1
|
Yamazaki R, Azuma M, Osanai Y, Kouki T, Inagaki T, Kakita A, Takao M, Ohno N. Type I collagen secreted in white matter lesions inhibits remyelination and functional recovery. Cell Death Dis 2025; 16:285. [PMID: 40221393 PMCID: PMC11993711 DOI: 10.1038/s41419-025-07633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
White matter injury is caused by cerebral blood flow disturbances associated with stroke and demyelinating diseases such as multiple sclerosis. Remyelination is induced spontaneously after white matter injury, but progressive multiple sclerosis and white matter stroke are usually characterised by remyelination failure. However, the mechanisms underlying impaired remyelination in lesions caused by demyelination and stroke remain unclear. In the current study, we demonstrated that collagen fibres accumulated in the demyelinated lesions of multiple sclerosis patients (age range 23-80 years) and white matter lesions of stroke patients (age range 80-87 years), suggesting that the accumulation of collagen fibres correlates with remyelination failure in these lesions. To investigate the function of collagen fibres in the white matter lesions, we generated two types of white matter injury in mice. We induced focal demyelination by lysolecithin (LPC) injection and ischemic stroke by endothelin 1 (ET1) injection into the internal capsule. We found that type I collagen fibres were secreted in ET1-induced lesions with impaired white matter regeneration in the chronic phase of disease. We also showed that monocyte-derived macrophages that infiltrated into lesions from the peripheral blood produced type I collagen after white matter injury, and that type I collagen also exacerbated microglial activation, astrogliosis, and axonal injury. Finally, we demonstrated that oligodendrocyte differentiation and remyelination were inhibited in the presence of type I collagen after LPC-induced demyelination. These results suggest that type I collagen secreted by monocyte-derived macrophages inhibited white matter regeneration, and therefore, the modulation of type I collagen metabolism might be a novel therapeutic target for white matter injury.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Tochigi, Japan.
| | - Morio Azuma
- Department of Pharmacology, Division of Molecular Pharmacology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yasuyuki Osanai
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Tom Kouki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Takeshi Inagaki
- Department of Anatomy, Division of Forensic Medicine, School of Medicine, Jichi Medical University, Tochigi, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Tochigi, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
2
|
Stoller F, Hinds E, Ionescu T, Khatamsaz E, Marston HM, Hengerer B. Forceps minor control of social behaviour. Sci Rep 2024; 14:30492. [PMID: 39681620 DOI: 10.1038/s41598-024-81930-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
The PRISM project, funded by the EU's Innovative Medicines Initiative, has identified a transdiagnostic, pathophysiological relationship between the integrity of the default mode network (DMN) and social dysfunction. To explore the causal link between DMN integrity and social behaviour, we employed a preclinical back-translation approach, using focal demyelination of the forceps minor to disrupt DMN connectivity in mice. By applying advanced techniques such as functional ultrasound imaging and automated analysis of social behaviour, we demonstrated that reduced DMN connectivity leads to impaired social interactions and increased anxiety in mice. Notably, these effects were reversible, indicating that the forceps minor, a critical fibre tract connecting key DMN regions in the prefrontal cortex, plays a crucial role in social function. This study provides direct evidence for a causal relationship between DMN integrity and social dysfunction, with potential implications for developing targeted treatments in precision psychiatry.
Collapse
Affiliation(s)
| | - Eleanor Hinds
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tudor Ionescu
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Hugh M Marston
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | |
Collapse
|
3
|
Osanai Y, Xing YL, Mochizuki S, Kobayashi K, Homman-Ludiye J, Cooray A, Poh J, Inutsuka A, Ohno N, Merson TD. 5' Transgenes drive leaky expression of 3' transgenes in Cre-inducible bi-cistronic vectors. Mol Ther Methods Clin Dev 2024; 32:101288. [PMID: 39104576 PMCID: PMC11298883 DOI: 10.1016/j.omtm.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/21/2024] [Indexed: 08/07/2024]
Abstract
Molecular cloning techniques enabling contemporaneous expression of two or more protein-coding sequences provide an invaluable tool for understanding the molecular regulation of cellular functions. The Cre-lox system is used for inducing the expression of recombinant proteins encoded within a bi-/poly-cistronic cassette. However, leak expression of transgenes is often observed in the absence of Cre recombinase activity, compromising the utility of this approach. To investigate the mechanism of leak expression, we generated Cre-inducible bi-cistronic vectors to monitor the expression of transgenes positioned either 5' or 3' of a 2A peptide or internal ribosomal entry site (IRES) sequence. Cells transfected with these bi-cistronic vectors exhibited Cre-independent leak expression specifically of transgenes positioned 3' of the 2A peptide or IRES sequence. Similarly, AAV-FLEX vectors encoding bi-cistronic cassettes or fusion proteins revealed the selective Cre-independent leak expression of transgenes positioned at the 3' end of the open reading frame. Our data demonstrate that 5' transgenes confer promoter-like activity that drives the expression of 3' transgenes. An additional lox-STOP-lox cassette between the 2A sequence and 3' transgene dramatically decreased Cre-independent transgene expression. Our findings highlight the need for appropriate experimental controls when using Cre-inducible bi-/poly-cistronic constructs and inform improved design of vectors for more tightly regulated inducible transgene expression.
Collapse
Affiliation(s)
- Yasuyuki Osanai
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0431, Japan
| | - Yao Lulu Xing
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Shinya Mochizuki
- Department of Anatomy, Bioimaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0431, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Amali Cooray
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Jasmine Poh
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Ayumu Inutsuka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0431, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0431, Japan
- Division of Ultrastructure Research, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | - Tobias D. Merson
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
- Oligodendroglial Interactions Group, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Yamazaki R, Ohno N. Neutral Red Labeling: A Novel Vital Staining Method for Investigating Central and Peripheral Nervous System Lesions. Acta Histochem Cytochem 2024; 57:131-135. [PMID: 39228906 PMCID: PMC11367148 DOI: 10.1267/ahc.24-00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 09/05/2024] Open
Abstract
Multiple sclerosis, neuromyelitis optica, Guillain-Barré syndrome and chronic inflammatory demyelinating polyradiculoneuropathy are representative demyelinating diseases of the central and peripheral nervous system. Remyelination by myelin forming cells is important for functional recovery from the neurological deficits caused in the demyelinating diseases. Lysophosphatidylcholine-induced demyelination in mice is commonly used to identify and study the molecular pathways of demyelination and remyelination. However, detection of focally demyelinated lesions is difficult and usually requires sectioning of demyelinated lesions in tissues for microscopic analysis. In this review, we describe the development and application of a novel vital staining method for labeling demyelinated lesions using intraperitoneal injection of neutral red (NR) dye. NR labeling reduces the time and effort required to search for demyelinated lesions in tissues, and facilitates electron microscopic analysis of myelin structures. NR labeling also has the potential to contribute to the elucidation of pathologies in the central and peripheral nervous system and assist with identification of drug candidates that promote remyelination.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
5
|
Yamazaki R, Ohno N. The Mouse Model of Internal Capsule Demyelination: A Novel Tool for Investigating Motor Functional Changes Caused by Demyelination and for Evaluating Drugs That Promote Remyelination. Acta Histochem Cytochem 2024; 57:1-5. [PMID: 38463203 PMCID: PMC10918433 DOI: 10.1267/ahc.24-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 03/12/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system, characterized by remyelination failure and axonal dysfunction. Remyelination by oligodendrocytes is critical for improvement of neurological deficits associated with demyelination. Rodent models of demyelination are frequently used to develop and evaluate therapies for MS. However, a suitable mouse model for assessing remyelination-associated recovery of motor functions is currently unavailable. In this review, we describe the development of the mouse model of internal capsule (IC) demyelination by focal injection of lysolecithin into brain and its application in the evaluation of drugs for demyelinating diseases. This mouse model exhibits motor deficits and subsequent functional recovery accompanying IC remyelination. Notably, this model shows enhancement of functional recovery as well as tissue regeneration when treated with clemastine, a drug that promotes remyelination. The IC demyelination mouse model should contribute to the development of novel drugs that promote remyelination and ameliorate neurological deficits in demyelinating diseases.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
6
|
Yamazaki R, Osanai Y, Kouki T, Huang JK, Ohno N. Pharmacological treatment promoting remyelination enhances motor function after internal capsule demyelination in mice. Neurochem Int 2023; 164:105505. [PMID: 36754122 DOI: 10.1016/j.neuint.2023.105505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system characterized by remyelination failure, axonal degeneration, and progressive worsening of motor functions. Animal models of demyelination are frequently used to develop and evaluate therapies for MS. We recently reported that focal internal capsule (IC) demyelination in mice with lysophosphatidylcholine injection induced acute motor deficits followed by recovery through remyelination. However, it remains unknown whether the IC demyelination mouse model can be used to evaluate changes in motor functions caused by pharmacological treatments that promote remyelination using behavioral testing and histological analysis. In this study, we examined the effect of clemastine, an anti-muscarinic drug that promotes remyelination, in the mouse IC demyelination model. Clemastine administration improved motor function and changed forepaw preference in the IC demyelinated mice. Moreover, clemastine-treated mice showed increased mature oligodendrocyte density, reduced axonal injury, an increased number of myelinated axons and thicker myelin in the IC lesions compared with control (PBS-treated) mice. These results suggest that the lysophosphatidylcholine-induced IC demyelination model is useful for evaluating changes in motor functions following pharmacological treatments that promote remyelination.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, 20057, USA; Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan.
| | - Yasuyuki Osanai
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Tom Kouki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC, 20057, USA
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan; Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
7
|
Ni WF, Zhou KL, Zhang HJ, Chen YT, Hu XL, Cai WT, Wang XY. Functions and mechanisms of cytosolic phospholipase A 2 in central nervous system trauma. Neural Regen Res 2023; 18:258-266. [PMID: 35900400 PMCID: PMC9396495 DOI: 10.4103/1673-5374.346460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
8
|
Miller JA, Drouet DE, Yermakov LM, Elbasiouny MS, Bensabeur FZ, Bottomley M, Susuki K. Distinct Changes in Calpain and Calpastatin during PNS Myelination and Demyelination in Rodent Models. Int J Mol Sci 2022; 23:15443. [PMID: 36499770 PMCID: PMC9737575 DOI: 10.3390/ijms232315443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/19/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Myelin forming around axons provides electrical insulation and ensures rapid and efficient transmission of electrical impulses. Disruptions to myelinated nerves often result in nerve conduction failure along with neurological symptoms and long-term disability. In the central nervous system, calpains, a family of calcium dependent cysteine proteases, have been shown to have a role in developmental myelination and in demyelinating diseases. The roles of calpains in myelination and demyelination in the peripheral nervous system remain unclear. Here, we show a transient increase of activated CAPN1, a major calpain isoform, in postnatal rat sciatic nerves when myelin is actively formed. Expression of the endogenous calpain inhibitor, calpastatin, showed a steady decrease throughout the period of peripheral nerve development. In the sciatic nerves of Trembler-J mice characterized by dysmyelination, expression levels of CAPN1 and calpastatin and calpain activity were significantly increased. In lysolecithin-induced acute demyelination in adult rat sciatic nerves, we show an increase of CAPN1 and decrease of calpastatin expression. These changes in the calpain-calpastatin system are distinct from those during central nervous system development or in acute axonal degeneration in peripheral nerves. Our results suggest that the calpain-calpastatin system has putative roles in myelination and demyelinating diseases of peripheral nerves.
Collapse
Affiliation(s)
- John A. Miller
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Domenica E. Drouet
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Leonid M. Yermakov
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Mahmoud S. Elbasiouny
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Fatima Z. Bensabeur
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Bottomley
- Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA
| | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
9
|
Sasajima S, Kondo M, Ohno N, Ujisawa T, Motegi M, Hayami T, Asano S, Asano-Hayami E, Nakai-Shimoda H, Inoue R, Yamada Y, Miura-Yura E, Morishita Y, Himeno T, Tsunekawa S, Kato Y, Nakamura J, Kamiya H, Tominaga M. Thermal gradient ring reveals thermosensory changes in diabetic peripheral neuropathy in mice. Sci Rep 2022; 12:9724. [PMID: 35697861 PMCID: PMC9192750 DOI: 10.1038/s41598-022-14186-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) includes symptoms of thermosensory impairment, which are reported to involve changes in the expression or function, or both, of nociceptive TRPV1 and TRPA1 channels in rodents. In the present study, we did not find changes in the expression or function of TRPV1 or TRPA1 in DPN mice caused by STZ, although thermal hypoalgesia was observed in a murine model of DPN or TRPV1−/− mice with a Plantar test, which specifically detects temperature avoidance. With a Thermal Gradient Ring in which mice can move freely in a temperature gradient, temperature preference can be analyzed, and we clearly discriminated the temperature-dependent phenotype between DPN and TRPV1−/− mice. Accordingly, we propose approaches with multiple behavioral methods to analyze the progression of DPN by response to thermal stimuli. Attention to both thermal avoidance and preference may provide insight into the symptoms of DPN.
Collapse
Affiliation(s)
- Sachiko Sasajima
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.,Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Masaki Kondo
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Tomoyo Ujisawa
- Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.,Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Mikio Motegi
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Tomohide Hayami
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Saeko Asano
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Emi Asano-Hayami
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Hiromi Nakai-Shimoda
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Rieko Inoue
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yuichiro Yamada
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Emiri Miura-Yura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yoshiaki Morishita
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Tatsuhito Himeno
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Shin Tsunekawa
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yoshiro Kato
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.,Department of Innovative Diabetes Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan. .,Thermal Biology Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan. .,Department of Physiological Sciences, Sokendai, Okazaki, Japan.
| |
Collapse
|