1
|
Haufschild T, Kallscheuer N, Hammer J, Kohn T, Kabuu M, Jogler M, Wohlfarth N, Rohde M, van Teeseling MCF, Jogler C. An untargeted cultivation approach revealed Pseudogemmatithrix spongiicola gen. nov., sp. nov., and sheds light on the gemmatimonadotal mode of cell division: binary fission. Sci Rep 2024; 14:16764. [PMID: 39034380 PMCID: PMC11271474 DOI: 10.1038/s41598-024-67408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Members of the phylum Gemmatimonadota can account for up to 10% of the phylogenetic diversity in bacterial communities. However, a detailed investigation of their cell biology and ecological roles is restricted by currently only six characterized species. By combining low-nutrient media, empirically determined inoculation volumes and long incubation times in a 96-well plate cultivation platform, we isolated two strains from a limnic sponge that belong to this under-studied phylum. The characterization suggests that the two closely related strains constitute a novel species of a novel genus, for which we introduce the name Pseudogemmatithrix spongiicola. The here demonstrated isolation of novel members from an under-studied bacterial phylum substantiates that the cultivation platform can provide access to axenic bacterial cultures from various environmental samples. Similar to previously described members of the phylum, the novel isolates form spherical appendages at the cell poles that were believed to be daughter cells resulting from asymmetric cell division by budding. However, time-lapse microscopy experiments and quantitative image analysis showed that the spherical appendages never grew or divided. Although the role of these spherical cells remains enigmatic, our data suggests that cells of the phylum Gemmatimonadota divide via FtsZ-based binary fission with different division plane localization patterns than in other bacterial phyla.
Collapse
Affiliation(s)
- Tom Haufschild
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Jonathan Hammer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Timo Kohn
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Moses Kabuu
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicole Wohlfarth
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Muriel C F van Teeseling
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
2
|
The Influence of Calcium on the Growth, Morphology and Gene Regulation in Gemmatimonas phototrophica. Microorganisms 2022; 11:microorganisms11010027. [PMID: 36677319 PMCID: PMC9862903 DOI: 10.3390/microorganisms11010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The bacterium Gemmatimonas phototrophica AP64 isolated from a freshwater lake in the western Gobi Desert represents the first phototrophic member of the bacterial phylum Gemmatimonadota. This strain was originally cultured on agar plates because it did not grow in liquid medium. In contrast, the closely related species G. groenlandica TET16 grows both on solid and in liquid media. Here, we show that the growth of G. phototrophica in liquid medium can be induced by supplementing the medium with 20 mg CaCl2 L-1. When grown at a lower concentration of calcium (2 mg CaCl2 L-1) in the liquid medium, the growth was significantly delayed, cells were elongated and lacked flagella. The elevated requirement for calcium is relatively specific as it can be partially substituted by strontium, but not by magnesium. The transcriptome analysis documented that several groups of genes involved in flagella biosynthesis and transport of transition metals were co-activated after amendment of 20 mg CaCl2 L-1 to the medium. The presented results document that G. phototrophica requires a higher concentration of calcium for its metabolism and growth compared to other Gemmatimonas species.
Collapse
|
3
|
Qian P, Gardiner AT, Šímová I, Naydenova K, Croll TI, Jackson PJ, Nupur, Kloz M, Čubáková P, Kuzma M, Zeng Y, Castro-Hartmann P, van Knippenberg B, Goldie KN, Kaftan D, Hrouzek P, Hájek J, Agirre J, Siebert CA, Bína D, Sader K, Stahlberg H, Sobotka R, Russo CJ, Polívka T, Hunter CN, Koblížek M. 2.4-Å structure of the double-ring Gemmatimonas phototrophica photosystem. SCIENCE ADVANCES 2022; 8:eabk3139. [PMID: 35171663 PMCID: PMC8849296 DOI: 10.1126/sciadv.abk3139] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/22/2021] [Indexed: 07/21/2023]
Abstract
Phototrophic Gemmatimonadetes evolved the ability to use solar energy following horizontal transfer of photosynthesis-related genes from an ancient phototrophic proteobacterium. The electron cryo-microscopy structure of the Gemmatimonas phototrophica photosystem at 2.4 Å reveals a unique, double-ring complex. Two unique membrane-extrinsic polypeptides, RC-S and RC-U, hold the central type 2 reaction center (RC) within an inner 16-subunit light-harvesting 1 (LH1) ring, which is encircled by an outer 24-subunit antenna ring (LHh) that adds light-gathering capacity. Femtosecond kinetics reveal the flow of energy within the RC-dLH complex, from the outer LHh ring to LH1 and then to the RC. This structural and functional study shows that G. phototrophica has independently evolved its own compact, robust, and highly effective architecture for harvesting and trapping solar energy.
Collapse
Affiliation(s)
- Pu Qian
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alastair T. Gardiner
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia
| | - Ivana Šímová
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czechia
| | - Katerina Naydenova
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Tristan I. Croll
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Philip J. Jackson
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Nupur
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia
| | - Miroslav Kloz
- ELI Beamlines, Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czechia
| | - Petra Čubáková
- ELI Beamlines, Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czechia
| | - Marek Kuzma
- Lab of Molecular Structure, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| | - Yonghui Zeng
- Department of Plant and Environmental Sciences, University of Copenhagen, Nørregade 10, DK-1165 Copenhagen, Denmark
| | - Pablo Castro-Hartmann
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Bart van Knippenberg
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Kenneth N. Goldie
- BioEM lab, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - David Kaftan
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia
| | - Pavel Hrouzek
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia
| | - Jan Hájek
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia
| | - Jon Agirre
- Department of Chemistry, University of York, York YO10 5DD, UK
| | | | - David Bína
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czechia
| | - Kasim Sader
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, Institute of Physics, SB, EPFL, and Faculty of Biology and Medicine, Uni Lausanne, CH-1015 Lausanne, Switzerland
| | - Roman Sobotka
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czechia
| | - Christopher J. Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Tomáš Polívka
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czechia
| | - C. Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Michal Koblížek
- Center Algatech, Institute of Microbiology, Czech Academy of Sciences, 37981 Třeboň, Czechia
| |
Collapse
|
4
|
Mujakić I, Piwosz K, Koblížek M. Phylum Gemmatimonadota and Its Role in the Environment. Microorganisms 2022; 10:microorganisms10010151. [PMID: 35056600 PMCID: PMC8779627 DOI: 10.3390/microorganisms10010151] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Bacteria are an important part of every ecosystem that they inhabit on Earth. Environmental microbiologists usually focus on a few dominant bacterial groups, neglecting less abundant ones, which collectively make up most of the microbial diversity. One of such less-studied phyla is Gemmatimonadota. Currently, the phylum contains only six cultured species. However, data from culture-independent studies indicate that members of Gemmatimonadota are common in diverse habitats. They are abundant in soils, where they seem to be frequently associated with plants and the rhizosphere. Moreover, Gemmatimonadota were found in aquatic environments, such as freshwaters, wastewater treatment plants, biofilms, and sediments. An important discovery was the identification of purple bacterial reaction centers and anoxygenic photosynthesis in this phylum, genes for which were likely acquired via horizontal gene transfer. So far, the capacity for anoxygenic photosynthesis has been described for two cultured species: Gemmatimonas phototrophica and Gemmatimonas groenlandica. Moreover, analyses of metagenome-assembled genomes indicate that it is also common in uncultured lineages of Gemmatimonadota. This review summarizes the current knowledge about this understudied bacterial phylum with an emphasis on its environmental distribution.
Collapse
Affiliation(s)
- Izabela Mujakić
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Kasia Piwosz
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland
| | - Michal Koblížek
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic; (I.M.); (K.P.)
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
- Correspondence:
| |
Collapse
|