1
|
Kuo YT, Wang HL, Chen BW, Wang CF, Lo YC, Lin SH, Chen PC, Chen YY. Degradation-aware neural imputation: Advancing decoding stability in brain machine interfaces. APL Bioeng 2025; 9:026106. [PMID: 40247859 PMCID: PMC12005879 DOI: 10.1063/5.0250296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Neural signal degradation poses a significant challenge in maintaining stable performance when decoding motor tasks using multiunit activity (MUA) and local field potential (LFP) signals in the implantable brain machine interface (iBMI) applications. Effective methods for imputing degraded or missing signals are essential to restore neural signal integrity, thereby improving decoding accuracy and system robustness over long-term recordings with fluctuating signal quality. This study introduces a confidence-weighted Bayesian linear regression (CW-BLR) approach to impute neural signals affected by degradation, enhancing the robustness and consistency of decoding. The performance of CW-BLR was compared to traditional methods-mean imputation (Mean-imp) and Gaussian-mixture-model-based expectation-maximization (GMM-EM)-using a kernel-sliced inverse regression (kSIR) decoder to evaluate decoding outcomes. Four Wistar rats were trained to perform a forelimb-reaching task while neural activity (MUA and LFPs) was recorded over 27 days. CW-BLR imputed signals degraded during days 8-27. Decoding performance was evaluated using kSIR and compared with Mean-imp and GMM-EM. CW-BLR demonstrated superior performance by effectively preserving both temporal and spatial dependencies within the neural signals. CW-BLR-imputed data significantly improved decoding accuracy over traditional imputation methods, with the kSIR decoder showing consistently higher performance, particularly in maintaining signal quality from the degraded period. CW-BLR offers a robust and effective imputation framework for iBMI applications, addressing signal degradation challenges and maintaining accurate decoding over prolonged recordings. By utilizing confidence-based quality metrics, CW-BLR surpasses traditional methods, providing stable neural decoding across fluctuating signal quality scenarios.
Collapse
Affiliation(s)
- Yun-Ting Kuo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Han-Lin Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | - Bo-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St., Taipei 112304, Taiwan
| | | | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F, Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan
| | | | - Po-Chuan Chen
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - You-Yin Chen
- Author to whom correspondence should be addressed:
| |
Collapse
|
2
|
Lu 呂宏耘 HY, Zhao 趙懿 Y, Stealey HM, Barnett CR, Tobler PN, Santacruz SR. Volitional Regulation and Transferable Patterns of Midbrain Oscillations. J Neurosci 2025; 45:e1808242025. [PMID: 39909565 PMCID: PMC11949472 DOI: 10.1523/jneurosci.1808-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/16/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
Dopaminergic brain areas are crucial for cognition and their dysregulation is linked to neuropsychiatric disorders typically treated with pharmacological interventions. These treatments often have side effects and variable effectiveness, underscoring the need for alternatives. We introduce the first demonstration of neurofeedback using local field potentials (LFP) from the ventral tegmental area (VTA). This approach leverages the real-time temporal resolution of LFP and ability to target deep brain. In our study, two male rhesus macaque monkeys (Macaca mulatta) learned to regulate VTA beta power using a customized normalized metric to stably quantify VTA LFP signal modulation. The subjects demonstrated flexible and specific control with different strategies for specific frequency bands, revealing new insights into the plasticity of VTA neurons contributing to oscillatory activity that is functionally relevant to many aspects of cognition. Excitingly, the subjects showed transferable patterns, a key criterion for clinical applications beyond training settings. This work provides a foundation for neurofeedback-based treatments, which may be a promising alternative to conventional approaches and open new avenues for understanding and managing neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hung-Yun Lu 呂宏耘
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Yi Zhao 趙懿
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Hannah M Stealey
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Cole R Barnett
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
| | - Philippe N Tobler
- Department of Economics, University of Zurich, Zurich CH-8006, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich CH-8006, Switzerland
| | - Samantha R Santacruz
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78712
- Interdisciplinary Neuroscience Program, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
3
|
Drebitz E, Rausch LP, Domingo Gil E, Kreiter AK. Three distinct gamma oscillatory networks within cortical columns in macaque monkeys' area V1. Front Neural Circuits 2024; 18:1490638. [PMID: 39735419 PMCID: PMC11671273 DOI: 10.3389/fncir.2024.1490638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction A fundamental property of the neocortex is its columnar organization in many species. Generally, neurons of the same column share stimulus preferences and have strong anatomical connections across layers. These features suggest that neurons within a column operate as one unified network. Other features, like the different patterns of input and output connections of neurons located in separate layers and systematic differences in feature tuning, hint at a more segregated and possibly flexible functional organization of neurons within a column. Methods To distinguish between these views of columnar processing, we conducted laminar recordings in macaques' area V1 while they performed a demanding attention task. We identified three separate regions with strong gamma oscillatory activity, located in the supragranular, granular, and infragranular laminar domains, based on the current source density (CSD). Results and Discussion Their characteristics differed significantly in their dominant gamma frequency and attention-dependent modulation of their gramma power and gamma frequency. In line, spiking activity in the supragranular, infragranular, and upper part of the granular domain exhibited strong phase coherence with the CSD signals of their domain but showed much weaker coherence with the CSD signals of other domains. Conclusion These results indicate that columnar processing involves a certain degree of independence between neurons in the three laminar domains, consistent with the assumption of multiple, separate intracolumnar ensembles. Such a functional organization offers various possibilities for dynamic network configuration, indicating that neurons in a column are not restricted to operate as one unified network. Thus, the findings open interesting new possibilities for future concepts and investigations on flexible, dynamic cortical ensemble formation and selective information processing.
Collapse
Affiliation(s)
- Eric Drebitz
- Cognitive Neurophysiology, Brain Research Institute, University of Bremen, Bremen, Germany
| | | | | | | |
Collapse
|
4
|
Bloniasz PF, Oyama S, Stephen EP. Filtered Point Processes Tractably Capture Rhythmic And Broadband Power Spectral Structure in Neural Electrophysiological Recordings. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.616132. [PMID: 39605406 PMCID: PMC11601253 DOI: 10.1101/2024.10.01.616132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Neural electrophysiological recordings arise from interacting rhythmic (oscillatory) and broadband (aperiodic) biological subprocesses. Both rhythmic and broadband processes contribute to the neural power spectrum, which decomposes the variance of a neural recording across frequencies. Although an extensive body of literature has successfully studied rhythms in various diseases and brain states, researchers only recently have systematically studied the characteristics of broadband effects in the power spectrum. Broadband effects can generally be categorized as 1) shifts in power across all frequencies, which correlate with changes in local firing rates and 2) changes in the overall shape of the power spectrum, such as the spectral slope or power law exponent. Shape changes are evident in various conditions and brain states, influenced by factors such as excitation to inhibition balance, age, and various diseases. It is increasingly recognized that broadband and rhythmic effects can interact on a sub-second timescale. For example, broadband power is time-locked to the phase of <1 Hz rhythms in propofol induced unconsciousness. Modeling tools that explicitly deal with both rhythmic and broadband contributors to the power spectrum and that capture their interactions are essential to help improve the interpretability of power spectral effects. Here, we introduce a tractable stochastic forward modeling framework designed to capture both narrowband and broadband spectral effects when prior knowledge or theory about the primary biophysical processes involved is available. Population-level neural recordings are modeled as the sum of filtered point processes (FPPs), each representing the contribution of a different biophysical process such as action potentials or postsynaptic potentials of different types. Our approach builds on prior neuroscience FPP work by allowing multiple interacting processes and time-varying firing rates and by deriving theoretical power spectra and cross-spectra. We demonstrate several properties of the models, including that they divide the power spectrum into frequency ranges dominated by rhythmic and broadband effects, and that they can capture spectral effects across multiple timescales, including sub-second cross-frequency coupling. The framework can be used to interpret empirically observed power spectra and cross-frequency coupling effects in biophysical terms, which bridges the gap between theoretical models and experimental results.
Collapse
|
5
|
Karpowicz BM, Bhaduri B, Nason-Tomaszewski SR, Jacques BG, Ali YH, Flint RD, Bechefsky PH, Hochberg LR, AuYong N, Slutzky MW, Pandarinath C. Reducing power requirements for high-accuracy decoding in iBCIs. J Neural Eng 2024; 21:066001. [PMID: 39423832 PMCID: PMC11528220 DOI: 10.1088/1741-2552/ad88a4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 10/21/2024]
Abstract
Objective.Current intracortical brain-computer interfaces (iBCIs) rely predominantly on threshold crossings ('spikes') for decoding neural activity into a control signal for an external device. Spiking data can yield high accuracy online control during complex behaviors; however, its dependence on high-sampling-rate data collection can pose challenges. An alternative signal for iBCI decoding is the local field potential (LFP), a continuous-valued signal that can be acquired simultaneously with spiking activity. However, LFPs are seldom used alone for online iBCI control as their decoding performance has yet to achieve parity with spikes.Approach.Here, we present a strategy to improve the performance of LFP-based decoders by first training a neural dynamics model to use LFPs to reconstruct the firing rates underlying spiking data, and then decoding from the estimated rates. We test these models on previously-collected macaque data during center-out and random-target reaching tasks as well as data collected from a human iBCI participant during attempted speech.Main results.In all cases, training models from LFPs enables firing rate reconstruction with accuracy comparable to spiking-based dynamics models. In addition, LFP-based dynamics models enable decoding performance exceeding that of LFPs alone and approaching that of spiking-based models. In all applications except speech, LFP-based dynamics models also facilitate decoding accuracy exceeding that of direct decoding from spikes.Significance.Because LFP-based dynamics models operate on lower bandwidth and with lower sampling rate than spiking models, our findings indicate that iBCI devices can be designed to operate with lower power requirements than devices dependent on recorded spiking activity, without sacrificing high-accuracy decoding.
Collapse
Affiliation(s)
- Brianna M Karpowicz
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Bareesh Bhaduri
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Samuel R Nason-Tomaszewski
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Brandon G Jacques
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Yahia H Ali
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Robert D Flint
- Department of Neurology, Northwestern University, Chicago, IL, United States of America
| | - Payton H Bechefsky
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Leigh R Hochberg
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
- Veterans Affairs Rehabilitation Research & Development Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI, United States of America
- Robert J. & Nancy D. Carney Institute for Brain Science and School of Engineering, Brown University, Providence, RI, United States of America
| | - Nicholas AuYong
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
- Department of Neurosurgery, Emory University, Atlanta, GA, United States of America
- Department of Cell Biology, Emory University, Atlanta, GA, United States of America
| | - Marc W Slutzky
- Department of Neurology, Northwestern University, Chicago, IL, United States of America
- Department of Neuroscience, Northwestern University, Chicago, IL, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States of America
- Shirley Ryan AbilityLab, Chicago, IL, United States of America
| | - Chethan Pandarinath
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
- Department of Neurosurgery, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
6
|
Lee S, Zhao Z, Alekseichuk I, Shirinpour S, Linn G, Schroeder CE, Falchier AY, Opitz A. Layer-specific dynamics of local field potentials in monkey V1 during electrical stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619242. [PMID: 39484447 PMCID: PMC11526877 DOI: 10.1101/2024.10.19.619242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The mammalian neocortex, organized into six cellular layers or laminae, forms a cortical network within layers. Layer specific computations are crucial for sensory processing of visual stimuli within primary visual cortex. Laminar recordings of local field potentials (LFPs) are a powerful tool to study neural activity within cortical layers. Electric brain stimulation is widely used in basic neuroscience and in a large range of clinical applications. However, the layer-specific effects of electric stimulation on LFPs remain unclear. To address this gap, we conducted laminar LFP recordings of the primary visual cortex in monkeys while presenting a flash visual stimulus. Simultaneously, we applied a low frequency sinusoidal current to the occipital lobe with offset frequency to the flash stimulus repetition rate. We analyzed the modulation of visual-evoked potentials with respect to the applied phase of the electric stimulation. Our results reveal that only the deeper layers, but not the superficial layers, show phase-dependent changes in LFP components with respect to the applied current. Employing a cortical column model, we demonstrate that these in vivo observations can be explained by phase-dependent changes in the driving force within neurons of deeper layers. Our findings offer crucial insight into the selective modulation of cortical layers through electric stimulation, thus advancing approaches for more targeted neuromodulation.
Collapse
|
7
|
Boddeti U, Langbein J, McAfee D, Altshuler M, Bachani M, Zaveri HP, Spencer D, Zaghloul KA, Ksendzovsky A. Modeling seizure networks in neuron-glia cultures using microelectrode arrays. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1441345. [PMID: 39290793 PMCID: PMC11405204 DOI: 10.3389/fnetp.2024.1441345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024]
Abstract
Epilepsy is a common neurological disorder, affecting over 65 million people worldwide. Unfortunately, despite resective surgery, over 30 % of patients with drug-resistant epilepsy continue to experience seizures. Retrospective studies considering connectivity using intracranial electrocorticography (ECoG) obtained during neuromonitoring have shown that treatment failure is likely driven by failure to consider critical components of the seizure network, an idea first formally introduced in 2002. However, current studies only capture snapshots in time, precluding the ability to consider seizure network development. Over the past few years, multiwell microelectrode arrays have been increasingly used to study neuronal networks in vitro. As such, we sought to develop a novel in vitro MEA seizure model to allow for study of seizure networks. Specifically, we used 4-aminopyridine (4-AP) to capture hyperexcitable activity, and then show increased network changes after 2 days of chronic treatment. We characterize network changes using functional connectivity measures and a novel technique using dimensionality reduction. We find that 4-AP successfully captures persistently elevated mean firing rate and significant changes in underlying connectivity patterns. We believe this affords a robust in vitro seizure model from which longitudinal network changes can be studied, laying groundwork for future studies exploring seizure network development.
Collapse
Affiliation(s)
- Ujwal Boddeti
- Surgical Neurology Branch, NINDS, National Institutes of Health, Baltimore, MD, United States
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jenna Langbein
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Darrian McAfee
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marcelle Altshuler
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Hitten P Zaveri
- Department of Neurology, Yale University, New Haven, CT, United States
| | - Dennis Spencer
- Department of Neurosurgery, Yale University, New Haven, CT, United States
| | - Kareem A Zaghloul
- Surgical Neurology Branch, NINDS, National Institutes of Health, Baltimore, MD, United States
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Liu Y, Lao W, Mao H, Zhong Y, Wang J, Ouyang W. Comparison of alterations in local field potentials and neuronal firing in mouse M1 and CA1 associated with central fatigue induced by high-intensity interval training and moderate-intensity continuous training. Front Neurosci 2024; 18:1428901. [PMID: 39211437 PMCID: PMC11357951 DOI: 10.3389/fnins.2024.1428901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background The mechanisms underlying central fatigue (CF) induced by high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) are still not fully understood. Methods In order to explore the effects of these exercises on the functioning of cortical and subcortical neural networks, this study investigated the effects of HIIT and MICT on local field potential (LFP) and neuronal firing in the mouse primary motor cortex (M1) and hippocampal CA1 areas. HIIT and MICT were performed on C57BL/6 mice, and simultaneous multichannel recordings were conducted in the M1 motor cortex and CA1 hippocampal region. Results A range of responses were elicited, including a decrease in coherence values of LFP rhythms in both areas, and an increase in slow and a decrease in fast power spectral density (PSD, n = 7-9) respectively. HIIT/MICT also decreased the gravity frequency (GF, n = 7-9) in M1 and CA1. Both exercises decreased overall firing rates, increased time lag of firing, declined burst firing rates and the number of spikes in burst, and reduced burst duration (BD) in M1 and CA1 (n = 7-9). While several neuronal firing properties showed a recovery tendency, the alterations of LFP parameters were more sustained during the 10-min post-HIIT/MICT period. MICT appeared to be more effective than HIIT in affecting LFP parameters, neuronal firing rate, and burst firing properties, particularly in CA1. Both exercises significantly affected neural network activities and local neuronal firing in M1 and CA1, with MICT associated with a more substantial and consistent suppression of functional integration between M1 and CA1. Conclusion Our study provides valuable insights into the neural mechanisms involved in exercise-induced central fatigue by examining the changes in functional connectivity and coordination between the M1 and CA1 regions. These findings may assist individuals engaged in exercise in optimizing their exercise intensity and timing to enhance performance and prevent excessive fatigue. Additionally, the findings may have clinical implications for the development of interventions aimed at managing conditions related to exercise-induced fatigue.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Ouyang
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
9
|
Seo S, Bharmauria V, Schütz A, Yan X, Wang H, Crawford JD. Multiunit Frontal Eye Field Activity Codes the Visuomotor Transformation, But Not Gaze Prediction or Retrospective Target Memory, in a Delayed Saccade Task. eNeuro 2024; 11:ENEURO.0413-23.2024. [PMID: 39054056 PMCID: PMC11373882 DOI: 10.1523/eneuro.0413-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Single-unit (SU) activity-action potentials isolated from one neuron-has traditionally been employed to relate neuronal activity to behavior. However, recent investigations have shown that multiunit (MU) activity-ensemble neural activity recorded within the vicinity of one microelectrode-may also contain accurate estimations of task-related neural population dynamics. Here, using an established model-fitting approach, we compared the spatial codes of SU response fields with corresponding MU response fields recorded from the frontal eye fields (FEFs) in head-unrestrained monkeys (Macaca mulatta) during a memory-guided saccade task. Overall, both SU and MU populations showed a simple visuomotor transformation: the visual response coded target-in-eye coordinates, transitioning progressively during the delay toward a future gaze-in-eye code in the saccade motor response. However, the SU population showed additional secondary codes, including a predictive gaze code in the visual response and retention of a target code in the motor response. Further, when SUs were separated into regular/fast spiking neurons, these cell types showed different spatial code progressions during the late delay period, only converging toward gaze coding during the final saccade motor response. Finally, reconstructing MU populations (by summing SU data within the same sites) failed to replicate either the SU or MU pattern. These results confirm the theoretical and practical potential of MU activity recordings as a biomarker for fundamental sensorimotor transformations (e.g., target-to-gaze coding in the oculomotor system), while also highlighting the importance of SU activity for coding more subtle (e.g., predictive/memory) aspects of sensorimotor behavior.
Collapse
Affiliation(s)
- Serah Seo
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - Vishal Bharmauria
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida 33606
| | - Adrian Schütz
- Department of Neurophysics, Philipps-Universität Marburg, 35032 Marburg, Germany
- Center for Mind, Brain, and Behavior - CMBB, Philipps-Universität Marburg, 35032 Marburg, and Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Xiaogang Yan
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - Hongying Wang
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - J Douglas Crawford
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
- Departments of Psychology, Biology, Kinesiology & Health Sciences, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
10
|
Kostoglou K, Michmizos KP, Stathis P, Sakas D, Nikita KS, Mitsis GD. Spiking Laguerre Volterra networks-predicting neuronal activity from local field potentials. J Neural Eng 2024; 21:046030. [PMID: 39029490 DOI: 10.1088/1741-2552/ad6594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Objective.Understanding the generative mechanism between local field potentials (LFP) and neuronal spiking activity is a crucial step for understanding information processing in the brain. Up to now, most approaches have relied on simply quantifying the coupling between LFP and spikes. However, very few have managed to predict the exact timing of spike occurrence based on LFP variations.Approach.Here, we fill this gap by proposing novel spiking Laguerre-Volterra network (sLVN) models to describe the dynamic LFP-spike relationship. Compared to conventional artificial neural networks, the sLVNs are interpretable models that provide explainable features of the underlying dynamics.Main results.The proposed networks were applied on extracellular microelectrode recordings of Parkinson's Disease patients during deep brain stimulation (DBS) surgery. Based on the predictability of the LFP-spike pairs, we detected three neuronal populations with unique signal characteristics and sLVN model features.Significance.These clusters were indirectly associated with motor score improvement following DBS surgery, warranting further investigation into the potential of spiking activity predictability as an intraoperative biomarker for optimal DBS lead placement.
Collapse
Affiliation(s)
- Kyriaki Kostoglou
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
- Department of Electrical and Computer Engineering, McGill University, Montreal, Canada
| | | | - Pantelis Stathis
- Department of Neurosurgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Damianos Sakas
- Department of Neurosurgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina S Nikita
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | | |
Collapse
|
11
|
Wang G, You C, Feng C, Yao W, Zhao Z, Xue N, Yao L. Modeling and Analysis of Environmental Electromagnetic Interference in Multiple-Channel Neural Recording Systems for High Common-Mode Interference Rejection Performance. BIOSENSORS 2024; 14:343. [PMID: 39056619 PMCID: PMC11275126 DOI: 10.3390/bios14070343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Environmental electromagnetic interference (EMI) has always been a major interference source for multiple-channel neural recording systems, and little theoretical work has been attempted to address it. In this paper, equivalent circuit models are proposed to model both electromagnetic interference sources and neural signals in such systems, and analysis has been performed to generate the design guidelines for neural probes and the subsequent recording circuit towards higher common-mode interference (CMI) rejection performance while maintaining the recorded neural action potential (AP) signal quality. In vivo animal experiments with a configurable 32-channel neural recording system are carried out to validate the proposed models and design guidelines. The results show the power spectral density (PSD) of environmental 50 Hz EMI interference is reduced by three orders from 4.43 × 10-3 V2/Hz to 4.04 × 10-6 V2/Hz without affecting the recorded AP signal quality in an unshielded experiment environment.
Collapse
Affiliation(s)
- Gang Wang
- School of Microelectronics, Shanghai University, Shanghai 200444, China;
- Zhangjiang Laboratory, Shanghai 200031, China
| | - Changhua You
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, Beijing 100190, China;
| | - Chengcong Feng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; (C.F.); (Z.Z.)
| | - Wenliang Yao
- Shanghai Mtrix Technology Co., Ltd., Shanghai 200031, China;
| | - Zhengtuo Zhao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; (C.F.); (Z.Z.)
| | - Ning Xue
- Lingang Laboratory, Shanghai 200031, China;
| | - Lei Yao
- Lingang Laboratory, Shanghai 200031, China;
| |
Collapse
|
12
|
Lee AT, Chang EF, Paredes MF, Nowakowski TJ. Large-scale neurophysiology and single-cell profiling in human neuroscience. Nature 2024; 630:587-595. [PMID: 38898291 DOI: 10.1038/s41586-024-07405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/09/2024] [Indexed: 06/21/2024]
Abstract
Advances in large-scale single-unit human neurophysiology, single-cell RNA sequencing, spatial transcriptomics and long-term ex vivo tissue culture of surgically resected human brain tissue have provided an unprecedented opportunity to study human neuroscience. In this Perspective, we describe the development of these paradigms, including Neuropixels and recent brain-cell atlas efforts, and discuss how their convergence will further investigations into the cellular underpinnings of network-level activity in the human brain. Specifically, we introduce a workflow in which functionally mapped samples of human brain tissue resected during awake brain surgery can be cultured ex vivo for multi-modal cellular and functional profiling. We then explore how advances in human neuroscience will affect clinical practice, and conclude by discussing societal and ethical implications to consider. Potential findings from the field of human neuroscience will be vast, ranging from insights into human neurodiversity and evolution to providing cell-type-specific access to study and manipulate diseased circuits in pathology. This Perspective aims to provide a unifying framework for the field of human neuroscience as we welcome an exciting era for understanding the functional cytoarchitecture of the human brain.
Collapse
Affiliation(s)
- Anthony T Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Mercedes F Paredes
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Singh S, Becker S, Trappenberg T, Nunes A. Granule cells perform frequency-dependent pattern separation in a computational model of the dentate gyrus. Hippocampus 2024; 34:14-28. [PMID: 37950569 DOI: 10.1002/hipo.23585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Mnemonic discrimination (MD) may be dependent on oscillatory perforant path input frequencies to the hippocampus in a "U"-shaped fashion, where some studies show that slow and fast input frequencies support MD, while other studies show that intermediate frequencies disrupt MD. We hypothesize that pattern separation (PS) underlies frequency-dependent MD performance. We aim to study, in a computational model of the hippocampal dentate gyrus (DG), the network and cellular mechanisms governing this putative "U"-shaped PS relationship. We implemented a biophysical model of the DG that produces the hypothesized "U"-shaped input frequency-PS relationship, and its associated oscillatory electrophysiological signatures. We subsequently evaluated the network's PS ability using an adapted spatiotemporal task. We undertook systematic lesion studies to identify the network-level mechanisms driving the "U"-shaped input frequency-PS relationship. A minimal circuit of a single granule cell (GC) stimulated with oscillatory inputs was also used to study potential cellular-level mechanisms. Lesioning synapses onto GCs did not impact the "U"-shaped input frequency-PS relationship. Furthermore, GC inhibition limits PS performance for fast frequency inputs, while enhancing PS for slow frequency inputs. GC interspike interval was found to be input frequency dependent in a "U"-shaped fashion, paralleling frequency-dependent PS observed at the network level. Additionally, GCs showed an attenuated firing response for fast frequency inputs. We conclude that independent of network-level inhibition, GCs may intrinsically be capable of producing a "U"-shaped input frequency-PS relationship. GCs may preferentially decorrelate slow and fast inputs via spike timing reorganization and high frequency filtering.
Collapse
Affiliation(s)
- Selena Singh
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Suzanna Becker
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Thomas Trappenberg
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Abraham Nunes
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
14
|
Wang HL, Kuo YT, Lo YC, Kuo CH, Chen BW, Wang CF, Wu ZY, Lee CE, Yang SH, Lin SH, Chen PC, Chen YY. Enhancing Prediction of Forelimb Movement Trajectory through a Calibrating-Feedback Paradigm Incorporating RAT Primary Motor and Agranular Cortical Ensemble Activity in the Goal-Directed Reaching Task. Int J Neural Syst 2023; 33:2350051. [PMID: 37632142 DOI: 10.1142/s012906572350051x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Complete reaching movements involve target sensing, motor planning, and arm movement execution, and this process requires the integration and communication of various brain regions. Previously, reaching movements have been decoded successfully from the motor cortex (M1) and applied to prosthetic control. However, most studies attempted to decode neural activities from a single brain region, resulting in reduced decoding accuracy during visually guided reaching motions. To enhance the decoding accuracy of visually guided forelimb reaching movements, we propose a parallel computing neural network using both M1 and medial agranular cortex (AGm) neural activities of rats to predict forelimb-reaching movements. The proposed network decodes M1 neural activities into the primary components of the forelimb movement and decodes AGm neural activities into internal feedforward information to calibrate the forelimb movement in a goal-reaching movement. We demonstrate that using AGm neural activity to calibrate M1 predicted forelimb movement can improve decoding performance significantly compared to neural decoders without calibration. We also show that the M1 and AGm neural activities contribute to controlling forelimb movement during goal-reaching movements, and we report an increase in the power of the local field potential (LFP) in beta and gamma bands over AGm in response to a change in the target distance, which may involve sensorimotor transformation and communication between the visual cortex and AGm when preparing for an upcoming reaching movement. The proposed parallel computing neural network with the internal feedback model improves prediction accuracy for goal-reaching movements.
Collapse
Affiliation(s)
- Han-Lin Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Yun-Ting Kuo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Yu-Chun Lo
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 235235, Taiwan
| | - Chao-Hung Kuo
- Department of Neurosurgery, Neurological Institute Taipei Veterans General Hospital, No. 201, Sec. 2 Shipai Rd., Taipei 11217, Taiwan
| | - Bo-Wei Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Ching-Fu Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
- Biomedical Engineering Research and Development Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Zu-Yu Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Chi-En Lee
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
| | - Shih-Hung Yang
- Department of Mechanical Engineering, National Cheng Kung University, No. 1, University Rd., Tainan 70101, Taiwan
| | - Sheng-Huang Lin
- Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, No. 707, Sec. 3 Zhongyang Rd., Hualien 97002, Taiwan
- Department of Neurology, School of Medicine, Tzu Chi University, No. 701, Sec. 3, Zhongyang Rd., Hualien 97004, Taiwan
| | - Po-Chuan Chen
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No. 155, Sec. 2 Linong St., Taipei 112304, Taiwan
- The Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 235235, Taiwan
| |
Collapse
|
15
|
Feliciano-Ramos PA, Galazo M, Penagos H, Wilson M. Hippocampal memory reactivation during sleep is correlated with specific cortical states of the retrosplenial and prefrontal cortices. Learn Mem 2023; 30:221-236. [PMID: 37758288 PMCID: PMC10547389 DOI: 10.1101/lm.053834.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023]
Abstract
Episodic memories are thought to be stabilized through the coordination of cortico-hippocampal activity during sleep. However, the timing and mechanism of this coordination remain unknown. To investigate this, we studied the relationship between hippocampal reactivation and slow-wave sleep up and down states of the retrosplenial cortex (RTC) and prefrontal cortex (PFC). We found that hippocampal reactivations are strongly correlated with specific cortical states. Reactivation occurred during sustained cortical Up states or during the transition from up to down state. Interestingly, the most prevalent interaction with memory reactivation in the hippocampus occurred during sustained up states of the PFC and RTC, while hippocampal reactivation and cortical up-to-down state transition in the RTC showed the strongest coordination. Reactivation usually occurred within 150-200 msec of a cortical Up state onset, indicating that a buildup of excitation during cortical Up state activity influences the probability of memory reactivation in CA1. Conversely, CA1 reactivation occurred 30-50 msec before the onset of a cortical down state, suggesting that memory reactivation affects down state initiation in the RTC and PFC, but the effect in the RTC was more robust. Our findings provide evidence that supports and highlights the complexity of bidirectional communication between cortical regions and the hippocampus during sleep.
Collapse
Affiliation(s)
- Pedro A Feliciano-Ramos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Maria Galazo
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, Louisana 70118, USA
- Department of Cell and Molecular Biology, Tulane Brain Institute, Tulane University, New Orleans, Louisana 70118, USA
| | - Hector Penagos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Matthew Wilson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Center for Brains, Minds, and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
16
|
Dong Y, Wang S, Huang Q, Berg RW, Li G, He J. Neural Decoding for Intracortical Brain-Computer Interfaces. CYBORG AND BIONIC SYSTEMS 2023; 4:0044. [PMID: 37519930 PMCID: PMC10380541 DOI: 10.34133/cbsystems.0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Brain-computer interfaces have revolutionized the field of neuroscience by providing a solution for paralyzed patients to control external devices and improve the quality of daily life. To accurately and stably control effectors, it is important for decoders to recognize an individual's motor intention from neural activity either by noninvasive or intracortical neural recording. Intracortical recording is an invasive way of measuring neural electrical activity with high temporal and spatial resolution. Herein, we review recent developments in neural signal decoding methods for intracortical brain-computer interfaces. These methods have achieved good performance in analyzing neural activity and controlling robots and prostheses in nonhuman primates and humans. For more complex paradigms in motor rehabilitation or other clinical applications, there remains more space for further improvements of decoders.
Collapse
Affiliation(s)
- Yuanrui Dong
- School of Mechatronical Engineering and Beijing Advanced Innovation Center for Intelligent Robots,
Beijing Institute of Technology, Beijing 100081, China
| | - Shirong Wang
- School of Mechatronical Engineering and Beijing Advanced Innovation Center for Intelligent Robots,
Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- School of Mechatronical Engineering and Beijing Advanced Innovation Center for Intelligent Robots,
Beijing Institute of Technology, Beijing 100081, China
| | - Rune W. Berg
- Department of Neuroscience,
University of Copenhagen, Copenhagen 2200, Denmark
| | - Guanghui Li
- Department of Neuroscience,
University of Copenhagen, Copenhagen 2200, Denmark
| | - Jiping He
- School of Mechatronical Engineering and Beijing Advanced Innovation Center for Intelligent Robots,
Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
17
|
Singh B, Wang Z, Constantinidis C. Neuronal selectivity for stimulus information determines prefrontal LFP gamma power regardless of task execution. Commun Biol 2023; 6:505. [PMID: 37169826 PMCID: PMC10175284 DOI: 10.1038/s42003-023-04855-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Local field potential (LFP) power in the gamma frequency is modulated by cognitive variables during task execution. We sought to examine whether such modulations only emerge when task rules are established. We therefore analyzed neuronal firing and LFPs in different prefrontal subdivisions before and after the same monkeys were trained to perform cognitive tasks. Prior to task rule learning, sites containing neurons selective for stimuli already exhibited increased gamma power during and after the passive viewing of stimuli compared to the baseline period. Unexpectedly, when the same monkeys learned to maintain these stimuli in working memory, the elevation of gamma power above the baseline was diminished, despite an overall increase in firing rate. Learning and executing the task further decoupled LFP power from single neuron firing. Gamma power decreased at the time when subjects needed to make a judgment about whether two stimuli were the same or not, and differential gamma power was observed for matching and nonmatching stimuli. Our results indicate that prefrontal gamma power emerges spontaneously, not necessarily tied to a cognitive task being executed.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.
| | - Zhengyang Wang
- Neuroscience Program, Vanderbilt University, Nashville, TN, 37235, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
18
|
Hagen E, Magnusson SH, Ness TV, Halnes G, Babu PN, Linssen C, Morrison A, Einevoll GT. Brain signal predictions from multi-scale networks using a linearized framework. PLoS Comput Biol 2022; 18:e1010353. [PMID: 35960767 PMCID: PMC9401172 DOI: 10.1371/journal.pcbi.1010353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/24/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
Simulations of neural activity at different levels of detail are ubiquitous in modern neurosciences, aiding the interpretation of experimental data and underlying neural mechanisms at the level of cells and circuits. Extracellular measurements of brain signals reflecting transmembrane currents throughout the neural tissue remain commonplace. The lower frequencies (≲ 300Hz) of measured signals generally stem from synaptic activity driven by recurrent interactions among neural populations and computational models should also incorporate accurate predictions of such signals. Due to limited computational resources, large-scale neuronal network models (≳ 106 neurons or so) often require reducing the level of biophysical detail and account mainly for times of action potentials (‘spikes’) or spike rates. Corresponding extracellular signal predictions have thus poorly accounted for their biophysical origin. Here we propose a computational framework for predicting spatiotemporal filter kernels for such extracellular signals stemming from synaptic activity, accounting for the biophysics of neurons, populations, and recurrent connections. Signals are obtained by convolving population spike rates by appropriate kernels for each connection pathway and summing the contributions. Our main results are that kernels derived via linearized synapse and membrane dynamics, distributions of cells, conduction delay, and volume conductor model allow for accurately capturing the spatiotemporal dynamics of ground truth extracellular signals from conductance-based multicompartment neuron networks. One particular observation is that changes in the effective membrane time constants caused by persistent synapse activation must be accounted for. The work also constitutes a major advance in computational efficiency of accurate, biophysics-based signal predictions from large-scale spike and rate-based neuron network models drastically reducing signal prediction times compared to biophysically detailed network models. This work also provides insight into how experimentally recorded low-frequency extracellular signals of neuronal activity may be approximately linearly dependent on spiking activity. A new software tool LFPykernels serves as a reference implementation of the framework. Understanding the brain’s function and activity in healthy and pathological states across spatial scales and times spanning entire lives is one of humanity’s great undertakings. In experimental and clinical work probing the brain’s activity, a variety of electric and magnetic measurement techniques are routinely applied. However interpreting the extracellularly measured signals remains arduous due to multiple factors, mainly the large number of neurons contributing to the signals and complex interactions occurring in recurrently connected neuronal circuits. To understand how neurons give rise to such signals, mechanistic modeling combined with forward models derived using volume conductor theory has proven to be successful, but this approach currently does not scale to the systems level (encompassing millions of neurons or more) where simplified or abstract neuron representations typically are used. Motivated by experimental findings implying approximately linear relationships between times of neuronal action potentials and extracellular population signals, we provide a biophysics-based method for computing causal filters relating spikes and extracellular signals that can be applied with spike times or rates of large-scale neuronal network models for predictions of population signals without relying on ad hoc approximations.
Collapse
Affiliation(s)
- Espen Hagen
- Department of Data Science, Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- * E-mail: (EH); (GTE)
| | - Steinn H. Magnusson
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Torbjørn V. Ness
- Department of Physics, Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Geir Halnes
- Department of Physics, Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Pooja N. Babu
- Simulation & Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Jülich Research Centre, Jülich, Germany
| | - Charl Linssen
- Simulation & Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Jülich Research Centre, Jülich, Germany
- Institute of Neuroscience and Medicine (INM-6); Computational and Systems Neuroscience & Institute for Advanced Simulation (IAS-6); Theoretical Neuroscience & JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre and JARA, Jülich, Germany
| | - Abigail Morrison
- Simulation & Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Jülich Research Centre, Jülich, Germany
- Institute of Neuroscience and Medicine (INM-6); Computational and Systems Neuroscience & Institute for Advanced Simulation (IAS-6); Theoretical Neuroscience & JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre and JARA, Jülich, Germany
- Software Engineering, Department of Computer Science 3, RWTH Aachen University, Aachen, Germany
| | - Gaute T. Einevoll
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Physics, Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- * E-mail: (EH); (GTE)
| |
Collapse
|
19
|
DePass M, Falaki A, Quessy S, Dancause N, Cos I. A machine learning approach to characterize sequential movement-related states in premotor and motor cortices. J Neurophysiol 2022; 127:1348-1362. [PMID: 35171745 DOI: 10.1152/jn.00368.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Non-human primate (NHP) movement kinematics have been decoded from spikes and local field potentials (LFPs) recorded during motor tasks. However, the potential of LFPs to provide network-like characterizations of neural dynamics during planning and execution of sequential movements requires further exploration. Is the aggregate nature of LFPs suitable to construct informative brain state descriptors of movement preparation and execution? To investigate this, we developed a framework to process LFPs based on machine learning classifiers and analyzed LFP from a primate, implanted with several microelectrode arrays covering the premotor cortex in both hemispheres and the primary motor cortex on one side. The primate performed a reach and grasp task, consisting of five consecutive states, starting from rest until a rewarding target (food) was attained. We use this five-state task to characterize brain activity and connectivity within eight frequency bands, using spectral amplitude and pair-wise correlations across electrodes as features. Our results show that we could best distinguish all five movement-related states using the highest frequency band (200-500Hz), yielding an 87% accuracy with spectral amplitude, and 60% with pair-wise electrode correlation. Further analyses characterized each movement-related state, showing differential neuronal population activity at above-gamma frequencies during the various stages of movement. In summary, our results show that the concerted use of novel machine-learning techniques with coarse grained queue broad signals such as LFPs may be successfully used to track and decode fine reach and grasp movement aspects across several brain regions.
Collapse
Affiliation(s)
- Michael DePass
- Departament de Matemàtiques i Informàtica, Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ali Falaki
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada, Canada
| | - Stephan Quessy
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada, Canada
| | - Numa Dancause
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, Québec, Canada, Canada.,Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montreal, Québec, Canada
| | - Ignasi Cos
- Departament de Matemàtiques i Informàtica, Facultat de Matemàtiques i Informàtica, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Serra-Húnter Research Programme, Barcelona, Catalonia, Spain
| |
Collapse
|