1
|
Lema SC, Luckenbach JA, Yamamoto Y, Housh MJ. Fish reproduction in a warming world: vulnerable points in hormone regulation from sex determination to spawning. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220516. [PMID: 38310938 PMCID: PMC10838641 DOI: 10.1098/rstb.2022.0516] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/11/2023] [Indexed: 02/06/2024] Open
Abstract
Reproduction in fishes is sensitive to temperature. Elevated temperatures and anomalous 'heat waves' associated with climate change have the potential to impact fish reproductive performance and, in some cases, even induce sex reversals. Here we examine how thermal sensitivity in the hormone pathways regulating reproduction provides a framework for understanding impacts of warmer conditions on fish reproduction. Such effects will differ depending on evolved variation in temperature sensitivity of endocrine pathways regulating reproductive processes of sex determination/differentiation, gametogenesis and spawning, as well as how developmental timing of those processes varies with reproductive ecology. For fish populations unable to shift geographical range, persistence under future climates may require changes in temperature responsiveness of the hormone pathways regulating reproductive processes. How thermal sensitivity in those hormone pathways varies among populations and species, how those pathways generate temperature maxima for reproduction, and how rapidly reproductive thermal tolerances can change via adaptation or transgenerational plasticity will shape which fishes are most at risk for impaired reproduction under rising temperatures. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Sean C. Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93430, USA
| | - J. Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Yoji Yamamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo 108-8477, Japan
| | - Madeline J. Housh
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93430, USA
| |
Collapse
|
2
|
Fernández I, Larrán AM, de Paz P, Riesco MF. The Direct Effects of Climate Change on Tench ( Tinca tinca) Sperm Quality under a Real Heatwave Event Scenario. Animals (Basel) 2024; 14:778. [PMID: 38473163 DOI: 10.3390/ani14050778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Global aquaculture growth will most probably face specific conditions derived from climate change. In fact, the most severe impacts of these changes will be suffered by aquatic populations in restrictive circumstances, such as current aquaculture locations, which represent a perfect model to study global warming effects. Although the impact of temperature on fish reproduction has been characterized in many aspects, this study was focused on recreating more realistic models of global warming, particularly considering heatwave phenomena, in order to decipher its effects on male gametes (spermatozoa). For this purpose, thermal stress via a heatwave simulation (mimicking a natural occurring heatwave, from 24 to 30 °C) was induced in adult tench (Tinca tinca) males and compared with a control group (55.02 ± 16.44 g of average body wet weight). The impact of the thermal stress induced by this climate change event was assessed using cellular and molecular approaches. After the heatwave recreation, a multiparametric analysis of sperm quality, including some traditional parameters (such as sperm motility) and new ones (focus on redox balance and sperm quality biomarkers), was performed. Although sperm concentration and the volume produced were not affected, the results showed a significant deleterious effect on motility parameters (e.g., reduced progressive motility and total motility during the first minute post-activation). Furthermore, the sperm produced under the thermal stress induced by this heatwave simulation exhibited an increased ROS content in spermatic cells, confirming the negative effect that this thermal stress model (heatwave recreation) might have had on sperm quality. More importantly, the expression of some known sperm quality and fertilization markers was decreased in males exposed to thermal stress. This present study not only unveils the potential effects of climate change in contemporary and future fish farming populations (and their underlying mechanisms) but also provides insights on how to mitigate and/or avoid thermal stress due to heatwave events.
Collapse
Affiliation(s)
- Ignacio Fernández
- Spanish Institute of Oceanography (IEO-CSIC), Centro Oceanográfico de Vigo, Subida a Radio Faro nº 52, 36390 Vigo, Spain
| | - Ana M Larrán
- Aquaculture Research Center, Agro-Technological Institute of Castilla y León (ITACyL), Ctra. Arévalo, Zamarramala, 40196 Segovia, Spain
| | - Paulino de Paz
- Cell Biology Area, Department of Molecular Biology, Universidad de León, Campus de Vegazana, sn, 24071 León, Spain
| | - Marta F Riesco
- Cell Biology Area, Department of Molecular Biology, Universidad de León, Campus de Vegazana, sn, 24071 León, Spain
| |
Collapse
|
3
|
Lim MYT, Bernier NJ. Intergenerational plasticity to cycling high temperature and hypoxia affects offspring stress responsiveness and tolerance in zebrafish. J Exp Biol 2023; 226:jeb245583. [PMID: 37497728 PMCID: PMC10482009 DOI: 10.1242/jeb.245583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
Predicted climate change-induced increases in heat waves and hypoxic events will have profound effects on fishes, yet the capacity of parents to alter offspring phenotype via non-genetic inheritance and buffer against these combined stressors is not clear. This study tested how prolonged adult zebrafish exposure to combined diel cycles of thermal stress and hypoxia affect offspring early survival and development, parental investment of cortisol and heat shock proteins (HSPs), larval offspring stress responses, and both parental and offspring heat and hypoxia tolerance. Parental exposure to the combined stressor did not affect fecundity, but increased mortality, produced smaller embryos and delayed hatching. The combined treatment also reduced maternal deposition of cortisol and increased embryo hsf1, hsp70a, HSP70, hsp90aa and HSP90 levels. In larvae, basal cortisol levels did not differ between treatments, but acute exposure to combined heat stress and hypoxia increased cortisol levels in control larvae with no effect on larvae from exposed parents. In contrast, whereas larval basal hsf1, hsp70a and hsp90aa levels differed between parental treatments, the combined acute stressor elicited similar transcriptional responses across treatments. Moreover, the combined acute stressor only induced a marked increase in HSP47 levels in the larvae derived from exposed parents. Finally, combined hypoxia and elevated temperatures increased both thermal and hypoxia tolerance in adults and conferred an increase in offspring thermal but not hypoxia tolerance. These results demonstrate that intergenerational acclimation to combined thermal stress and hypoxia elicit complex carryover effects on stress responsiveness and offspring tolerance with potential consequences for resilience.
Collapse
Affiliation(s)
- Michael Y.-T. Lim
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Nicholas J. Bernier
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Moreno Acosta OD, Boan AF, Hattori RS, Fernandino JI. Notch pathway is required for protection against heat stress in spermatogonial stem cells in medaka. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:487-500. [PMID: 37126120 DOI: 10.1007/s10695-023-01200-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/20/2023] [Indexed: 05/25/2023]
Abstract
Gamete production is a fundamental process for reproduction; however, exposure to stress, such as increased environmental temperature, can decrease or even interrupt this process, affecting fertility. Thus, the survival of spermatogonial stem cells (SSCs) is crucial for the recovery of spermatogenesis upon stressful situations. Here, we show that the Notch pathway is implicated in such survival, by protecting the SSCs against thermal stress. First, we corroborated the impairment of spermatogenesis under heat stress in medaka, observing an arrest in metaphase I at 10 days of heat treatment, an increase in the number of spermatocytes, and downregulation of ndrg1b and sycp3. In addition, at 30 days of treatment, an interruption of spermatogenesis was observed with a strong loss of spermatocytes and spermatids. Then, the exposure of adult males to thermal stress condition induced apoptosis mainly in spermatogenic and supporting somatic cells, with the exception of the germinal region, where SSCs are located. Concomitantly, the Notch pathway-related genes were upregulated, including the ligands (dll4, jag1-2) and receptors (notch1a-3). Moreover, during thermal stress presenilin enhancer-2 (pen-2), the catalytic subunit of γ-secretase complex of the Notch pathway was restricted to the germinal region of the medaka testis, observed in somatic cells surrounding type A spermatogonia (SGa). The importance of Notch pathway was further supported by an ex vivo approach, in which the inhibition of this pathway activity induced a loss of SSCs. Overall, this study supports the importance of Notch pathways for the protection of SSCs under chronic thermal stress.
Collapse
Affiliation(s)
- Omar D Moreno Acosta
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomus, Argentina
| | - Agustín F Boan
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomus, Argentina
| | - Ricardo S Hattori
- Salmonid Experimental Station at Campos Do Jordão, UPD-CJ, Sao Paulo Fisheries Institute (APTA/SAA), Campos Do Jordao, Brazil
| | - Juan Ignacio Fernandino
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomus, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomus, Argentina.
| |
Collapse
|
5
|
Li L, Liu Z, Quan J, Sun J, Lu J, Zhao G. Dietary nano-selenium alleviates heat stress-induced intestinal damage through affecting intestinal antioxidant capacity and microbiota in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 133:108537. [PMID: 36639066 DOI: 10.1016/j.fsi.2023.108537] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Heat stress-induced intestinal damage is a key event in fish pathology. Nano-selenium (nano-Se) shows remarkably high biological activity and low toxicity, making it an ideal and ecological Se formulation; however, to date, the protective effects of nano-Se against heat stress-induced intestinal injury and pertinent molecular mechanisms remain unknown. Herein, rainbow trout (Oncorhynchus mykiss) were fed either a basal diet or basal diet + 5 mg/kg nano-Se. Samples were collected before (18 °C for 9 days; CG18 and Se18 groups) and after (24 °C for 8 h; CG24 and Se24 groups) heat stress treatment. On heat stress exposure, intestinal villus height, muscularis thickness, and goblet cell number decreased, and expression of tight junction proteins (ZO-1, occludin, and claudin-8d) was downregulated; dietary supplementation with nano-Se alleviated these effects. Furthermore, in the presence of nano-Se, catalase activity was elevated, and expression of diverse heat shock proteins (Hsp70b, Hsp90α, and Hsp30), selenoproteins (Gpx1a, Gpx1b1, and Trx), and anti-inflammatory cytokine (TGF-β) was upregulated. In contrast, nano-Se supplementation significantly alleviated the increase of the expression of pro-inflammatory cytokines (IL-1β and TNF-α) and the malondialdehyde content. We also observed that heat stress markedly increased the relative abundance of Actinobacteria, Firmicutes, Methylobacterium, Akkermansia, and Deinococcus and decreased that of Proteobacteria; nano-Se supplementation restored these changes, making their distribution similar to that in the control group. Overall, our findings suggest that nano-Se plays a protective role against heat stress-induced intestinal damage in rainbow trout by promoting the recovery of antioxidant enzyme activity, enhancing protein repair, alleviating inflammatory responses, and restoring intestinal microbiota composition.
Collapse
Affiliation(s)
- Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| |
Collapse
|
6
|
Shinde D, Ganesh CB. Chronic exposure to aquacultural stressors affects pituitary-testis axis in the Mozambique tilapia Oreochromis mossambicus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:437-448. [PMID: 35201519 DOI: 10.1007/s10695-022-01061-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Reproduction in fish is modulated by several factors that include environmental and endocrine components. The aim of this study was to elucidate the effect of aquacultural stressors along the pituitary-testis axis in a continuously breeding cichlid fish Oreochromis mossambicus. The fish (35.05 ± 2.20 g) were divided into three groups (n = 10 in each group, n = 5 in each replicate), namely initial controls (euthanized on the day of initiation of experiment), time-matched controls (kept undisturbed), and stressed fish, which were subjected to different kinds of randomized aquacultural stressors such as handling, chasing, frequent netting, and low water levels, daily for a period of 21 days. Although the gonadosomatic index and the mean numbers of spermatogonia-A and spermatogonia-B did not differ significantly among different experimental groups, significant decrease was observed in the mean numbers of primary spermatocytes, secondary spermatocytes, early spermatids, and late spermatids in fish exposed to stressors compared to those of initial controls and time-matched controls. While the diameter of the seminiferous lobule was significantly lower, the size of the lumen and the serum levels of cortisol were significantly increased in stressed fish compared with initial controls and time-matched controls. Furthermore, weak androgen receptor immunoreactivity was observed in the Sertoli cells of the testis in contrast to the strongly immunoreactive androgen receptors in initial controls and time-matched controls. Concomitant with this, there was a significant decrease in the percent area and the intensity of luteinizing hormone (LH) immunoreactive content in the proximal pars distalis (PPD) region of the pituitary gland in stressed fish compared with initial controls and time-matched controls. Overall, these results suggest that exposure to chronic aquacultural stressors causes suppression of LH synthesis in the pituitary gland concomitant with decreased androgen receptor expression and blockade of recruitment of germline cells at the meiosis stage. This inhibition appears to be mediated through the hypothalamic-pituitary-interrenal axis in the tilapia O. mossambicus.
Collapse
Affiliation(s)
- Deepak Shinde
- Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India
| | - C B Ganesh
- Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|