcriptome. Our data show that a new functional transcript (and possibly protein) can evolve within an otherwise highly conserved gene, supporting the notion of regulatory changes contributing to the emergence of evolutionary novelties.
Collapse
Affiliation(s)
| | - Chen Xie
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| | - Maryam Keshavarz
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Bonn, Germany
| | - Dominik Stappert
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Bonn, Germany
| | - Sven Künzel
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Max-Plank Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|