1
|
Spada A, Gerber-Lemaire S. Surface Functionalization of Nanocarriers with Anti-EGFR Ligands for Cancer Active Targeting. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:158. [PMID: 39940134 PMCID: PMC11820047 DOI: 10.3390/nano15030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/14/2025]
Abstract
Active cancer targeting consists of the selective recognition of overexpressed biomarkers on cancer cell surfaces or within the tumor microenvironment, enabled by ligands conjugated to drug carriers. Nanoparticle (NP)-based systems are highly relevant for such an approach due to their large surface area which is amenable to a variety of chemical modifications. Over the past decades, several studies have debated the efficiency of passive targeting, highlighting active targeting as a more specific and selective approach. The choice of conjugation chemistry for attaching ligands to nanocarriers is critical to ensure a stable and robust system. Among the panel of cancer biomarkers, the epidermal growth factor receptor (EGFR) stands as one of the most frequently overexpressed receptors in different cancer types. The design and development of nanocarriers with surface-bound anti-EGFR ligands are vital for targeted therapy, relying on their facilitated capture by EGFR-overexpressing tumor cells and enabling receptor-mediated endocytosis to improve drug accumulation within the tumor microenvironment. In this review, we examine several examples of the most recent and significant anti-EGFR nanocarriers and explore the various conjugation strategies for NP functionalization with anti-EGFR biomolecules and small molecular ligands. In addition, we also describe some of the most common characterization techniques to confirm and analyze the conjugation patterns.
Collapse
Affiliation(s)
| | - Sandrine Gerber-Lemaire
- Group for Functionalized Biomaterials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
2
|
Boonkua S, Thongsum O, Soongnart P, Chantunmapitak R, Jaranathummakul S, Srisanga K, Asuvapongpatana S, Wongtrakoongate P, Weerachatyanukul W, Watthammawut A, Somrit M. Development of chimeric MrNV virus-like particles capable of binding to SARS-CoV-2-susceptible cells and reducing infection by pseudovirus variants. Sci Rep 2024; 14:31431. [PMID: 39732908 PMCID: PMC11682422 DOI: 10.1038/s41598-024-83024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
SARS-CoV-2, the cause of COVID-19, primarily targets lung tissue, leading to pneumonia and lung injury. The spike protein of this virus binds to the common receptor on susceptible tissues and cells called the angiotensin-converting enzyme-2 (ACE2) of the angiotensin (ANG) system. In this study, we produced chimeric Macrobrachium rosenbergii nodavirus virus-like particles, presenting a short peptide ligand (ACE2tp), based on angiotensin-II (ANG II), on their outer surfaces to allow them to specifically bind to ACE2-overexpressing cells called ACE2tp-MrNV-VLPs. Replacing the ACE2tp at the protruding domains (P-domain) of the MrNV capsid proteins did not affect their normal assembly into icosahedral VLPs. The presentation of the ACE2tp on the P-domains significantly improved the binding and internalization of ACE2tp-MrNV-VLPs to hACE2-overexpressing HEK293T cells in a concentration-dependent manner. Furthermore, ACE2tp-MrNV-VLPs exhibited the ability to block the binding and infection of SARS-CoV-2 pseudovirus variants, including Wuhan, BA.2 Omicron, and Delta subtypes. Our results suggest that chimeric ACE2tp-MrNV-VLPs can serve as a blocking agent against various SARS-CoV-2 mutated variants and could also potentially serve as target-specific nano-containers to carry therapeutic agents to combat SARS-CoV-2 infections in the future.
Collapse
Affiliation(s)
- Supawich Boonkua
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Orawan Thongsum
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Purimpuch Soongnart
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Rueangtip Chantunmapitak
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Somkid Jaranathummakul
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Kitima Srisanga
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Somluk Asuvapongpatana
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Atthaboon Watthammawut
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Wattana, Bangkok, 10110, Thailand.
| | - Monsicha Somrit
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Qiu H, Sun M, Wang N, Zhang S, Deng Z, Xu H, Yang H, Gu H, Fang W, He F. Efficacy comparison in cap VLPs of PCV2 and PCV3 as swine vaccine vehicle. Int J Biol Macromol 2024; 278:134955. [PMID: 39173309 DOI: 10.1016/j.ijbiomac.2024.134955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
As one genotype of porcine circovirus (PCV) identified in 2016, PCV3 has brought huge hidden dangers to the global swine industry together with PCV2. Virus-like particles (VLPs) of capsid protein (Cap) of PCV2 serve as an alternative nano-antigen delivery strategy to efficiently induce antiviral immune response against PCV2 and/or other covalently displayed swine pathogens. However, the current understanding is limited on the capability of PCV3 as a nano-vaccine vehicle. Here we systematically compared the characteristics and the immunogenic efficacy of PCV3 Cap (Cap3) and PCV2 Cap (Cap2) in a VLP form. Cap3 VLPs presented higher internalization efficiency into cells and cytokines production compared to those of Cap2. Meanwhile, cross-reactive immunity between Cap3 VLPs and Cap2 VLPs was detected. Furthermore, to evaluate the function of Cap3 VLPs and Cap2 VLPs as vaccine vehicles carrying foreign proteins, the non-structural protein 6 of porcine reproductive and respiratory syndrome virus (PRRSV) was fused to C-terminus of Cap. Cap3-based chimeric particles induced a higher level of nsp6-specific immune response and PRRSV inhibition. Collectively, these self-assembling, Cap-based VLPs offer a compelling platform for enhancing the effectiveness of subunit vaccinations against newly emerging diseases and hold great promise for the development of Cap3-based chimeric subunit vaccines.
Collapse
Affiliation(s)
- He Qiu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meiqi Sun
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Wang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengkun Zhang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhuofan Deng
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huiling Xu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, China
| | - HaoTian Yang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Han Gu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weihuan Fang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, China
| | - Fang He
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China; Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, Zhejiang, China.
| |
Collapse
|
4
|
Arul SS, Balakrishnan B, Handanahal SS, Venkataraman S. Viral nanoparticles: Current advances in design and development. Biochimie 2024; 219:33-50. [PMID: 37573018 DOI: 10.1016/j.biochi.2023.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Viral nanoparticles (VNPs) are self-assembling, adaptable delivery systems for vaccines and other therapeutic agents used in a variety of biomedical applications. The potential of viruses to invade and infect various hosts and cells renders them suitable as potential nanocarriers, possessing distinct functional characteristics, immunogenic properties, and improved biocompatibility and biodegradability. VNPs are frequently produced through precise genetic or chemical engineering, which involves adding diverse sequences or functional payloads to the capsid protein (CP). Several spherical and helical plant viruses, bacteriophages, and animal viruses are currently being used as VNPs, or non-infectious virus-like particles (VLPs). In addition to their broad use in cancer therapy, vaccine technology, diagnostics, and molecular imaging, VNPs have made important strides in the realms of tissue engineering, biosensing, and antimicrobial prophylaxis. They are also being used in energy storage cells due to their binding and piezoelectric properties. The large-scale production of VNPs for research, preclinical testing, and clinical use is fraught with difficulties, such as those relating to cost-effectiveness, scalability, and purity. Consequently, many plants- and microorganism-based platforms are being developed, and newer viruses are being explored. The goal of the current review is to provide an overview of these advances.
Collapse
|
5
|
Muikham I, Thongsum O, Jaranathummakul S, Wathammawut A, Chotwiwatthanakun C, Jariyapong P, Weerachatyanukul W. Interior modification of Macrobrachium rosenbergii nodavirus-like particle enhances encapsulation of VP37-dsRNA against shrimp white spot syndrome infection. BMC Vet Res 2024; 20:91. [PMID: 38459500 PMCID: PMC10921773 DOI: 10.1186/s12917-024-03936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Application of a virus-like particle (VLP) as a nanocontainer to encapsulate double stranded (ds)RNA to control viral infection in shrimp aquaculture has been extensively reported. In this study, we aimed at improving VLP's encapsulation efficiency which should lead to a superior fighting weapon with disastrous viruses. RESULTS We constructed 2 variants of chimeric Macrobrachium rosenbergii nodavirus (MrNV)-like particles (V1- and V2-MrN-VLPs) and tested their efficiency to encapsulate VP37 double stranded RNA as well as WSSV protection in P. vannamei. Two types of short peptides, RNA-binding domain (RBD) and deca-arginine (10R) were successfully engineered into the interior surface of VLP, the site where the contact with VP37-dsRNA occurs. TEM and dynamic light scattering (DLS) analyses revealed that the chimeric VLPs remained their assembling property to be an icosahedral symmetric particle with a diameter of about 30 nm, similar to the original MrN-VLP particle. The superior encapsulation efficiency of VP37-dsRNA into V2-MrN-VLP was achieved, which was slightly better than that of V1-MrN-VLP but far better (1.4-fold) than its parental V0-MrN-VLP which the mole ratio of 7.5-10.5 for all VLP variants. The protection effect against challenging WSSV (as gauged from the level of VP37 gene and the remaining viral copy number in shrimp) was significantly improved in both V1- and V2-MrN-VLP compared with an original V0-MrN-VLP template. CONCLUSION MrN-VLP (V0-) were re-engineered interiorly with RBD (V1-) and 10R (V2-) peptides which had an improved VP37-dsRNA encapsulation capability. The protection effect against WSSV infection through shrimp administration with dsRNA + V1-/V2-MrN VLPs was experimentally evident.
Collapse
Affiliation(s)
- Itsares Muikham
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd., Rachathewi, Bangkok, 10400, Thailand
| | - Orawan Thongsum
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd., Rachathewi, Bangkok, 10400, Thailand
| | - Somkid Jaranathummakul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd., Rachathewi, Bangkok, 10400, Thailand
| | - Atthaboon Wathammawut
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | - Charoonroj Chotwiwatthanakun
- Faculty of Science, Mahidol University, Nakhonsawan Campus, Nakhonsawan, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Mahidol University, Bangkok, Thailand
| | - Pitchanee Jariyapong
- Department of Medical Science, School of Medicine, Walailak University, Thasala District, Nakhonsrithammarat, 80160, Thailand.
| | - Wattana Weerachatyanukul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama 6 Rd., Rachathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Sun Z, Zhao H, Ma L, Shi Y, Ji M, Sun X, Ma D, Zhou W, Huang T, Zhang D. The quest for nanoparticle-powered vaccines in cancer immunotherapy. J Nanobiotechnology 2024; 22:61. [PMID: 38355548 PMCID: PMC10865557 DOI: 10.1186/s12951-024-02311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Despite recent advancements in cancer treatment, this disease still poses a serious threat to public health. Vaccines play an important role in preventing illness by preparing the body's adaptive and innate immune responses to combat diseases. As our understanding of malignancies and their connection to the immune system improves, there has been a growing interest in priming the immune system to fight malignancies more effectively and comprehensively. One promising approach involves utilizing nanoparticle systems for antigen delivery, which has been shown to potentiate immune responses as vaccines and/or adjuvants. In this review, we comprehensively summarized the immunological mechanisms of cancer vaccines while focusing specifically on the recent applications of various types of nanoparticles in the field of cancer immunotherapy. By exploring these recent breakthroughs, we hope to identify significant challenges and obstacles in making nanoparticle-based vaccines and adjuvants feasible for clinical application. This review serves to assess recent breakthroughs in nanoparticle-based cancer vaccinations and shed light on their prospects and potential barriers. By doing so, we aim to inspire future immunotherapies for cancer that harness the potential of nanotechnology to deliver more effective and targeted treatments.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hui Zhao
- Department of Endodontics, East Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Li Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yanli Shi
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Dan Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wei Zhou
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Dongsheng Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
7
|
Dogbey DM, Torres VES, Fajemisin E, Mpondo L, Ngwenya T, Akinrinmade OA, Perriman AW, Barth S. Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy. Drug Deliv Transl Res 2023; 13:2719-2738. [PMID: 37301780 PMCID: PMC10257536 DOI: 10.1007/s13346-023-01362-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 06/12/2023]
Abstract
The burden of cancer is increasing globally. Several challenges facing its mainstream treatment approaches have formed the basis for the development of targeted delivery systems to carry and distribute anti-cancer payloads to their defined targets. This site-specific delivery of drug molecules and gene payloads to selectively target druggable biomarkers aimed at inducing cell death while sparing normal cells is the principal goal for cancer therapy. An important advantage of a delivery vector either viral or non-viral is the cumulative ability to penetrate the haphazardly arranged and immunosuppressive tumour microenvironment of solid tumours and or withstand antibody-mediated immune response. Biotechnological approaches incorporating rational protein engineering for the development of targeted delivery systems which may serve as vehicles for packaging and distribution of anti-cancer agents to selectively target and kill cancer cells are highly desired. Over the years, these chemically and genetically modified delivery systems have aimed at distribution and selective accumulation of drug molecules at receptor sites resulting in constant maintenance of high drug bioavailability for effective anti-tumour activity. In this review, we highlighted the state-of-the art viral and non-viral drug and gene delivery systems and those under developments focusing on cancer therapy.
Collapse
Affiliation(s)
- Dennis Makafui Dogbey
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Emmanuel Fajemisin
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Liyabona Mpondo
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Takunda Ngwenya
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Olusiji Alex Akinrinmade
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, Bristol, UK
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
8
|
Nowak I, Madej M, Secemska J, Sarna R, Strzalka-Mrozik B. Virus-Based Biological Systems as Next-Generation Carriers for the Therapy of Central Nervous System Diseases. Pharmaceutics 2023; 15:1931. [PMID: 37514117 PMCID: PMC10384784 DOI: 10.3390/pharmaceutics15071931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Central nervous system (CNS) diseases are currently a major challenge in medicine. One reason is the presence of the blood-brain barrier, which is a significant limitation for currently used medicinal substances that are characterized by a high molecular weight and a short half-life. Despite the application of nanotechnology, there is still the problem of targeting and the occurrence of systemic toxicity. Viral vectors and virus-like particles (VLPs) may provide a promising solution to these challenges. Their small size, biocompatibility, ability to carry medicinal substances, and specific targeting of neural cells make them useful in research when formulating a new generation of biological carriers. Additionally, the possibility of genetic modification has the potential for gene therapy. Among the most promising viral vectors are adeno-associated viruses, adenoviruses, and retroviruses. This is due to their natural tropism to neural cells, as well as the possibility of genetic and surface modification. Moreover, VLPs that are devoid of infectious genetic material in favor of increasing capacity are also leading the way for research on new drug delivery systems. The aim of this study is to review the most recent reports on the use of viral vectors and VLPs in the treatment of selected CNS diseases.
Collapse
Affiliation(s)
- Ilona Nowak
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Marcel Madej
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Julia Secemska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Robert Sarna
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
9
|
Kumar K, Tan WS, Arshad SS, Ho KL. Virus-like Particles of Nodavirus Displaying the Receptor Binding Domain of SARS-CoV-2 Spike Protein: A Potential VLP-Based COVID-19 Vaccine. Int J Mol Sci 2023; 24:ijms24054398. [PMID: 36901827 PMCID: PMC10001971 DOI: 10.3390/ijms24054398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Since the outbreak of the coronavirus disease 2019 (COVID-19), various vaccines have been developed for emergency use. The efficacy of the initial vaccines based on the ancestral strain of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has become a point of contention due to the emergence of new variants of concern (VOCs). Therefore, continuous innovation of new vaccines is required to target upcoming VOCs. The receptor binding domain (RBD) of the virus spike (S) glycoprotein has been extensively used in vaccine development due to its role in host cell attachment and penetration. In this study, the RBDs of the Beta (β) and Delta (δ) variants were fused to the truncated Macrobrachium rosenbergii nodavirus capsid protein without the protruding domain (CΔ116-MrNV-CP). Immunization of BALB/c mice with the virus-like particles (VLPs) self-assembled from the recombinant CP showed that, with AddaVax as an adjuvant, a significantly high level of humoral response was elicited. Specifically, mice injected with equimolar of adjuvanted CΔ116-MrNV-CP fused with the RBD of the β- and δ-variants increased T helper (Th) cell production with a CD8+/CD4+ ratio of 0.42. This formulation also induced proliferation of macrophages and lymphocytes. Overall, this study demonstrated that the nodavirus truncated CP fused with the SARS-CoV-2 RBD has potential to be developed as a VLP-based COVID-19 vaccine.
Collapse
Affiliation(s)
- Kiven Kumar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Siti Suri Arshad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-9769-2729
| |
Collapse
|
10
|
Challenges for the application of EGFR-targeting peptide GE11 in tumor diagnosis and treatment. J Control Release 2022; 349:592-605. [PMID: 35872181 DOI: 10.1016/j.jconrel.2022.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/20/2022]
Abstract
Abnormal regulation of cell signaling pathways on cell survival, proliferation and migration contributes to the development of malignant tumors. Among them, epidermal growth factor receptor (EGFR) is one of the most important biomarkers in many types of malignant solid tumors. Its over-expression and mutation status can be served as a biomarker to identify patients who can be benifit from EGFR tyrosine kinase inhibitors and anti-EGFR monocloncal antibody (mAb) therapy. For decades, researches on EGFR targeted ligands were actively carried out to identify potent candidates for cancer therapy. An ideal EGFR ligand can competitively inhibit the binding of endogenous growth factor, such as epidermal growth factor (EGF) and transforming growth factor-α(TGF-α) to EGFR, thus block EGFR signaling pathway and downregulate EGFR expression. Alternatively, conjugation of EGFR ligands on drug delivery systems (DDS) can facilitate targeting delivery of therapeutics or diagnostic agents to EGFR over-expression tumors via EGFR-mediated endocytosis. GE11 peptide is one of the potent EGFR ligand screened from a phage display peptide library. It is a dodecapeptide that can specifically binds to EGFR with high affinity and selectivity. GE11 has been widely used in the diagnosis and targeted delivery of drugs for radiotherapy, genetherapy and chemotherpy against EGFR positive tumors. In this review, the critical factors affecting the in vivo and in vitro targeting performance of GE11 peptide, including ligand-receptor intermolecular force, linker bond properties and physiochemical properties of carrier materials, are detailedly interpreted. This review provides a valuable vision for the rational design and optimization of GE11-based active targeting strategies for cancer treatment, and it will promote the translation studies of GE11 from lab research to clinical application.
Collapse
|
11
|
Can Virus-like Particles Be Used as Synergistic Agent in Pest Management? Viruses 2022; 14:v14050943. [PMID: 35632685 PMCID: PMC9144638 DOI: 10.3390/v14050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Among novel strategies proposed in pest management, synergistic agents are used to improve insecticide efficacy through an elevation of intracellular calcium concentration that activates the calcium-dependent intracellular pathway. This leads to a changed target site conformation and to increased sensitivity to insecticides while reducing their concentrations. Because virus-like particles (VLPs) increase the intracellular calcium concentration, they can be used as a synergistic agent to synergize the effect of insecticides. VLPs are self-assembled viral protein complexes, and by contrast to entomopathogen viruses, they are devoid of genetic material, which makes them non-infectious and safer than viruses. Although VLPs are well-known to be used in human health, we propose in this study the development of a promising strategy based on the use of VLPs as synergistic agents in pest management. This will lead to increased insecticides efficacy while reducing their concentrations.
Collapse
|